TEKNOLOGI NUKLIR DALAM PENGEMBANGAN PROSES LOGAM NANOSTRUKTUR

Authors

Muhammad Rifai
PRTA ORTN

Keywords:

Nanostruktur, Deformasi, Texture, Hamburan neutron

Synopsis

Peran teknik nuklir dalam pengembangan teknologi proses logam nanostruktur mencakup tentang bagaimana teknik nuklir, seperti hamburan neutron dan sinar-X synchrotron digunakan untuk karakterisasi mendalam material nanostruktur, yang memungkinkan pemahaman yang lebih baik tentang sifat-sifat material ini dan memfasilitasi pengembangan material dengan karakteristik yang disesuaikan untuk berbagai aplikasi praktis.

Orasi Teknologi Nuklir dalam Pengembangan Teknologi Proses Logam Nanostruktur bertujuan untuk menyoroti pentingnya kerja sama antar disiplin untuk mendorong inovasi dan aplikasi teknologi material nanostruktur dalam berbagai sektor. Orasi ini diharapkan dapat memberikan pemahaman tentang bagaimana integrasi teknik nuklir dalam penelitian dan pengembangan logam nanostruktur berpotensi memajukan pemahaman kita tentang material ini dan mengoptimalkan penggunaannya di industri dan medis. Orasi ini dapat dimanfaatkan sebagai sumber referensi bagi peneliti atau akademisi untuk pembelajaran terkait teknik nuklir dalam pengembangan teknologi proses logam nanostruktur.

Downloads

Download data is not yet available.

Author Biography

Muhammad Rifai, PRTA ORTN

Muhammad Rifai, lahir di Yogyakarta, 22 Oktober 1980 adalah anak pertama dari pasangan Muhammad Taufik dan Sri Sumarsih. Menikah dengan drg. Selli Reviona dan dikaruniai dua orang anak kembar, yaitu Muhammad Rafa dan Muhammad Razzaq.

Berdasarkan Keputusan Presiden Republik Indonesia Nomor 2/M Tahun 2023 tanggal 9 Januari 2023 yang bersangkutan diangkat sebagai Peneliti Ahli Utama di lingkungan Badan Riset dan Inovasi Nasional (BRIN) terhitung mulai tanggal 25 Januari 2023.

Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional Nomor 170/I/HK/2024 tanggal 5 Juli 2024 tentang Pembentukan Majelis Pengukuhan Profesor Riset, yang bersangkutan dapat melakukan orasi Pengukuhan Profesor Riset.

Menamatkan Sekolah Dasar Muhammadiyah Sukonandi tahun 1992, Sekolah Menengah Pertama Negeri 6 Yogyakarta tahun 1995, dan Sekolah Menengah Umum Negeri 4 Yogyakarta tahun 1998. Memperoleh gelar Sarjana Sains dari Fisika MIPA, Universitas Gadjah Mada  (UGM) tahun 2002; gelar Master of Engineering  (M.Eng) di bidang ilmu bahan dan teknik dari Ritsumeikan University tahun 2011, dengan topik tesis Deformation and fracture behavior of austenitic stainless steel powder compacts with Bi-modal Microstructure; dan gelar Doctor (Dr.) di bidang Mechanical and System Engineering dari Doshisha University, Jepang pada tahun 2015 dengan topik disertasi Mechanical and corrosion properties of ultrafine-grained low C, N Fe-20%Cr steel produced by equal channel angular pressing.

Mengikuti beberapa pelatihan dan pendidikan nonformal yang terkait dengan kompetensi di bidang teknik nuklir dan ilmu bahan, antara lain  Post-doctoral program at Mechanical and System Engineering, Doshisha University, Jepang mengenai bulk nanostructured metal  (tahun 2016–2018); International workshop on giant straining process for advanced materials di Jepang  (tahun 2016); dan Program Research and Innovation in Science and Technology Project  (RISET-Pro) tentang pemanfaatan logam berbasis nanostruktur untuk pencegahan penyebaran COVID-19 dengan karakterisasi teknik nuklir. (tahun 2019 dan 2020).

Sejak tahun 2002 hingga 2023 telah mengikuti banyak kegiatan yang diselenggarakan oleh Japan Atomic Energy Research Insitute; Asia-Oceania Neutron Scattering Association; Japan Institute Metal, Iron and Steel Institute of Japan; dan lainnya untuk training course, scientific visit, dan consultancy meeting. Sebagai pembicara dan undangan terkait fasilitas maupun aplikasi karakterisasi teknik nuklir untuk penelitian material logam pada konferensi internasional di Thailand, Jepang, Perancis, Italia, Amerika, dan Australia, serta beberapa konferensi ilmiah lainnya di dalam dan luar negeri.

Sedang menduduki jabatan struktural sebagai Kepala Pusat Riset Teknologi Akseleratator 2022–sekarang. Jabatan fungsional peneliti diawali sebagai Peneliti Muda golongan III/d tahun 2019, Peneliti Madya golongan IV/a tahun 2020, dan Peneliti Ahli Utama golongan IV/c bidang Logam dan Paduan tahun 2023 dengan Scopus h-index mencapai nilai 8 (April 2024). Menghasilkan 51 karya tulis ilmiah (KTI), baik yang ditulis sendiri maupun bersama penulis lain dalam bentuk jurnal dan prosiding. Sebanyak 50 dari 51 KTI ditulis dalam bahasa Inggris.

Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pembimbing jabatan fungsional peneliti di Badan Tenaga Nuklir Nasional (BATAN) dan research assistant di Doshisha University, Jepang, serta pembimbing dan penguji skripsi di lembaga pendidikan di Indonesia dan Jepang. Aktif dalam organisasi profesi ilmiah, yaitu sebagai anggota di Himpunan Peneliti Indonesia (HIMPENINDO); Perhimpunan Periset Indonesia (PPI); Japan Atomic Energy Research Insitute; Asia-Oceania Hamburan neutron Association; Japan Institute Metal, Iron and Steel Institute of Japan. Menerima tanda penghargaan dari Presiden Republik Indonesia, yaitu Satyalancana Karya Satya X Tahun (tahun 2013) dan XX Tahun (tahun 2023).

References

Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., & Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, 102597. https://doi.org/10.1016/J.CIS.2021.102597

Abiko, M., Miyamoto, H., Fujiwara, H., & Rifai, M. (2015). Fatigue properties of UFG low C, N, ferrite stainless steel produced by ECAP. Proceeding Processing and Fabrication of Advanced Material XXIV, 21(1), 712–721.

Ameyama, K., Cazes, F., Couque, H., Dirras, G., Kikuchi, S., Li, J., Mompiou, F., Mondal, K., Orlov, D., Sharma, B., Tingaud, D., & Vajpai, S. K. (2022). Harmonic structure, a promising microstructure design. Materials Research Letters, 10(7), 440–471. https://doi.org/10.1080/21663831.2022.2057203

Ameyama, K., Fujiwara, H., Sekiguchi, T., Sabrina N. B. R., & Rifai, M. (2010). Creation of harmonic structure materials with outstanding mechanical properties. International Symposium on Giant Straining Process for Advanced Materials Proceedings, 2010(1), 35–46. https://doi.org/unidentified

Ameyama, K., Vajpai, S. K., & Ota, M. (2017). Microstructure Evolution and Deformation Mechanisms of Harmonic Structure Designed Materials. Materials Science Forum, 879, 145–150. https://doi.org/10.4028/www.scientific.net/msf.879.145

Amine, K., Kanno, R., & Tzeng, Y. (2014). Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bulletin, 39(5), 395–401. https://doi.org/10.1557/MRS.2014.62

Asabe, T., Rifai, M., Yuasa, M., & Miyamoto, H. (2017). Effect of grain size on the stress corrosion cracking of ultrafine grained Cu-10 wt% Zn alloy in ammonia. International Journal of Corrosion, 2017, 1–8. https://doi.org/10.1155/2017/2893276

Bogdanov, S. G., Goshchitskii, B. N., Parkhomenko, V. D., Leontieva-Smirnova, M. V., & Chernov, V. M. (2014). Small-angle neutron scattering investigation of the nanostructure of ferritic-martensitic 12%-chromium steels. Physics of the Solid State, 56(1), 1–13. https://doi.org/10.1134/S1063783414010065/METRICS

Edalati, K., & Horita, Z. (2016). A review on high-pressure torsion (HPT) from 1935 to 1988. Materials Science and Engineering: A, 652, 325–352. https://doi.org/10.1016/J.MSEA.2015.11.074

Farajpour, A., Ghayesh, M. H., & Farokhi, H. (2018). A review on the mechanics of nanostructures. International Journal of Engineering Science, 133, 231–263. https://doi.org/10.1016/J.IJENGSCI.2018.09.006

Farshidi, M. H., Rifai, M., & Miyamoto, H. (2018). Microstructure evolution of a recycled Al–Fe–Si–Cu alloy processed by tube channel pressing. International Journal of Minerals, Metallurgy and Materials, 25(10), 1166–1172. https://doi.org/10.1007/S12613-018-1668-6

Farshidi, M. H., Rifai, M., & Miyamoto, H. (2023). Grain refinement, texture evolutions, and strengthening of a recycled aluminium alloy subjected to tube channel pressing. Metallic Materials/Kovové Materiály, 61, 13–21. https://doi.org/10.31577/km.2023.1.13

Gadzhimagomedova, Z. M., Pashkov, D. M., Kirsanova, D. Y., Soldatov, S. A., Butakova, M. A., Chernov, A. V., & Soldatov, A. V. (2022). Artificial intelligence for nanostructured materials. Nanobiotechnology Reports, 17(1), 1–9. https://doi.org/10.1134/S2635167622010049/metrics

Gao, S., Chen, M., Chen, S., Kamikawa, N., Shibata, A., & Tsuji, N. (2014). Yielding behavior and its effect on uniform elongation of fine grained IF steel. Materials Transactions, 55(1), 73–77. https://doi.org/10.2320/MATERTRANS.MA201317

Garcia-Mateo, C., Sourmail, T., Caballero, F. G., Smanio, V., Kuntz, M., Ziegler, C., Leiro, A., Vuorinen, E., Elvira, R., & Teeri, T. (2014). Nanostructured steel industrialisation: plausible reality. Materials Science and Technology, 30(9), 1071–1078. https://doi.org/10.1179/1743284713Y.0000000428

Ghalehbandi, S. M., Malaki, M., & Gupta, M. (2019). Accumulative roll bonding—a review. Applied Sciences, 9(17), 3627–3640. https://doi.org/10.3390/APP9173627

Gostariani, R., Bagherpour, E., Rifai, M., Ebrahimi, R., & Miyamoto, H. (2018). Fabrication of Al/AlN in-situ nanocomposite through planetary ball milling and hot extrusion of Al/BN: Microstructural evaluation and mechanical behavior. Journal of Alloys and Compounds, 768, 329–339. https://doi.org/10.1016/j.jallcom.2018.07.256

Gupta, A., Chandrasekhar, B., & Saxena, K. K. (2021). Effect of Equal-channel angular pressing on mechanical properties: An overview. Materials Today: Proceedings, 45, 5602–5607. https://doi.org/10.1016/J.MATPR.2021.02.317

Handayani, A., Rifai, M., Pramono, E., & Mujamilah, M. (2013). Morphology and magnetic properties of Fe/Fe-oxide core/shell nanoparticle prepared by high energy milling process in varied medium. Indonesian Journal of Materials Science, 151–155. https://doi.org/10.17146/jsmi.2013.14.2.4438

Hirota, K., Ge, X., Kato, M., & Rifai, M. (2016). The microstructure and mechanical properties of ZrO2-Al2O3 thick film formed on the SUS304 sheet using thermal spray. Proceeding of Harris Foundation Research Presentation, 2016(1), 96–101. https://doi.org/undefined

Hosseini, M., Arif, M., Keshavarz, A., & Iglauer, S. (2021). Neutron scattering: A subsurface application review. Earth-Science Reviews, 221, 103755–103770. https://doi.org/10.1016/J.EARSCIREV.2021.103755

Inkson, B. J. (2016). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 17–43. https://doi.org/10.1016/B978-0-08-100040-3.00002-X

Khanal, L. R., Sundararajan, J. A., & Qiang, Y. (2020). Advanced nanomaterials for nuclear energy and nanotechnology. Energy Technology, 8(3), 1901070. https://doi.org/10.1002/ENTE.201901070

Kostorz, G. (2014). X-ray and neutron scattering. Physical Metallurgy: Fifth Edition, 1, 1227–1316. https://doi.org/10.1016/B978-0-444-53770-6.00013-7

Kuprin, A. S., Vasilenko, R. L., Tolstolutskaya, G. D., Voyevodin, V. N., Belous, V. A., Ovcharenko, V. D., & Kopanets, I. E. (2021). Irradiation resistance of chromium coatings for ATFC in the temperature range 300–550°C. Journal of Nuclear Materials, 549, 152908. https://doi.org/10.1016/J.JNUCMAT.2021.152908

Li, G., Jiang, J., Ma, H., Zheng, R., Gao, S., Zhao, S., Ma, C., Ameyama, K., Ding, B., & Li, X. (2023). Superior strength–ductility synergy in three-dimensional heterogeneous-nanostructured metals. Acta Materialia, 256, 119143–119155. https://doi.org/10.1016/J.ACTAMAT.2023.119143

Li, X., Lu, L., Li, J., Zhang, X., & Gao, H. (2020). Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nature Reviews Materials, 5(9), 706–723. https://doi.org/10.1038/s41578-020-0212-2

MacWan, A., Marr, M., Kesler, O., & Chen, D. L. (2015). Microstructure, hardness, and fracture toughness of suspension plasma sprayed yttria-stabilized zirconia electrolytes on stainless steel substrates. Thin Solid Films, 584, 23–28. https://doi.org/10.1016/j.tsf.2014.11.052

Mishnaevsky, L., Levashov, E., Valiev, R. Z., Segurado, J., Sabirov, I., Enikeev, N., Prokoshkin, S., Solov’Yov, A. V., Korotitskiy, A., Gutmanas, E., Gotman, I., Rabkin, E., Psakh’E, S., Dluhos, L., Seefeldt, M., & Smolin, A. (2014). Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering: R: Reports, 81(1), 1–19. https://doi.org/10.1016/J.MSER.2014.04.002

Miyamoto, H., Rifai, M., & Fujiwara, H. (2014). Severe plastic deformation as a new processing for enhancing the performance of metallic components. Books.Google.CoProceedings of the First International Conference on Construction, 2014, 1–10. https://doi.org/unidentified

Miyamoto, H., Yuasa, M., Rifai, M., & Fujiwara, H. (2019). Corrosion behavior of severely deformed pure and single-phase materials. Materials Transactions, 60(7), 1243–1255. https://doi.org/10.2320/matertrans.MF201935

Muslih, M. R., Priyanto, T. H., Rifai, M., Andryansah, A., & Riastuti, R. (2022). Texture characterization of the copper produced by ECAP process using neutron diffraction technique. Jurnal Sains Materi Indonesia, 23(2), 2614–087. https://doi.org/10.17146/jsmi.2022.23.5.6604

Nakai, Y., Kikuchi, S., Shiozawa, D., Hase, T., Nakazawa, I., Fujita, K., Kawabata, M. O., & Ameyama, K. (2023). Evaluation of dislocation density of coarse and fine grains in bimodal harmonic structured steel observed by diffraction contrast tomography using ultrabright synchrotron radiation. Advanced Engineering Materials, 25(15), 2201836–2201850. https://doi.org/10.1002/ADEM.202201836

Nakai, Y., Kikuchi, S., Shiozawa, D., Nakazawa, I., Fujita, K., Kawabata, M. O., & Ameyama, K. (2023). Misorientation measurement in tensile test of bimodal harmonic structured stainless steel by diffraction contrast tomography using ultrabright synchrotron radiation x-ray. Procedia Structural Integrity, 43, 221–227. https://doi.org/10.1016/J.PROSTR.2022.12.262

Nakai, Y., Shiozawa, D., Kikuchi, S., Mishima, I., Kawabata, M., & Ameyama, K. (2023). Misorientation of grains in fatigue of harmonic structured steel observed by diffraction contrast tomography using ultrabright synchrotron radiation. Materials Science Forum, 1107, 61–66. https://doi.org/10.4028/P-E0MC23

Osaki, K., Kikuchi, S., Nakai, Y., Kawabata, M. O., & Ameyama, K. (2020). The effects of thermo-mechanical processing on fatigue crack propagation in commercially pure titanium with a harmonic structure. Materials Science and Engineering: A, 773, 138892–138910. https://doi.org/10.1016/J.MSEA.2019.138892

Prasetya, A. D., Rifai, M., As’ari, A. H., Mujamilah, M., & Miyamoto, H. (2020). Electrochemistry study on the relationship between grain boundary state and corrosion behavior of ultrafine grained iron chromium alloy. Jurnal Sains Materi Indonesia, 21(1), 41–46. https://doi.org/10.17146/jsmi.2019.21.1.5640

Prasetya, A. D., Rifai, M., Mujamilah, M., & Miyamoto, H. (2020). X-ray diffraction (XRD) profile analysis of pure ECAP-annealing nickel samples. Journal of Physics: Conference Series, 1436(1), 1–7. https://doi.org/10.1088/1742-6596/1436/1/012113

Prasetya, A. D., Rifai, M., Mujamilah, M., Sulungbudi, G. Tj., Putri, F. N., Yoviansyah, F. R., & Miyamoto, H. (2021). Corrosion behaviour of ultrafine grained pure magnesium and ZK60 prepared by equal channel angular pressing in simulated body fluid and DMEM solution. AIP Conference Proceedings, 2381(1), 1–5. https://doi.org/10.1063/5.0066262

Purnamasari, I. S., Rifai, M., Ajiriyanto, M. K., Alhamidi, A., Mujamilah, M., Insani, A., & Prasetya, A. D. (2021). Corrosion behavior of pure magnesium processed by accumulative roll bonding for biomaterial application. Indian Journal of Engineering and Materials Sciences, 28, 583–590. https://doi.org/10.56042/ijems.v28i6.43477

Rifai, M., Haga, R., Miyamoto, H., & Fujiwara, H. (2013). Microstructure quantification and mechanical properties of ultrafine grained Fe-Cr alloys and pure copper by equal channel angular pressing. Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 2013(1), 3329–3335. https://doi.org/10.1007/978-3-319-48764-9_412

Rifai, M., & Miyamoto, H. (2019). Effect of stored energy on corrosion fatigue properties of ultrafine grained Fe-20% Cr steel by equal channel angular pressing. IOP Conference Series: Materials Science and Engineering, 673 (1). https://doi.org/10.1088/1757-899X/673/1/012131

Rifai, M., & Miyamoto, H. (2020). Effect of strain energy on the grain growth behaviour of ultrafine-grained iron-chromium alloy by equal channel angular pressing. Journal of Mechanical Engineering and Sciences, 14(3), 7049–7057. https://doi.org/10.15282/jmes.14.3.2020.07.0552

Rifai, M., Miyamoto, H., & Fujiwara, H. (2014a). Effect of deformation route on the development of low CN Fe-20% Cr alloy by Equal Channel Angular Pressing. IOP Conference Series: Materials Science and Engineering, 63, 1–6. https://doi.org/10.1088/1757-899X/63/1/012122

Rifai, M., Miyamoto, H., & Fujiwara, H. (2014b). Effect of ECAP deformation route on the degree of anisotropy of microstructure of extremely low CN Fe-20mass% Cr alloy. Metals, 4(1), 55–63. https://doi.org/10.3390/met4010055

Rifai, M., Miyamoto, H., & Fujiwara, H. (2014c). The effect of ECAP deformation route on microstructure, mechanical and electrochemical properties of low CN Fe-20% Cr alloy. Materials Sciences and Applications, 5(8), 568–578. https://doi.org/10.4236/msa.2014.58059

Rifai, M., Miyamoto, H., & Fujiwara, H. (2015). Effects of strain energy and grain size on corrosion resistance of ultrafine grained Fe-20% Cr steels with extremely low C and N fabricated by ECAP. International Journal of Corrosion, 2015, 1–9. https://doi.org/10.1155/2015/386865

Rifai, M., Mujamilah, M., Bagherpour, E., & Miyamoto, M. (2022). Effect of strain energy on corrosion behavior of ultrafine grained copper prepared by severe plastic deformation. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(2), 335–344. https://doi.org/10.2298/JMMB220101015R

Rifai, M., Mujamilah, M., & Miyamoto, H. (2021a). Effect of preliminary deformation on microstructure and texture of iron-chromium alloy prepared by severe plastic deformation. International Journal of Emerging Trends in Engineering Research, 9(12), 1468–1471. https://doi.org/10.30534/ijeter/2021/039122021

Rifai, M., Mujamilah, M., & Miyamoto, H. (2021b). Microstructure and strain hardening behaviour of iron chromium alloy subjected by severe plastic deformation. International Journal of Emerging Trends in Engineering Research, 9(12), 1472–1476. https://doi.org/10.30534/ijeter/2021/049122021

Rifai, M., Mujamilah, M., & Miyamoto, H. (2021c). Microstructure and strain rate sensitivity in pure magnesium subjected to severe plastic deformation. AIP Conference Proceedings, 2381(1), 1–6. https://doi.org/10.1063/5.0066260

Rifai, M., Mujamilah, M., & Miyamoto, H. (2021d). Microstructure homogeneity of ultrafine-grained copper prepared by severe plastic deformation process. AIP Conference Proceedings, 2381(1), 1–6. https://doi.org/10.1063/5.0066261

Rifai, M., Mujamilah, M., & Miyamoto, H. (2021e). The Effect of precipitation on microstructure and corrosion behaviour of ZK60 subjected to severe plastic deformation. Metalurgi, 36(3), 109–118. https://doi.org/10.14203/metalurgi.v36i3.607

Rifai, M., Mujamilah, M., & Miyamoto, H. (2022a). Effect of Microstructure evolution and corrosion behavior on phase transformation of nanocrystalline SUS304 prepared by dry ice shot peening. International Journal of Emerging Trends in Engineering Research, 10(1). https://doi.org/10.30534/ijeter/2022/021012022

Rifai, M., Mujamilah, M., & Miyamoto, H. (2022b). Hardness and microstructure homogeneity of pure copper and iron-chromium alloy processed by severe plastic deformation. International Journal of Emerging Trends in Engineering Research, 10(1), 1–8. https://doi.org/10.30534/ijeter/2022/011012022

Rifai, M., Mujamilah, M., & Miyamoto, H. (2022c). Microstructure, hardness and corrosion behaviour of SUS304 subjected by dry ice shot peening. AIP Conference Proceeding, 2501(1), 1–5. https://doi.org/10.1063/5.0095497

Rifai, M., Mujamilah, M., & Miyamoto, H. (2022d). Nanoindentation behaviour on magnesium alloy subjected by equal channel angular pressing. AIP Conference Proceeding, 2501(1), 1–6. https://doi.org/10.1063/5.0095496

Rifai, M., Mujamilah, M., Muslich, M. R., Ridwan, R., Sarr, M. M., & Miyamoto, H. (2020). Neutron diffraction and the residual stress distribution of magnesium processed by equal channel angular pressing. Journal of Physics: Conference Series, 1436(1). https://doi.org/10.1088/1742-6596/1436/1/012034

Rifai, M., Prasetya, A. D., Mujamilah, M., & Miyamoto, H. (2021). Microstructure and corrosion behaviour of ultrafine-grained pure magnesium by severe plastic deformation as a biodegradable material. Journal of Physics: Conference Series, 1825(1), 1–6. https://doi.org/10.1088/1742-6596/1825/1/012086

Rifai, M., Ridwan, Mujamilah, Insani, A., & Uus, S. (2021). Pengembangan bahan logam tembaga dengan proses severe plastic deformation untuk in-aktivasi COVID-19 berbasis karakterisasi teknik nuklir, Proposal Kegiatan Konsorsium COVID-19.

Rifai, M., Yuasa, M., & Miyamoto, H. (2018a). Effect of deformation structure and annealing temperature on corrosion of ultrafine-grain Fe-Cr Alloy prepared by equal channel angular pressing. International Journal of Corrosion, 2018, 1–15. https://doi.org/10.1155/2018/4853175

Rifai, M., Yuasa, M., & Miyamoto, H. (2018b). Enhanced corrosion resistance of ultrafine-grained Fe-Cr alloys with subcritical Cr contents for passivity. Metals, 149(8), 1–10. https://doi.org/10.3390/met8030149

Rifai, M., Yunasfi, Y., Sukirman, E., Sarwanto, Y., & Mujamilah, M. (2021). Structure and magnetic properties of Fe/Si nanoparticles prepared by high energy milling process. Indonesian Journal of Applied Physics, 11(2), 1–9. https://doi.org/10.13057/ijap.v11i2.51029

Sabirov, I., Enikeev, N. A., Murashkin, M. Y., & Valiev, R. Z. (2015). Bulk nanostructured materials with multifunctional properties, 10, 978–3. Berlin, Germany: Springer International Publishing. https://link.springer.com/content/pdf/10.1007/978-3-319-19599-5.pdf

Segal, V. (2018). Review: Modes and processes of severe plastic deformation (SPD). Materials, 11(7), 1175. https://doi.org/10.3390/MA11071175

Sharma, B., Dirras, G., & Ameyama, K. (2020). Harmonic structure design: A strategy for outstanding mechanical properties in structural materials. Metals, 10(12), 1615–1631. https://doi.org/10.3390/MET10121615

Sharma, B., Miyakoshi, M., Vajpai, S. K., Dirras, G., & Ameyama, K. (2020). Extra-strengthening in a harmonic structure designed pure titanium due to preferential recrystallization phenomenon through thermomechanical treatment. Materials Science and Engineering: A, 797, 140227. https://doi.org/10.1016/j.msea.2020.140227

Sjogren-Levin, E., Pantleon, W., Ahadi, A., Hegedus, Z., Lienert, U., Tsuji, N., Ameyama, K., & Orlov, D. (2023). Stress partitioning in harmonic structure materials at the early stages of tensile loading studied in situ by synchrotron X-ray diffraction. Scripta Materialia, 226, 115186–115195. https://doi.org/10.1016/J.SCRIPTAMAT.2022.115186

Tsuji, N., Gholizadeh, R., Ueji, R., Kamikawa, N., Zhao, L., Tian, Y., Bai, Y., & Shibata, A. (2019). Formation mechanism of ultrafine grained microstructures: various possibilities for fabricating bulk nanostructured metals and alloys. Materials transactions, 60(8), 1518–1532. https://doi.org/10.2320/matertrans.MF201936

Tsuji, N., Ogata, S., Inui, H., Tanaka, I., & Kishida, K. (2022). Proposing the concept of plaston and strategy to manage both high strength and large ductility in advanced structural materials, on the basis of unique mechanical properties of bulk nanostructured metals. The Plaston Concept: Plastic Deformation in Structural Materials, 3–34. https://doi.org/10.1007/978-981-16-7715-1_1/FIGURES/21

Ueno, A., Fujiwara, H., Rifai, M., Zhang, Z., & Ameyama, K. (2012). Fractographical analysis on fracture mechanism of stainless steel having harmonic microstructure. Journal of the Society of Materials Science, 61(8), 686–691. https://doi.org/10.2472/JSMS.61.686

Valiev, R. Z., Prokofiev, E. A., Kazarinov, N. A., Raab, G. I., Minasov, T. B., & Stráský, J. (2020). Developing nanostructured ti alloys for innovative implantable medical devices. Materials, 13(4), 967. https://doi.org/10.3390/MA13040967

Victor, S.-U., & Roberto, V.-B. J. (2015). Gold and silver nanotechology on medicine. Journal of Chemistry and Biochemistry, 3(1). https://doi.org/10.15640/jcb.v3n1a2

Yuasa, M., Furukawa, R., Rifai, M., & Miyamoto, H. (2017). Corrosion resistance of magnesium alloys processed by equal channel angular pressing. Proceeding of Harris Foundation Research Presentation, 2017(1), 25–29. https://doi.org/undefined

Zhang, Z., Rifai, M., Kobayakawa, H., Ciuca, O. P., Fujiwara, H., Ueno, A., & Ameyama, K. (2012). Effects of SiO2 particles on deformation of mechanically milled water-atomized SUS304L powder compacts. Materials Transactions, 53(1), 109–115. https://doi.org/10.2320/matertrans.MD201120

Downloads

Published

July 23, 2024
HOW TO CITE

Details about this monograph

ISBN-13 (15)

978-623-8372-92-8