Aplikasi Material Komposit Nanographene dalam Bidang Nanobioteknologi Kesehatan dan Lingkungan

Authors

Andri Hardiansyah
Badan Riset dan Inovasi Nasional

Keywords:

Nanomaterial, Graphene, Nanobioteknologi

Synopsis

Material komposit nano graphene dan turunannya memiliki aplikasi yang luas di bidang nanobioteknologi kesehatan seperti material untuk sensor molekul DNA, bakteri, dan molekul penanda penyakit, rekayasa jaringan, pembawa obat serta untuk aplikasi lingkungan. Dalam ulasan ini, ditunjukkan pula pendekatan deteksi (sensor) berbasis material komposit nano graphene dengan menggunakan teknik surface-enhanced Raman spectroscopy (SERS) dan elektrokimia untuk mendeteksi DNA (adenin), S. aureus, uremik, dan dopamin. Selain itu, penelitian juga merangkum kemajuan penggunaan material komposit nano graphene sebagai scaffolds untuk rekayasa jaringan dan pembawa obat. Semua aplikasi yang sukses ini membuka jalan baru untuk membangun platform komposit nano graphene yang menjanjikan untuk pada bidang nanobioteknologi kesehatan dan lingkungan. Meskipun kemajuannya menarik dan menggembirakan, pemanfaatan material berbasis graphene untuk aplikasi nanobioteknologi kesehatan dan lingkungan masih memiliki tantangan. Pertama, proses sintesis material berbasis graphene akan mempengaruhi ukuran, bentuk, morfologi, dan ketebalan graphene. Oleh karena itu, metode baru untuk menyiapkan material berbasis graphene perlu dikembangkan. Kedua, material komposit nano graphene memiliki menunjukkan potensi besar dalam bioimaging karena toksisitasnya yang rendah secara in vivo. Ketiga, lebih banyak perhatian harus diberikan pada keamanan bahan graphene dengan mempelajarinya toksisitas jangka panjangnya. Tantangan-tantangan ini perlu dipecahkan melalui kolaborasi yang efektif berbagai disiplin ilmu termasuk kimia, fisika, biologi dan obat-obatan.

Downloads

Download data is not yet available.

Author Biography

Andri Hardiansyah, Badan Riset dan Inovasi Nasional

Andri Hardiansyah, lahir di Bandung, pada tanggal 13 November 1988 adalah anak ke 2 dari Bapak H. Herry Heryadi S.H (Alm) dan Ibu Hj. Ani Suryani, S.Pd.

Berdasarkan Keputusan Presiden Republik Indonesia Nomor 60/M Tahun 2023 tanggal 27 Desember 2023 yang bersangkutan diangkat sebagai Peneliti Ahli Utama terhitung mulai 1 Februari 2024.
Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional Nomor Nomor 247/I/HK/2024 tanggal 8 November 2024 yang bersangkutan melakukan orasi pengukuhan Profesor Riset.

Menamatkan Sekolah Dasar SD Nugraha tahun 2000, Sekolah Menengah Pertama Negeri 3 Bandung tahun 2003, dan Sekolah Menengah Atas Negeri 8 Bandung tahun 2006. Memperoleh gelar Sarjana Teknik Material dari Institut Teknologi Bandung tahun 2010 gelar Magister Ilmu dan Teknik Material dari Institut Teknologi Bandung tahun 2011 dan gelar Doktor bidang Materials Science and Engineering College of Engineering dari National Taiwan University of Science and Technology tahun 2015.

Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain: Sakura Science Program, Osaka, Jepang (2019), Korean Insitute of Material Science di Changwon, Korea Selatan (2019), International Research Organization for Advanced Science and Technology (IROAST), IROAST di Kumamoto, Jepang (2020), dan Sejour Scientifique de Haut Niveau (SSHN) di Rennes, Perancis (2021-2022).

Jabatan fungsional peneliti diawali sebagai Peneliti Ahli Muda golongan III/c tahun 2019, Peneliti Ahli Madya golongan IV/b tahun 2021, dan memperoleh jabatan Peneliti Ahli Utama bidang Material Graphene dan Nanomaterial Fungsional tahun 2024.

Menghasilkan 73 karya tulis ilmiah (KTI), baik yang ditulis sendiri maupun bersama penulis lain dalam bentuk buku, jurnal, dan prosiding. Sebanyak 73 KTI ditulis dalam Bahasa Inggris.
Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pembimbing jabatan fungsional peneliti pada Pusat Riset Sistem Nanoteknologi, pembimbing skripsi (S-1) pada Institut Teknologi Bandung, Universitas Padjajaran, Universitas Jendral Soedirman, Universitas Pertahanan, Universitas Pertamina, Universitas Prasetya Mulya, dan Institut Teknologi Sepuluh November, pembimbing tesis (S-2) pada Institut Teknologi Bandung, Institut Teknologi Sepuluh November, dan Universitas Padjajaran; pembimbing disertasi (S-3) pada Institut Teknologi Bandung.

Aktif dalam organisasi profesi ilmiah, yaitu sebagai anggota Himpunan Peneliti Indonesia (2018-2021) dan Perhimpunan Periset Indonesia (2021 – sekarang).

Menerima tanda penghargaan Merck Young Scientist Award tahun 2021.

References

Aditya, D. M., & Hardiansyah, A. (2022). Spectroscopic studies on reduced graphene oxide behaviour in multi-step thermal reduction. Advances in Natural Sciences: Nanoscience and Nanotechnology, 13(1), 015008. https://doi.org/10.1088/2043-6262/ac5dc9

Ahmad, M. S., Nishina, Y., Inomata, Y., Hardiansyah, A., & Kida, T. (2024). Synergistic Functionalization of Graphene Oxide: Electrochemical Devices and Ritter Catalysis. The Journal of Physical Chemistry C, 128(14), 5860–5866. https://doi.org/10.1021/acs.jpcc.3c07871

Amiryaghoubi, N., Fathi, M., Barar, J., Omidian, H., & Omidi, Y. (2022). Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. Journal of Drug Delivery Science and Technology, 72, 103360. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103360

Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/D0MA00807A

Chen, D., Feng, H., & Li, J. (2012). Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews, 112(11), 6027–6053. https://doi.org/10.1021/cr300115g

Cheng, Y.-W., Lin, Y.-Y., Liu, C.-L., Hung, K.-Y., Barveen, N. R., Tseng, C.-H., Cheng, P.-Y., & Hardiansyah, A. (2024). Zwitterionic functional layer modified electrospun polyurethane nanofiber membrane incorporating silver nanoparticles for enhanced antibacterial applications. Surface and Coatings Technology, 484, 130865. https://doi.org/https://doi.org/10.1016/j.surfcoat.2024.130865

Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291–312. https://doi.org/10.1039/C3CS60303B

Destyorini, F., Amalia, W. C., Irmawati, Y., Hardiansyah, A., Priyono, S., Aulia, F., Oktaviano, H. S., Hsu, Y.-I., Yudianti, R., & Uyama, H. (2022). High Graphitic Carbon Derived from Coconut Coir Waste by Promoting Potassium Hydroxide in the Catalytic Graphitization Process for Lithium-Ion Battery Anodes. Energy & Fuels, 36(10), 5444–5455. https://doi.org/10.1021/acs.energyfuels.2c00632

Destyorini, F., Yudianti, R., Irmawati, Y., Hardiansyah, A., Hsu, Y.-I., & Uyama, H. (2021). Temperature driven structural transition in the nickel-based catalytic graphitization of coconut coir. Diamond and Related Materials, 117, 108443. https://doi.org/https://doi.org/10.1016/j.diamond.2021.108443

Dimiev, A. M. (2016). Mechanism of Formation and Chemical Structure of Graphene Oxide. In Graphene Oxide (pp. 36–84). https://doi.org/https://doi.org/10.1002/9781119069447.ch2

Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. https://doi.org/10.1039/B917103G

Ege, D., Kamali, A. R., & Boccaccini, A. R. (2017). Graphene Oxide/Polymer-Based Biomaterials. Advanced Engineering Materials, 19(12), 1700627. https://doi.org/https://doi.org/10.1002/adem.201700627

Eigler, S., & Dimiev, A. M. (2016). Characterization Techniques. In Graphene Oxide (pp. 85–120). https://doi.org/https://doi.org/10.1002/9781119069447.ch3

Ezra, Krismastuti, F. S. H., Arutanti, O., Aryana, N., Hardiansyah, A., & Nugroho, A. (2023). Irradiation time dependent of the ZnO/GO composite formation on the photodegradation of Rhodamine B. IOP Conference Series: Earth and Environmental Science, 1201(1), 012083. https://doi.org/10.1088/1755-1315/1201/1/012083

Fahmy Taha, M. H., Ashraf, H., & Caesarendra, W. (2020). A brief description of cyclic voltammetry transducer-based non-enzymatic glucose biosensor using synthesized graphene electrodes. Applied System Innovation, 3(3), 32.

Fallahazad, P. (2023). Rational and key strategies toward enhancing the performance of graphene/silicon solar cells. Materials Advances, 4(8), 1876–1899. https://doi.org/10.1039/D2MA00955B

Fikriyyah, A. K., Chaldun, E. R., & Hardiansyah, A. (2018). Utilization of soybean curd residue for carbon-based adsorbent material and its characterization. IOP Conference Series: Earth and Environmental Science, 160(1), 012008. https://doi.org/10.1088/1755-1315/160/1/012008

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849

Hanif, W., Hardiansyah, A., Randy, A., & Asri, L. A. T. W. (2021). Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity. RSC Advances, 11(46), 29029–29041. https://doi.org/10.1039/D1RA04992E

Hardiansyah, A., Aditya, D. M., Budiman, W. J., Rahayu, S., Alvan, F. M., & Karim, G. (2022). Fabrication and evaluation of graphene-based materials through electrochemical exfoliation and expansion mechanism. AIP Conference Proceedings, 2652(1), 050016. https://doi.org/10.1063/5.0107096

Hardiansyah, A., Budiman, W. J., Utomo, M. S., Yudasari, N., Suhandi, A., Arutanti, O., Irmawati, Y., & Destyorini, F. (2021). Characterization of microwave irradiation-assisted transformation of reduced graphene oxide for photocatalytic material-based water treatment application. AIP Conference Proceedings, 2382(1), 040001. https://doi.org/10.1063/5.0060027

Hardiansyah, A., Budiman, W. J., Yudasari, N., Isnaeni, Kida, T., & Wibowo, A. (2021). Facile and Green Fabrication of Microwave-Assisted Reduced Graphene Oxide/Titanium Dioxide Nanocomposites as Photocatalysts for Rhodamine 6G Degradation. ACS Omega, 6(47), 32166–32177. https://doi.org/10.1021/acsomega.1c04966

Hardiansyah, A., Chaldun, E. R., Nuryadin, B. W., Fikriyyah, A. K., Subhan, A., Ghozali, M., & Purwasasmita, B. S. (2018). Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications. Journal of Electronic Materials, 47(7), 4028–4037. https://doi.org/10.1007/s11664-018-6289-3

Hardiansyah, A., Chen, A.-Y., Liao, H.-L., Yang, M.-C., Liu, T.-Y., Chan, T.-Y., Tsou, H.-M., Kuo, C.-Y., Wang, J.-K., & Wang, Y.-L. (2015). Core-shell of FePt-SiO2-Au magnetic nanoparticles for rapid SERS detection. Nanoscale Research Letters, 10(1), 412. https://doi.org/10.1186/s11671-015-1111-0

Hardiansyah, A., Destyorini, F., Irmawati, Y., Yang, M.-C., Liu, C.-M., Chaldun, E. R., Yung, M.-C., & Liu, T. Y. (2019). Characterizations of doxorubicin-loaded PEGylated magnetic liposomes for cancer cells therapy. Journal of Polymer Research, 26(12), 282. https://doi.org/10.1007/s10965-019-1964-5

Hardiansyah, A., Huang, L.-Y., Yang, M.-C., Liu, T.-Y., Tsai, S.-C., Yang, C.-Y., Kuo, C.-Y., Chan, T.-Y., Zou, H.-M., Lian, W.-N., & Lin, C.-H. (2014). Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Research Letters, 9(1), 497. https://doi.org/10.1186/1556-276X-9-497

Hardiansyah, A., Huang, L.-Y., Yang, M.-C., Purwasasmita, B. S., Liu, T.-Y., Kuo, C.-Y., Liao, H.-L., Chan, T.-Y., Tzou, H.-M., & Chiu, W.-Y. (2015). Novel pH-sensitive drug carriers of carboxymethyl-hexanoyl chitosan (Chitosonic Acid) modified liposomes. RSC Advances, 5(30), 23134–23143. https://doi.org/10.1039/C4RA14834G

Hardiansyah, A., Randy, A., Dewi, R. T., Angelina, M., Yudasari, N., Rahayu, S., Ulfah, I. M., Maryani, F., Cheng, Y.-W., & Liu, T.-Y. (2022). Magnetic Graphene-Based Nanosheets with Pluronic F127-Chitosan Biopolymers Encapsulated a-Mangosteen Drugs for Breast Cancer Cells Therapy. Polymers, 14(15). https://doi.org/10.3390/polym14153163

Hardiansyah, A., Saputra, G. M. A., Hikmat, H., Kusfarida, Y. E., Septiani, N. L. W., Randy, A., Hermawan, A., Yuliarto, B., Liu, T.-Y., & Kida, T. (2023). Electrochemical evaluation of magnetic reduced graphene oxide nanosheet-modified glassy carbon electrode on dopamine electrochemical sensor for Parkinson’s diagnostic application. Journal of the Chinese Chemical Society, 70(8), 1665–1682. https://doi.org/https://doi.org/10.1002/jccs.202300197

Hardiansyah, A., Sunnardianto, G. K., Pradanawati, S. A., Aditya, D. M., Kida, T., & Liu, T.-Y. (2024). Investigating the impact of nitrogen-doping on the characteristics and performance of reduced graphene oxide for lithium-ion batteries anode through experimental and theoretical study. Materials Today Communications, 38, 107740. https://doi.org/https://doi.org/10.1016/j.mtcomm.2023.107740

Hardiansyah, A., Tanadi, H., Yang, M.-C., & Liu, T.-Y. (2015). Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. Journal of Polymer Research, 22(4), 59. https://doi.org/10.1007/s10965-015-0704-8

Hardiansyah, A., Yang, M.-C., Liao, H.-L., Cheng, Y.-W., Destyorini, F., Irmawati, Y., Liu, C.-M., Yung, M.-C., Hsu, C.-C., & Liu, T.-Y. (2020). Magnetic Graphene-Based Sheets for Bacteria Capture and Destruction Using a High-Frequency Magnetic Field. Nanomaterials, 10(4), 1–12. https://doi.org/https://doi.org/10.3390/nano10040674

Hardiansyah, A., Yang, M.-C., Liu, T.-Y., Kuo, C.-Y., Huang, L.-Y., & Chan, T.-Y. (2017). Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release. Nanoscale Research Letters, 12(1), 355. https://doi.org/10.1186/s11671-017-2119-4

Harito, C., Khalil, M., Septiani, N. L. W., Dewi, K. K., Hardiansyah, A., Yuliarto, B., & Walsh, F. C. (2022). Trends in nanomaterial-based biosensors for viral detection. Nano Futures, 6(2), 022005. https://doi.org/10.1088/2399-1984/ac701d

Harito, C., Zaidi, S. Z. J., Putra, B. R., Hardiansyah, A., Khalil, M., & Yuliarto, B. (2022). 2 - Synthesis of graphene polymer composites having high filler content. In S. M. Rangappa, J. Parameswaranpillai, V. Ayyappan, M. G. Motappa, S. Siengchin, & C. Soutis (Eds.), Innovations in Graphene-Based Polymer Composites (pp. 49–60). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823789-2.00002-9

Hermawan, A., Destyorini, F., Hardiansyah, A., Alviani, V. N., Mayangsari, W., Wibisono, Septiani, N. L. W., Yudianti, R., & Yuliarto, B. (2023). High energy density asymmetric supercapacitors enabled by La-induced defective MnO2 and biomass-derived activated carbon. Materials Letters, 351, 135031. https://doi.org/https://doi.org/10.1016/j.matlet.2023.135031

Huang, L.-Y., Liu, T.-Y., Liu, T.-Y., Mevold, A., Hardiansyah, A., Liao, H.-C., Lin, C.-C., & Yang, M.-C. (2013). Nanohybrid structure analysis and biomolecule release behavior of polysaccharide-CDHA drug carriers. Nanoscale Research Letters, 8(1), 417. https://doi.org/10.1186/1556-276X-8-417

Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., & Zhang, H. (2011). Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 7(14), 1876–1902. https://doi.org/https://doi.org/10.1002/smll.201002009

Irmawati, Y., Mauludi, E. M., Destyorini, F., Hardiansyah, A., Oktaviano, H. S., Nugroho, A., & Yudianti, R. (2022). One-pot synthesis of CoFe alloy supported on N-doped carbon as Pt-free oxygen reduction catalysts. AIP Conference Proceedings, 2652(1), 040002. https://doi.org/10.1063/5.0106430

Juang, R.-S., Wang, K.-S., Kuan, T.-Y., Chu, Y.-J., Jeng, R.-J., Hardiansyah, A., Liu, S.-H., & Liu, T.-Y. (2024). Electric field-stimulated Raman scattering enhancing biochips fabricated by Au nano-islands deposited on laser-scribed 3D graphene for uremic toxins detection. Journal of the Taiwan Institute of Chemical Engineers, 154, 105115. https://doi.org/https://doi.org/10.1016/j.jtice.2023.105115

Khaerudini, D. S., Winarto, H., Hardiansyah, A., Alva, S., Khaerudini, D. S., Rustana, C. E., Junia, D., & Dirgantara, F. D. (2019). New and Renewable Catalyst Based on Electro-Activated Carbon for Hydrogen Generation. 2019 International Conference on Technologies and Policies in Electric Power & Energy, 1–6. https://doi.org/10.1109/IEEECONF48524.2019.9102628

Ku, S. H., Lee, M., & Park, C. B. (2013). Carbon-Based Nanomaterials for Tissue Engineering. Advanced Healthcare Materials, 2(2), 244–260. https://doi.org/https://doi.org/10.1002/adhm.201200307

Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., & Lee, J. H. (2011). Recent advances in graphene-based biosensors. Biosensors and Bioelectronics, 26(12), 4637–4648. https://doi.org/https://doi.org/10.1016/j.bios.2011.05.039

Kuo, C.-Y., Liu, T.-Y., Chan, T.-Y., Tsai, S.-C., Hardiansyah, A., Huang, L.-Y., Yang, M.-C., Lu, R.-H., Jiang, J.-K., Yang, C.-Y., Lin, C.-H., & Chiu, W.-Y. (2016). Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids and Surfaces B: Biointerfaces, 140, 567–573. https://doi.org/https://doi.org/10.1016/j.colsurfb.2015.11.008

Kuo, C.-Y., Liu, T.-Y., Hardiansyah, A., & Chiu, W.-Y. (2016). Magnetically polymeric nanocarriers for targeting delivery of curcumin and hyperthermia treatments toward cancer cells. Journal of Polymer Science Part A: Polymer Chemistry, 54(17), 2706–2713. https://doi.org/https://doi.org/10.1002/pola.28150

Kuo, C.-Y., Liu, T.-Y., Hardiansyah, A., Lee, C.-F., Wang, M.-S., & Chiu, W.-Y. (2014). Self-assembly behaviors of thermal- and pH- sensitive magnetic nanocarriers for stimuli-triggered release. Nanoscale Research Letters, 9(1), 520. https://doi.org/10.1186/1556-276X-9-520

Kuo, C.-Y., Liu, T.-Y., Wang, K.-S., Hardiansyah, A., Lin, Y.-T., Chen, H.-Y., & Chiu, W.-Y. (2017). Magnetic and Thermal-sensitive Poly(N-isopropylacrylamide)-based Microgels for Magnetically Triggered Controlled Release. JoVE, 125, e55648. https://doi.org/doi:10.3791/55648

Laraba, S. R., Luo, W., Rezzoug, A., Zahra, Q. ul ain, Zhang, S., Wu, B., Chen, W., Xiao, L., Yang, Y., Wei, J., & Li, Y. (2022). Graphene-based composites for biomedical applications. Green Chemistry Letters and Reviews, 15(3), 724–748. https://doi.org/10.1080/17518253.2022.2128698

Lerf, A. (2016). Graphite Oxide Story – From the Beginning Till the Graphene Hype. In Graphene Oxide (pp. 1–35). https://doi.org/https://doi.org/10.1002/9781119069447.ch1

Lesiak, B., Trykowski, G., Tóth, J., Biniak, S., Kövér, L., Rangam, N., Stobinski, L., & Malolepszy, A. (2021). Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent. Journal of Materials Science, 56(5), 3738–3754. https://doi.org/10.1007/s10853-020-05461-1

Liang, X., Li, N., Zhang, R., Yin, P., Zhang, C., Yang, N., Liang, K., & Kong, B. (2021). Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Materials, 13(1), 8. https://doi.org/10.1038/s41427-020-00278-5

Liu, J., Cui, L., & Losic, D. (2013). Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia, 9(12), 9243–9257. https://doi.org/https://doi.org/10.1016/j.actbio.2013.08.016

Long, Z., Li, Q., Wei, T., Zhang, G., & Ren, Z. (2020). Historical development and prospects of photocatalysts for pollutant removal in water. Journal of Hazardous Materials, 395, 122599. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.122599

Mevold, A. H. H., Hsu, W.-W., Hardiansyah, A., Huang, L.-Y., Yang, M.-C., Liu, T.-Y., Chan, T.-Y., Wang, K.-S., Su, Y.-A., Jeng, R.-J., Wang, J.-K., & Wang, Y.-L. (2015). Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Bio-detection by SERS Nanotechnology. Nanoscale Research Letters, 10(1), 397. https://doi.org/10.1186/s11671-015-1101-2

Mohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.01.013

Nugroho, A., Wahyudhi, A., Oktaviano, H. S., Yudianti, R., Hardiansyah, A., Destyorini, F., & Irmawati, Y. (2022). Effect of Iron Loading on Controlling Fe/N-C Electrocatalyst Structure for Oxygen Reduction Reaction. ChemistrySelect, 7(45), e202202042. https://doi.org/https://doi.org/10.1002/slct.202202042

Peng, G.-Z., Hardiansyah, A., Lin, H.-T., Lee, R.-Y., Kuo, C.-Y., Pu, Y.-C., & Liu, T.-Y. (2022). Photocatalytic degradation and reusable SERS detection by Ag nanoparticles immobilized on g-C3N4/graphene oxide nanosheets. Surface and Coatings Technology, 435, 128212. https://doi.org/https://doi.org/10.1016/j.surfcoat.2022.128212

Putri, W. B. K., Sausan, Z. N., Estri, A. N., Asri, N. S., & Hardiansyah, A. (2024). Morphological and magnetic properties of electrospun Fe3O4-polyvinylidene fluoride. AIP Conference Proceedings, 3003(1), 020102. https://doi.org/10.1063/5.0186303

Raharjo, A. B., Putra, R. D. A., Indayaningsih, N., Srifiana, Y., Hardiansyah, A., Irmawati, Y., Widodo, H., & Destyorini, F. (2020). Preparation of polyvinyl alcohol/asiaticoside/chitosan membrane nano-composite using electrospinning technique for wound dressing. AIP Conference Proceedings, 2256(1), 030023. https://doi.org/10.1063/5.0014545

Rowley-Neale, S. J., Randviir, E. P., Abo Dena, A. S., & Banks, C. E. (2018). An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today, 10, 218–226. https://doi.org/https://doi.org/10.1016/j.apmt.2017.11.010

Sampora, Y., Hardiansyah, A., Hikmat, Khaerudini, D. S., Burhani, D., Sondari, D., Septiyanti, M., & Septevani, A. A. (2022). Synthesis and characterization of magnetite nanoparticle for removal of heavy metal ions from aqueous solutions. IOP Conference Series: Earth and Environmental Science, 1017(1), 012017. https://doi.org/10.1088/1755-1315/1017/1/012017

Septiani, N. L. W., Shukri, G., Saputro, A. G., Nugraha, Karim, M. R., Al-Mubaddel, F., Hardiansyah, A., Yamauchi, Y., Kaneti, Y. V., & Yuliarto, B. (2022). Palm Sugar-Induced Formation of Hexagonal Tungsten Oxide with Nanorod-Assembled Three-Dimensional Hierarchical Frameworks for Nitrogen Dioxide Sensing. ACS Sustainable Chemistry & Engineering, 10(46), 15035–15045. https://doi.org/10.1021/acssuschemeng.2c03315

Setiawan, S., Hardiansyah, A., Kartikowati, C. W., Arif, A. F., Priatmoko, S., & Arutanti, O. (2021). Microwave-Assisted Synthesis of TiO2/GO Composite and Its Adsorption-Photocatalysis Property under Visible Light. IOP Conference Series: Materials Science and Engineering, 1143(1), 012055. https://doi.org/10.1088/1757-899X/1143/1/012055

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8), 1178–1271. https://doi.org/https://doi.org/10.1016/j.pmatsci.2011.03.003

Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47. https://doi.org/https://doi.org/10.1016/j.nanoms.2019.02.004

Sonda, K., Kodama, T., Wea Siga, M. D., Masumoto, K., Iwai, M., Fadil, M., Ahmad, M. S., Christopher Agutaya, J. K., Inomata, Y., Quitain, A. T., Hardiansyah, A., & Kida, T. (2023). Selective Detection of CO Using Proton-Conducting Graphene Oxide Membranes with Pt-Doped SnO2 Electrocatalysts: Mechanistic Study by Operando DRIFTS. ACS Applied Materials & Interfaces, 15(45), 52724–52734. https://doi.org/10.1021/acsami.3c10349

Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1(3), 203–212. https://doi.org/10.1007/s12274-008-8021-8

Thomas, H. R., Day, S. P., Woodruff, W. E., Vallés, C., Young, R. J., Kinloch, I. A., Morley, G. W., Hanna, J. V, Wilson, N. R., & Rourke, J. P. (2013). Deoxygenation of Graphene Oxide: Reduction or Cleaning? Chemistry of Materials, 25(18), 3580–3588. https://doi.org/10.1021/cm401922e

Vacanti, C. A. (2006). The history of tissue engineering. Journal of Cellular and Molecular Medicine, 10(3), 569-576. https://doi.org/https://doi.org/10.1111/j.1582-4934.2006.tb00421.x

Wardhani, R. A. K., Primadona, I., & Hardiansyah, A. (2022). Electrospun a-mangosteen-chitosan-poly(ethylene oxide) nanofibers. Materials Research Express, 9(11), 115005. https://doi.org/10.1088/2053-1591/ac9de2

Wulan Septiani, N. L., Chowdhury, S., Hardiansyah, A., Rinawati, M., Yeh, M.-H., Nara, H., Yamauchi, Y., Kaneti, Y. V., & Yuliarto, B. (2024). Selective synthesis of monodisperse bimetallic nickel–cobalt phosphates with different nanoarchitectures for battery-like supercapacitors. Journal of Materials Chemistry A, 12(23), 14045–14058. https://doi.org/10.1039/D3TA06584G

Yang, M.-C., Hardiansyah, A., Cheng, Y.-W., Liao, H.-L., Wang, K.-S., Randy, A., Harito, C., Chen, J.-S., Jeng, R.-J., & Liu, T.-Y. (2022). Reduced graphene oxide nanosheets decorated with core-shell of Fe3O4-Au nanoparticles for rapid SERS detection and hyperthermia treatment of bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 281, 121578. https://doi.org/https://doi.org/10.1016/j.saa.2022.121578

Yang, Y., Asiri, A. M., Tang, Z., Du, D., & Lin, Y. (2013). Graphene based materials for biomedical applications. Materials Today, 16(10), 365–373. https://doi.org/https://doi.org/10.1016/j.mattod.2013.09.004

Yudasari, N., Hardiansyah, A., Herbani, Y., Isnaeni, Suliyanti, M. M., & Djuhana, D. (2023). Single-step laser ablation synthesis of ZnO–Ag nanocomposites for broad-spectrum dye photodegradation and bacterial photoinactivation. Journal of Photochemistry and Photobiology A: Chemistry, 441, 114717. https://doi.org/https://doi.org/10.1016/j.jphotochem.2023.114717

Yulianti, R. T., Irmawati, Y., Destyorini, F., Ghozali, M., Suhandi, A., Kartolo, S., Hardiansyah, A., Byun, J.-H., Fauzi, M. H., & Yudianti, R. (2021). Highly Stretchable and Sensitive Single-Walled Carbon Nanotube-Based Sensor Decorated on a Polyether Ester Urethane Substrate by a Low Hydrothermal Process. ACS Omega, 6(50), 34866–34875. https://doi.org/10.1021/acsomega.1c05543

Yulianti, R. T., Irmawati, Y., Destyorini, F., Hardiansyah, A., Yudianti, R., & Oktaviano, H. S. (2020). Facile Glycine-Assisted Synthesis of Non-Noble Metal Fe-N/C Electrocatalyst for Oxygen Reduction Reaction. ECS Meeting Abstracts, MA2020-02(53), 3850. https://doi.org/10.1149/MA2020-02533850mtgabs

Zheng, S., Tian, Y., Ouyang, J., Shen, Y., Wang, X., & Luan, J. (2022). Carbon nanomaterials for drug delivery and tissue engineering. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.990362

Zheng, X., Zhang, P., Fu, Z., Meng, S., Dai, L., & Yang, H. (2021). Applications of nanomaterials in tissue engineering. RSC Advances, 11(31), 19041–19058. https://doi.org/10.1039/D1RA01849C

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906–3924. https://doi.org/https://doi.org/10.1002/adma.201001068

Downloads

Published

December 9, 2024
HOW TO CITE