Templates
TEKNOLOGI NUKLIR DALAM PENGEMBANGAN PROSES LOGAM NANOSTRUKTUR
Keywords:
Nanostruktur, Deformasi, Texture, Hamburan neutronSynopsis
Peran teknik nuklir dalam pengembangan teknologi proses logam nanostruktur mencakup tentang bagaimana teknik nuklir, seperti hamburan neutron dan sinar-X synchrotron digunakan untuk karakterisasi mendalam material nanostruktur, yang memungkinkan pemahaman yang lebih baik tentang sifat-sifat material ini dan memfasilitasi pengembangan material dengan karakteristik yang disesuaikan untuk berbagai aplikasi praktis.
Orasi Teknologi Nuklir dalam Pengembangan Teknologi Proses Logam Nanostruktur bertujuan untuk menyoroti pentingnya kerja sama antar disiplin untuk mendorong inovasi dan aplikasi teknologi material nanostruktur dalam berbagai sektor. Orasi ini diharapkan dapat memberikan pemahaman tentang bagaimana integrasi teknik nuklir dalam penelitian dan pengembangan logam nanostruktur berpotensi memajukan pemahaman kita tentang material ini dan mengoptimalkan penggunaannya di industri dan medis. Orasi ini dapat dimanfaatkan sebagai sumber referensi bagi peneliti atau akademisi untuk pembelajaran terkait teknik nuklir dalam pengembangan teknologi proses logam nanostruktur.
Downloads
Download data is not yet available.
References
Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., & Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, 102597. https://doi.org/10.1016/J.CIS.2021.102597
Abiko, M., Miyamoto, H., Fujiwara, H., & Rifai, M. (2015). Fatigue properties of UFG low C, N, ferrite stainless steel produced by ECAP. Proceeding Processing and Fabrication of Advanced Material XXIV, 21(1), 712–721.
Ameyama, K., Cazes, F., Couque, H., Dirras, G., Kikuchi, S., Li, J., Mompiou, F., Mondal, K., Orlov, D., Sharma, B., Tingaud, D., & Vajpai, S. K. (2022). Harmonic structure, a promising microstructure design. Materials Research Letters, 10(7), 440–471. https://doi.org/10.1080/21663831.2022.2057203
Ameyama, K., Fujiwara, H., Sekiguchi, T., Sabrina N. B. R., & Rifai, M. (2010). Creation of harmonic structure materials with outstanding mechanical properties. International Symposium on Giant Straining Process for Advanced Materials Proceedings, 2010(1), 35–46. https://doi.org/unidentified
Ameyama, K., Vajpai, S. K., & Ota, M. (2017). Microstructure Evolution and Deformation Mechanisms of Harmonic Structure Designed Materials. Materials Science Forum, 879, 145–150. https://doi.org/10.4028/www.scientific.net/msf.879.145
Amine, K., Kanno, R., & Tzeng, Y. (2014). Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bulletin, 39(5), 395–401. https://doi.org/10.1557/MRS.2014.62
Asabe, T., Rifai, M., Yuasa, M., & Miyamoto, H. (2017). Effect of grain size on the stress corrosion cracking of ultrafine grained Cu-10 wt% Zn alloy in ammonia. International Journal of Corrosion, 2017, 1–8. https://doi.org/10.1155/2017/2893276
Bogdanov, S. G., Goshchitskii, B. N., Parkhomenko, V. D., Leontieva-Smirnova, M. V., & Chernov, V. M. (2014). Small-angle neutron scattering investigation of the nanostructure of ferritic-martensitic 12%-chromium steels. Physics of the Solid State, 56(1), 1–13. https://doi.org/10.1134/S1063783414010065/METRICS
Edalati, K., & Horita, Z. (2016). A review on high-pressure torsion (HPT) from 1935 to 1988. Materials Science and Engineering: A, 652, 325–352. https://doi.org/10.1016/J.MSEA.2015.11.074
Farajpour, A., Ghayesh, M. H., & Farokhi, H. (2018). A review on the mechanics of nanostructures. International Journal of Engineering Science, 133, 231–263. https://doi.org/10.1016/J.IJENGSCI.2018.09.006
Farshidi, M. H., Rifai, M., & Miyamoto, H. (2018). Microstructure evolution of a recycled Al–Fe–Si–Cu alloy processed by tube channel pressing. International Journal of Minerals, Metallurgy and Materials, 25(10), 1166–1172. https://doi.org/10.1007/S12613-018-1668-6
Farshidi, M. H., Rifai, M., & Miyamoto, H. (2023). Grain refinement, texture evolutions, and strengthening of a recycled aluminium alloy subjected to tube channel pressing. Metallic Materials/Kovové Materiály, 61, 13–21. https://doi.org/10.31577/km.2023.1.13
Gadzhimagomedova, Z. M., Pashkov, D. M., Kirsanova, D. Y., Soldatov, S. A., Butakova, M. A., Chernov, A. V., & Soldatov, A. V. (2022). Artificial intelligence for nanostructured materials. Nanobiotechnology Reports, 17(1), 1–9. https://doi.org/10.1134/S2635167622010049/metrics
Gao, S., Chen, M., Chen, S., Kamikawa, N., Shibata, A., & Tsuji, N. (2014). Yielding behavior and its effect on uniform elongation of fine grained IF steel. Materials Transactions, 55(1), 73–77. https://doi.org/10.2320/MATERTRANS.MA201317
Garcia-Mateo, C., Sourmail, T., Caballero, F. G., Smanio, V., Kuntz, M., Ziegler, C., Leiro, A., Vuorinen, E., Elvira, R., & Teeri, T. (2014). Nanostructured steel industrialisation: plausible reality. Materials Science and Technology, 30(9), 1071–1078. https://doi.org/10.1179/1743284713Y.0000000428
Ghalehbandi, S. M., Malaki, M., & Gupta, M. (2019). Accumulative roll bonding—a review. Applied Sciences, 9(17), 3627–3640. https://doi.org/10.3390/APP9173627
Gostariani, R., Bagherpour, E., Rifai, M., Ebrahimi, R., & Miyamoto, H. (2018). Fabrication of Al/AlN in-situ nanocomposite through planetary ball milling and hot extrusion of Al/BN: Microstructural evaluation and mechanical behavior. Journal of Alloys and Compounds, 768, 329–339. https://doi.org/10.1016/j.jallcom.2018.07.256
Gupta, A., Chandrasekhar, B., & Saxena, K. K. (2021). Effect of Equal-channel angular pressing on mechanical properties: An overview. Materials Today: Proceedings, 45, 5602–5607. https://doi.org/10.1016/J.MATPR.2021.02.317
Handayani, A., Rifai, M., Pramono, E., & Mujamilah, M. (2013). Morphology and magnetic properties of Fe/Fe-oxide core/shell nanoparticle prepared by high energy milling process in varied medium. Indonesian Journal of Materials Science, 151–155. https://doi.org/10.17146/jsmi.2013.14.2.4438
Hirota, K., Ge, X., Kato, M., & Rifai, M. (2016). The microstructure and mechanical properties of ZrO2-Al2O3 thick film formed on the SUS304 sheet using thermal spray. Proceeding of Harris Foundation Research Presentation, 2016(1), 96–101. https://doi.org/undefined
Hosseini, M., Arif, M., Keshavarz, A., & Iglauer, S. (2021). Neutron scattering: A subsurface application review. Earth-Science Reviews, 221, 103755–103770. https://doi.org/10.1016/J.EARSCIREV.2021.103755
Inkson, B. J. (2016). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 17–43. https://doi.org/10.1016/B978-0-08-100040-3.00002-X
Khanal, L. R., Sundararajan, J. A., & Qiang, Y. (2020). Advanced nanomaterials for nuclear energy and nanotechnology. Energy Technology, 8(3), 1901070. https://doi.org/10.1002/ENTE.201901070
Kostorz, G. (2014). X-ray and neutron scattering. Physical Metallurgy: Fifth Edition, 1, 1227–1316. https://doi.org/10.1016/B978-0-444-53770-6.00013-7
Kuprin, A. S., Vasilenko, R. L., Tolstolutskaya, G. D., Voyevodin, V. N., Belous, V. A., Ovcharenko, V. D., & Kopanets, I. E. (2021). Irradiation resistance of chromium coatings for ATFC in the temperature range 300–550°C. Journal of Nuclear Materials, 549, 152908. https://doi.org/10.1016/J.JNUCMAT.2021.152908
Li, G., Jiang, J., Ma, H., Zheng, R., Gao, S., Zhao, S., Ma, C., Ameyama, K., Ding, B., & Li, X. (2023). Superior strength–ductility synergy in three-dimensional heterogeneous-nanostructured metals. Acta Materialia, 256, 119143–119155. https://doi.org/10.1016/J.ACTAMAT.2023.119143
Li, X., Lu, L., Li, J., Zhang, X., & Gao, H. (2020). Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nature Reviews Materials, 5(9), 706–723. https://doi.org/10.1038/s41578-020-0212-2
MacWan, A., Marr, M., Kesler, O., & Chen, D. L. (2015). Microstructure, hardness, and fracture toughness of suspension plasma sprayed yttria-stabilized zirconia electrolytes on stainless steel substrates. Thin Solid Films, 584, 23–28. https://doi.org/10.1016/j.tsf.2014.11.052
Mishnaevsky, L., Levashov, E., Valiev, R. Z., Segurado, J., Sabirov, I., Enikeev, N., Prokoshkin, S., Solov’Yov, A. V., Korotitskiy, A., Gutmanas, E., Gotman, I., Rabkin, E., Psakh’E, S., Dluhos, L., Seefeldt, M., & Smolin, A. (2014). Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering: R: Reports, 81(1), 1–19. https://doi.org/10.1016/J.MSER.2014.04.002
Miyamoto, H., Rifai, M., & Fujiwara, H. (2014). Severe plastic deformation as a new processing for enhancing the performance of metallic components. Books.Google.CoProceedings of the First International Conference on Construction, 2014, 1–10. https://doi.org/unidentified
Miyamoto, H., Yuasa, M., Rifai, M., & Fujiwara, H. (2019). Corrosion behavior of severely deformed pure and single-phase materials. Materials Transactions, 60(7), 1243–1255. https://doi.org/10.2320/matertrans.MF201935
Muslih, M. R., Priyanto, T. H., Rifai, M., Andryansah, A., & Riastuti, R. (2022). Texture characterization of the copper produced by ECAP process using neutron diffraction technique. Jurnal Sains Materi Indonesia, 23(2), 2614–087. https://doi.org/10.17146/jsmi.2022.23.5.6604
Nakai, Y., Kikuchi, S., Shiozawa, D., Hase, T., Nakazawa, I., Fujita, K., Kawabata, M. O., & Ameyama, K. (2023). Evaluation of dislocation density of coarse and fine grains in bimodal harmonic structured steel observed by diffraction contrast tomography using ultrabright synchrotron radiation. Advanced Engineering Materials, 25(15), 2201836–2201850. https://doi.org/10.1002/ADEM.202201836
Nakai, Y., Kikuchi, S., Shiozawa, D., Nakazawa, I., Fujita, K., Kawabata, M. O., & Ameyama, K. (2023). Misorientation measurement in tensile test of bimodal harmonic structured stainless steel by diffraction contrast tomography using ultrabright synchrotron radiation x-ray. Procedia Structural Integrity, 43, 221–227. https://doi.org/10.1016/J.PROSTR.2022.12.262
Nakai, Y., Shiozawa, D., Kikuchi, S., Mishima, I., Kawabata, M., & Ameyama, K. (2023). Misorientation of grains in fatigue of harmonic structured steel observed by diffraction contrast tomography using ultrabright synchrotron radiation. Materials Science Forum, 1107, 61–66. https://doi.org/10.4028/P-E0MC23
Osaki, K., Kikuchi, S., Nakai, Y., Kawabata, M. O., & Ameyama, K. (2020). The effects of thermo-mechanical processing on fatigue crack propagation in commercially pure titanium with a harmonic structure. Materials Science and Engineering: A, 773, 138892–138910. https://doi.org/10.1016/J.MSEA.2019.138892
Prasetya, A. D., Rifai, M., As’ari, A. H., Mujamilah, M., & Miyamoto, H. (2020). Electrochemistry study on the relationship between grain boundary state and corrosion behavior of ultrafine grained iron chromium alloy. Jurnal Sains Materi Indonesia, 21(1), 41–46. https://doi.org/10.17146/jsmi.2019.21.1.5640
Prasetya, A. D., Rifai, M., Mujamilah, M., & Miyamoto, H. (2020). X-ray diffraction (XRD) profile analysis of pure ECAP-annealing nickel samples. Journal of Physics: Conference Series, 1436(1), 1–7. https://doi.org/10.1088/1742-6596/1436/1/012113
Prasetya, A. D., Rifai, M., Mujamilah, M., Sulungbudi, G. Tj., Putri, F. N., Yoviansyah, F. R., & Miyamoto, H. (2021). Corrosion behaviour of ultrafine grained pure magnesium and ZK60 prepared by equal channel angular pressing in simulated body fluid and DMEM solution. AIP Conference Proceedings, 2381(1), 1–5. https://doi.org/10.1063/5.0066262
Purnamasari, I. S., Rifai, M., Ajiriyanto, M. K., Alhamidi, A., Mujamilah, M., Insani, A., & Prasetya, A. D. (2021). Corrosion behavior of pure magnesium processed by accumulative roll bonding for biomaterial application. Indian Journal of Engineering and Materials Sciences, 28, 583–590. https://doi.org/10.56042/ijems.v28i6.43477
Rifai, M., Haga, R., Miyamoto, H., & Fujiwara, H. (2013). Microstructure quantification and mechanical properties of ultrafine grained Fe-Cr alloys and pure copper by equal channel angular pressing. Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 2013(1), 3329–3335. https://doi.org/10.1007/978-3-319-48764-9_412
Rifai, M., & Miyamoto, H. (2019). Effect of stored energy on corrosion fatigue properties of ultrafine grained Fe-20% Cr steel by equal channel angular pressing. IOP Conference Series: Materials Science and Engineering, 673 (1). https://doi.org/10.1088/1757-899X/673/1/012131
Rifai, M., & Miyamoto, H. (2020). Effect of strain energy on the grain growth behaviour of ultrafine-grained iron-chromium alloy by equal channel angular pressing. Journal of Mechanical Engineering and Sciences, 14(3), 7049–7057. https://doi.org/10.15282/jmes.14.3.2020.07.0552
Rifai, M., Miyamoto, H., & Fujiwara, H. (2014a). Effect of deformation route on the development of low CN Fe-20% Cr alloy by Equal Channel Angular Pressing. IOP Conference Series: Materials Science and Engineering, 63, 1–6. https://doi.org/10.1088/1757-899X/63/1/012122
Rifai, M., Miyamoto, H., & Fujiwara, H. (2014b). Effect of ECAP deformation route on the degree of anisotropy of microstructure of extremely low CN Fe-20mass% Cr alloy. Metals, 4(1), 55–63. https://doi.org/10.3390/met4010055
Rifai, M., Miyamoto, H., & Fujiwara, H. (2014c). The effect of ECAP deformation route on microstructure, mechanical and electrochemical properties of low CN Fe-20% Cr alloy. Materials Sciences and Applications, 5(8), 568–578. https://doi.org/10.4236/msa.2014.58059
Rifai, M., Miyamoto, H., & Fujiwara, H. (2015). Effects of strain energy and grain size on corrosion resistance of ultrafine grained Fe-20% Cr steels with extremely low C and N fabricated by ECAP. International Journal of Corrosion, 2015, 1–9. https://doi.org/10.1155/2015/386865
Rifai, M., Mujamilah, M., Bagherpour, E., & Miyamoto, M. (2022). Effect of strain energy on corrosion behavior of ultrafine grained copper prepared by severe plastic deformation. Journal of Mining and Metallurgy, Section B: Metallurgy, 58(2), 335–344. https://doi.org/10.2298/JMMB220101015R
Rifai, M., Mujamilah, M., & Miyamoto, H. (2021a). Effect of preliminary deformation on microstructure and texture of iron-chromium alloy prepared by severe plastic deformation. International Journal of Emerging Trends in Engineering Research, 9(12), 1468–1471. https://doi.org/10.30534/ijeter/2021/039122021
Rifai, M., Mujamilah, M., & Miyamoto, H. (2021b). Microstructure and strain hardening behaviour of iron chromium alloy subjected by severe plastic deformation. International Journal of Emerging Trends in Engineering Research, 9(12), 1472–1476. https://doi.org/10.30534/ijeter/2021/049122021
Rifai, M., Mujamilah, M., & Miyamoto, H. (2021c). Microstructure and strain rate sensitivity in pure magnesium subjected to severe plastic deformation. AIP Conference Proceedings, 2381(1), 1–6. https://doi.org/10.1063/5.0066260
Rifai, M., Mujamilah, M., & Miyamoto, H. (2021d). Microstructure homogeneity of ultrafine-grained copper prepared by severe plastic deformation process. AIP Conference Proceedings, 2381(1), 1–6. https://doi.org/10.1063/5.0066261
Rifai, M., Mujamilah, M., & Miyamoto, H. (2021e). The Effect of precipitation on microstructure and corrosion behaviour of ZK60 subjected to severe plastic deformation. Metalurgi, 36(3), 109–118. https://doi.org/10.14203/metalurgi.v36i3.607
Rifai, M., Mujamilah, M., & Miyamoto, H. (2022a). Effect of Microstructure evolution and corrosion behavior on phase transformation of nanocrystalline SUS304 prepared by dry ice shot peening. International Journal of Emerging Trends in Engineering Research, 10(1). https://doi.org/10.30534/ijeter/2022/021012022
Rifai, M., Mujamilah, M., & Miyamoto, H. (2022b). Hardness and microstructure homogeneity of pure copper and iron-chromium alloy processed by severe plastic deformation. International Journal of Emerging Trends in Engineering Research, 10(1), 1–8. https://doi.org/10.30534/ijeter/2022/011012022
Rifai, M., Mujamilah, M., & Miyamoto, H. (2022c). Microstructure, hardness and corrosion behaviour of SUS304 subjected by dry ice shot peening. AIP Conference Proceeding, 2501(1), 1–5. https://doi.org/10.1063/5.0095497
Rifai, M., Mujamilah, M., & Miyamoto, H. (2022d). Nanoindentation behaviour on magnesium alloy subjected by equal channel angular pressing. AIP Conference Proceeding, 2501(1), 1–6. https://doi.org/10.1063/5.0095496
Rifai, M., Mujamilah, M., Muslich, M. R., Ridwan, R., Sarr, M. M., & Miyamoto, H. (2020). Neutron diffraction and the residual stress distribution of magnesium processed by equal channel angular pressing. Journal of Physics: Conference Series, 1436(1). https://doi.org/10.1088/1742-6596/1436/1/012034
Rifai, M., Prasetya, A. D., Mujamilah, M., & Miyamoto, H. (2021). Microstructure and corrosion behaviour of ultrafine-grained pure magnesium by severe plastic deformation as a biodegradable material. Journal of Physics: Conference Series, 1825(1), 1–6. https://doi.org/10.1088/1742-6596/1825/1/012086
Rifai, M., Ridwan, Mujamilah, Insani, A., & Uus, S. (2021). Pengembangan bahan logam tembaga dengan proses severe plastic deformation untuk in-aktivasi COVID-19 berbasis karakterisasi teknik nuklir, Proposal Kegiatan Konsorsium COVID-19.
Rifai, M., Yuasa, M., & Miyamoto, H. (2018a). Effect of deformation structure and annealing temperature on corrosion of ultrafine-grain Fe-Cr Alloy prepared by equal channel angular pressing. International Journal of Corrosion, 2018, 1–15. https://doi.org/10.1155/2018/4853175
Rifai, M., Yuasa, M., & Miyamoto, H. (2018b). Enhanced corrosion resistance of ultrafine-grained Fe-Cr alloys with subcritical Cr contents for passivity. Metals, 149(8), 1–10. https://doi.org/10.3390/met8030149
Rifai, M., Yunasfi, Y., Sukirman, E., Sarwanto, Y., & Mujamilah, M. (2021). Structure and magnetic properties of Fe/Si nanoparticles prepared by high energy milling process. Indonesian Journal of Applied Physics, 11(2), 1–9. https://doi.org/10.13057/ijap.v11i2.51029
Sabirov, I., Enikeev, N. A., Murashkin, M. Y., & Valiev, R. Z. (2015). Bulk nanostructured materials with multifunctional properties, 10, 978–3. Berlin, Germany: Springer International Publishing. https://link.springer.com/content/pdf/10.1007/978-3-319-19599-5.pdf
Segal, V. (2018). Review: Modes and processes of severe plastic deformation (SPD). Materials, 11(7), 1175. https://doi.org/10.3390/MA11071175
Sharma, B., Dirras, G., & Ameyama, K. (2020). Harmonic structure design: A strategy for outstanding mechanical properties in structural materials. Metals, 10(12), 1615–1631. https://doi.org/10.3390/MET10121615
Sharma, B., Miyakoshi, M., Vajpai, S. K., Dirras, G., & Ameyama, K. (2020). Extra-strengthening in a harmonic structure designed pure titanium due to preferential recrystallization phenomenon through thermomechanical treatment. Materials Science and Engineering: A, 797, 140227. https://doi.org/10.1016/j.msea.2020.140227
Sjogren-Levin, E., Pantleon, W., Ahadi, A., Hegedus, Z., Lienert, U., Tsuji, N., Ameyama, K., & Orlov, D. (2023). Stress partitioning in harmonic structure materials at the early stages of tensile loading studied in situ by synchrotron X-ray diffraction. Scripta Materialia, 226, 115186–115195. https://doi.org/10.1016/J.SCRIPTAMAT.2022.115186
Tsuji, N., Gholizadeh, R., Ueji, R., Kamikawa, N., Zhao, L., Tian, Y., Bai, Y., & Shibata, A. (2019). Formation mechanism of ultrafine grained microstructures: various possibilities for fabricating bulk nanostructured metals and alloys. Materials transactions, 60(8), 1518–1532. https://doi.org/10.2320/matertrans.MF201936
Tsuji, N., Ogata, S., Inui, H., Tanaka, I., & Kishida, K. (2022). Proposing the concept of plaston and strategy to manage both high strength and large ductility in advanced structural materials, on the basis of unique mechanical properties of bulk nanostructured metals. The Plaston Concept: Plastic Deformation in Structural Materials, 3–34. https://doi.org/10.1007/978-981-16-7715-1_1/FIGURES/21
Ueno, A., Fujiwara, H., Rifai, M., Zhang, Z., & Ameyama, K. (2012). Fractographical analysis on fracture mechanism of stainless steel having harmonic microstructure. Journal of the Society of Materials Science, 61(8), 686–691. https://doi.org/10.2472/JSMS.61.686
Valiev, R. Z., Prokofiev, E. A., Kazarinov, N. A., Raab, G. I., Minasov, T. B., & Stráský, J. (2020). Developing nanostructured ti alloys for innovative implantable medical devices. Materials, 13(4), 967. https://doi.org/10.3390/MA13040967
Victor, S.-U., & Roberto, V.-B. J. (2015). Gold and silver nanotechology on medicine. Journal of Chemistry and Biochemistry, 3(1). https://doi.org/10.15640/jcb.v3n1a2
Yuasa, M., Furukawa, R., Rifai, M., & Miyamoto, H. (2017). Corrosion resistance of magnesium alloys processed by equal channel angular pressing. Proceeding of Harris Foundation Research Presentation, 2017(1), 25–29. https://doi.org/undefined
Zhang, Z., Rifai, M., Kobayakawa, H., Ciuca, O. P., Fujiwara, H., Ueno, A., & Ameyama, K. (2012). Effects of SiO2 particles on deformation of mechanically milled water-atomized SUS304L powder compacts. Materials Transactions, 53(1), 109–115. https://doi.org/10.2320/matertrans.MD201120
Published
July 23, 2024
Copyright (c) 2024 National Research and Innovation Agency
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.