Templates
Aplikasi Material Komposit Nanographene dalam Bidang Nanobioteknologi Kesehatan dan Lingkungan
Keywords:
Nanomaterial, Graphene, NanobioteknologiSynopsis
Material komposit nano graphene dan turunannya memiliki aplikasi yang luas di bidang nanobioteknologi kesehatan seperti material untuk sensor molekul DNA, bakteri, dan molekul penanda penyakit, rekayasa jaringan, pembawa obat serta untuk aplikasi lingkungan. Dalam ulasan ini, ditunjukkan pula pendekatan deteksi (sensor) berbasis material komposit nano graphene dengan menggunakan teknik surface-enhanced Raman spectroscopy (SERS) dan elektrokimia untuk mendeteksi DNA (adenin), S. aureus, uremik, dan dopamin. Selain itu, penelitian juga merangkum kemajuan penggunaan material komposit nano graphene sebagai scaffolds untuk rekayasa jaringan dan pembawa obat. Semua aplikasi yang sukses ini membuka jalan baru untuk membangun platform komposit nano graphene yang menjanjikan untuk pada bidang nanobioteknologi kesehatan dan lingkungan. Meskipun kemajuannya menarik dan menggembirakan, pemanfaatan material berbasis graphene untuk aplikasi nanobioteknologi kesehatan dan lingkungan masih memiliki tantangan. Pertama, proses sintesis material berbasis graphene akan mempengaruhi ukuran, bentuk, morfologi, dan ketebalan graphene. Oleh karena itu, metode baru untuk menyiapkan material berbasis graphene perlu dikembangkan. Kedua, material komposit nano graphene memiliki menunjukkan potensi besar dalam bioimaging karena toksisitasnya yang rendah secara in vivo. Ketiga, lebih banyak perhatian harus diberikan pada keamanan bahan graphene dengan mempelajarinya toksisitas jangka panjangnya. Tantangan-tantangan ini perlu dipecahkan melalui kolaborasi yang efektif berbagai disiplin ilmu termasuk kimia, fisika, biologi dan obat-obatan.
Downloads
Download data is not yet available.
References
Aditya, D. M., & Hardiansyah, A. (2022). Spectroscopic studies on reduced graphene oxide behaviour in multi-step thermal reduction. Advances in Natural Sciences: Nanoscience and Nanotechnology, 13(1), 015008. https://doi.org/10.1088/2043-6262/ac5dc9
Ahmad, M. S., Nishina, Y., Inomata, Y., Hardiansyah, A., & Kida, T. (2024). Synergistic Functionalization of Graphene Oxide: Electrochemical Devices and Ritter Catalysis. The Journal of Physical Chemistry C, 128(14), 5860–5866. https://doi.org/10.1021/acs.jpcc.3c07871
Amiryaghoubi, N., Fathi, M., Barar, J., Omidian, H., & Omidi, Y. (2022). Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. Journal of Drug Delivery Science and Technology, 72, 103360. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103360
Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/D0MA00807A
Chen, D., Feng, H., & Li, J. (2012). Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews, 112(11), 6027–6053. https://doi.org/10.1021/cr300115g
Cheng, Y.-W., Lin, Y.-Y., Liu, C.-L., Hung, K.-Y., Barveen, N. R., Tseng, C.-H., Cheng, P.-Y., & Hardiansyah, A. (2024). Zwitterionic functional layer modified electrospun polyurethane nanofiber membrane incorporating silver nanoparticles for enhanced antibacterial applications. Surface and Coatings Technology, 484, 130865. https://doi.org/https://doi.org/10.1016/j.surfcoat.2024.130865
Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291–312. https://doi.org/10.1039/C3CS60303B
Destyorini, F., Amalia, W. C., Irmawati, Y., Hardiansyah, A., Priyono, S., Aulia, F., Oktaviano, H. S., Hsu, Y.-I., Yudianti, R., & Uyama, H. (2022). High Graphitic Carbon Derived from Coconut Coir Waste by Promoting Potassium Hydroxide in the Catalytic Graphitization Process for Lithium-Ion Battery Anodes. Energy & Fuels, 36(10), 5444–5455. https://doi.org/10.1021/acs.energyfuels.2c00632
Destyorini, F., Yudianti, R., Irmawati, Y., Hardiansyah, A., Hsu, Y.-I., & Uyama, H. (2021). Temperature driven structural transition in the nickel-based catalytic graphitization of coconut coir. Diamond and Related Materials, 117, 108443. https://doi.org/https://doi.org/10.1016/j.diamond.2021.108443
Dimiev, A. M. (2016). Mechanism of Formation and Chemical Structure of Graphene Oxide. In Graphene Oxide (pp. 36–84). https://doi.org/https://doi.org/10.1002/9781119069447.ch2
Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. https://doi.org/10.1039/B917103G
Ege, D., Kamali, A. R., & Boccaccini, A. R. (2017). Graphene Oxide/Polymer-Based Biomaterials. Advanced Engineering Materials, 19(12), 1700627. https://doi.org/https://doi.org/10.1002/adem.201700627
Eigler, S., & Dimiev, A. M. (2016). Characterization Techniques. In Graphene Oxide (pp. 85–120). https://doi.org/https://doi.org/10.1002/9781119069447.ch3
Ezra, Krismastuti, F. S. H., Arutanti, O., Aryana, N., Hardiansyah, A., & Nugroho, A. (2023). Irradiation time dependent of the ZnO/GO composite formation on the photodegradation of Rhodamine B. IOP Conference Series: Earth and Environmental Science, 1201(1), 012083. https://doi.org/10.1088/1755-1315/1201/1/012083
Fahmy Taha, M. H., Ashraf, H., & Caesarendra, W. (2020). A brief description of cyclic voltammetry transducer-based non-enzymatic glucose biosensor using synthesized graphene electrodes. Applied System Innovation, 3(3), 32.
Fallahazad, P. (2023). Rational and key strategies toward enhancing the performance of graphene/silicon solar cells. Materials Advances, 4(8), 1876–1899. https://doi.org/10.1039/D2MA00955B
Fikriyyah, A. K., Chaldun, E. R., & Hardiansyah, A. (2018). Utilization of soybean curd residue for carbon-based adsorbent material and its characterization. IOP Conference Series: Earth and Environmental Science, 160(1), 012008. https://doi.org/10.1088/1755-1315/160/1/012008
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
Hanif, W., Hardiansyah, A., Randy, A., & Asri, L. A. T. W. (2021). Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity. RSC Advances, 11(46), 29029–29041. https://doi.org/10.1039/D1RA04992E
Hardiansyah, A., Aditya, D. M., Budiman, W. J., Rahayu, S., Alvan, F. M., & Karim, G. (2022). Fabrication and evaluation of graphene-based materials through electrochemical exfoliation and expansion mechanism. AIP Conference Proceedings, 2652(1), 050016. https://doi.org/10.1063/5.0107096
Hardiansyah, A., Budiman, W. J., Utomo, M. S., Yudasari, N., Suhandi, A., Arutanti, O., Irmawati, Y., & Destyorini, F. (2021). Characterization of microwave irradiation-assisted transformation of reduced graphene oxide for photocatalytic material-based water treatment application. AIP Conference Proceedings, 2382(1), 040001. https://doi.org/10.1063/5.0060027
Hardiansyah, A., Budiman, W. J., Yudasari, N., Isnaeni, Kida, T., & Wibowo, A. (2021). Facile and Green Fabrication of Microwave-Assisted Reduced Graphene Oxide/Titanium Dioxide Nanocomposites as Photocatalysts for Rhodamine 6G Degradation. ACS Omega, 6(47), 32166–32177. https://doi.org/10.1021/acsomega.1c04966
Hardiansyah, A., Chaldun, E. R., Nuryadin, B. W., Fikriyyah, A. K., Subhan, A., Ghozali, M., & Purwasasmita, B. S. (2018). Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications. Journal of Electronic Materials, 47(7), 4028–4037. https://doi.org/10.1007/s11664-018-6289-3
Hardiansyah, A., Chen, A.-Y., Liao, H.-L., Yang, M.-C., Liu, T.-Y., Chan, T.-Y., Tsou, H.-M., Kuo, C.-Y., Wang, J.-K., & Wang, Y.-L. (2015). Core-shell of FePt-SiO2-Au magnetic nanoparticles for rapid SERS detection. Nanoscale Research Letters, 10(1), 412. https://doi.org/10.1186/s11671-015-1111-0
Hardiansyah, A., Destyorini, F., Irmawati, Y., Yang, M.-C., Liu, C.-M., Chaldun, E. R., Yung, M.-C., & Liu, T. Y. (2019). Characterizations of doxorubicin-loaded PEGylated magnetic liposomes for cancer cells therapy. Journal of Polymer Research, 26(12), 282. https://doi.org/10.1007/s10965-019-1964-5
Hardiansyah, A., Huang, L.-Y., Yang, M.-C., Liu, T.-Y., Tsai, S.-C., Yang, C.-Y., Kuo, C.-Y., Chan, T.-Y., Zou, H.-M., Lian, W.-N., & Lin, C.-H. (2014). Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Research Letters, 9(1), 497. https://doi.org/10.1186/1556-276X-9-497
Hardiansyah, A., Huang, L.-Y., Yang, M.-C., Purwasasmita, B. S., Liu, T.-Y., Kuo, C.-Y., Liao, H.-L., Chan, T.-Y., Tzou, H.-M., & Chiu, W.-Y. (2015). Novel pH-sensitive drug carriers of carboxymethyl-hexanoyl chitosan (Chitosonic Acid) modified liposomes. RSC Advances, 5(30), 23134–23143. https://doi.org/10.1039/C4RA14834G
Hardiansyah, A., Randy, A., Dewi, R. T., Angelina, M., Yudasari, N., Rahayu, S., Ulfah, I. M., Maryani, F., Cheng, Y.-W., & Liu, T.-Y. (2022). Magnetic Graphene-Based Nanosheets with Pluronic F127-Chitosan Biopolymers Encapsulated a-Mangosteen Drugs for Breast Cancer Cells Therapy. Polymers, 14(15). https://doi.org/10.3390/polym14153163
Hardiansyah, A., Saputra, G. M. A., Hikmat, H., Kusfarida, Y. E., Septiani, N. L. W., Randy, A., Hermawan, A., Yuliarto, B., Liu, T.-Y., & Kida, T. (2023). Electrochemical evaluation of magnetic reduced graphene oxide nanosheet-modified glassy carbon electrode on dopamine electrochemical sensor for Parkinson’s diagnostic application. Journal of the Chinese Chemical Society, 70(8), 1665–1682. https://doi.org/https://doi.org/10.1002/jccs.202300197
Hardiansyah, A., Sunnardianto, G. K., Pradanawati, S. A., Aditya, D. M., Kida, T., & Liu, T.-Y. (2024). Investigating the impact of nitrogen-doping on the characteristics and performance of reduced graphene oxide for lithium-ion batteries anode through experimental and theoretical study. Materials Today Communications, 38, 107740. https://doi.org/https://doi.org/10.1016/j.mtcomm.2023.107740
Hardiansyah, A., Tanadi, H., Yang, M.-C., & Liu, T.-Y. (2015). Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. Journal of Polymer Research, 22(4), 59. https://doi.org/10.1007/s10965-015-0704-8
Hardiansyah, A., Yang, M.-C., Liao, H.-L., Cheng, Y.-W., Destyorini, F., Irmawati, Y., Liu, C.-M., Yung, M.-C., Hsu, C.-C., & Liu, T.-Y. (2020). Magnetic Graphene-Based Sheets for Bacteria Capture and Destruction Using a High-Frequency Magnetic Field. Nanomaterials, 10(4), 1–12. https://doi.org/https://doi.org/10.3390/nano10040674
Hardiansyah, A., Yang, M.-C., Liu, T.-Y., Kuo, C.-Y., Huang, L.-Y., & Chan, T.-Y. (2017). Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release. Nanoscale Research Letters, 12(1), 355. https://doi.org/10.1186/s11671-017-2119-4
Harito, C., Khalil, M., Septiani, N. L. W., Dewi, K. K., Hardiansyah, A., Yuliarto, B., & Walsh, F. C. (2022). Trends in nanomaterial-based biosensors for viral detection. Nano Futures, 6(2), 022005. https://doi.org/10.1088/2399-1984/ac701d
Harito, C., Zaidi, S. Z. J., Putra, B. R., Hardiansyah, A., Khalil, M., & Yuliarto, B. (2022). 2 - Synthesis of graphene polymer composites having high filler content. In S. M. Rangappa, J. Parameswaranpillai, V. Ayyappan, M. G. Motappa, S. Siengchin, & C. Soutis (Eds.), Innovations in Graphene-Based Polymer Composites (pp. 49–60). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823789-2.00002-9
Hermawan, A., Destyorini, F., Hardiansyah, A., Alviani, V. N., Mayangsari, W., Wibisono, Septiani, N. L. W., Yudianti, R., & Yuliarto, B. (2023). High energy density asymmetric supercapacitors enabled by La-induced defective MnO2 and biomass-derived activated carbon. Materials Letters, 351, 135031. https://doi.org/https://doi.org/10.1016/j.matlet.2023.135031
Huang, L.-Y., Liu, T.-Y., Liu, T.-Y., Mevold, A., Hardiansyah, A., Liao, H.-C., Lin, C.-C., & Yang, M.-C. (2013). Nanohybrid structure analysis and biomolecule release behavior of polysaccharide-CDHA drug carriers. Nanoscale Research Letters, 8(1), 417. https://doi.org/10.1186/1556-276X-8-417
Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., & Zhang, H. (2011). Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 7(14), 1876–1902. https://doi.org/https://doi.org/10.1002/smll.201002009
Irmawati, Y., Mauludi, E. M., Destyorini, F., Hardiansyah, A., Oktaviano, H. S., Nugroho, A., & Yudianti, R. (2022). One-pot synthesis of CoFe alloy supported on N-doped carbon as Pt-free oxygen reduction catalysts. AIP Conference Proceedings, 2652(1), 040002. https://doi.org/10.1063/5.0106430
Juang, R.-S., Wang, K.-S., Kuan, T.-Y., Chu, Y.-J., Jeng, R.-J., Hardiansyah, A., Liu, S.-H., & Liu, T.-Y. (2024). Electric field-stimulated Raman scattering enhancing biochips fabricated by Au nano-islands deposited on laser-scribed 3D graphene for uremic toxins detection. Journal of the Taiwan Institute of Chemical Engineers, 154, 105115. https://doi.org/https://doi.org/10.1016/j.jtice.2023.105115
Khaerudini, D. S., Winarto, H., Hardiansyah, A., Alva, S., Khaerudini, D. S., Rustana, C. E., Junia, D., & Dirgantara, F. D. (2019). New and Renewable Catalyst Based on Electro-Activated Carbon for Hydrogen Generation. 2019 International Conference on Technologies and Policies in Electric Power & Energy, 1–6. https://doi.org/10.1109/IEEECONF48524.2019.9102628
Ku, S. H., Lee, M., & Park, C. B. (2013). Carbon-Based Nanomaterials for Tissue Engineering. Advanced Healthcare Materials, 2(2), 244–260. https://doi.org/https://doi.org/10.1002/adhm.201200307
Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., & Lee, J. H. (2011). Recent advances in graphene-based biosensors. Biosensors and Bioelectronics, 26(12), 4637–4648. https://doi.org/https://doi.org/10.1016/j.bios.2011.05.039
Kuo, C.-Y., Liu, T.-Y., Chan, T.-Y., Tsai, S.-C., Hardiansyah, A., Huang, L.-Y., Yang, M.-C., Lu, R.-H., Jiang, J.-K., Yang, C.-Y., Lin, C.-H., & Chiu, W.-Y. (2016). Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids and Surfaces B: Biointerfaces, 140, 567–573. https://doi.org/https://doi.org/10.1016/j.colsurfb.2015.11.008
Kuo, C.-Y., Liu, T.-Y., Hardiansyah, A., & Chiu, W.-Y. (2016). Magnetically polymeric nanocarriers for targeting delivery of curcumin and hyperthermia treatments toward cancer cells. Journal of Polymer Science Part A: Polymer Chemistry, 54(17), 2706–2713. https://doi.org/https://doi.org/10.1002/pola.28150
Kuo, C.-Y., Liu, T.-Y., Hardiansyah, A., Lee, C.-F., Wang, M.-S., & Chiu, W.-Y. (2014). Self-assembly behaviors of thermal- and pH- sensitive magnetic nanocarriers for stimuli-triggered release. Nanoscale Research Letters, 9(1), 520. https://doi.org/10.1186/1556-276X-9-520
Kuo, C.-Y., Liu, T.-Y., Wang, K.-S., Hardiansyah, A., Lin, Y.-T., Chen, H.-Y., & Chiu, W.-Y. (2017). Magnetic and Thermal-sensitive Poly(N-isopropylacrylamide)-based Microgels for Magnetically Triggered Controlled Release. JoVE, 125, e55648. https://doi.org/doi:10.3791/55648
Laraba, S. R., Luo, W., Rezzoug, A., Zahra, Q. ul ain, Zhang, S., Wu, B., Chen, W., Xiao, L., Yang, Y., Wei, J., & Li, Y. (2022). Graphene-based composites for biomedical applications. Green Chemistry Letters and Reviews, 15(3), 724–748. https://doi.org/10.1080/17518253.2022.2128698
Lerf, A. (2016). Graphite Oxide Story – From the Beginning Till the Graphene Hype. In Graphene Oxide (pp. 1–35). https://doi.org/https://doi.org/10.1002/9781119069447.ch1
Lesiak, B., Trykowski, G., Tóth, J., Biniak, S., Kövér, L., Rangam, N., Stobinski, L., & Malolepszy, A. (2021). Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent. Journal of Materials Science, 56(5), 3738–3754. https://doi.org/10.1007/s10853-020-05461-1
Liang, X., Li, N., Zhang, R., Yin, P., Zhang, C., Yang, N., Liang, K., & Kong, B. (2021). Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Materials, 13(1), 8. https://doi.org/10.1038/s41427-020-00278-5
Liu, J., Cui, L., & Losic, D. (2013). Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia, 9(12), 9243–9257. https://doi.org/https://doi.org/10.1016/j.actbio.2013.08.016
Long, Z., Li, Q., Wei, T., Zhang, G., & Ren, Z. (2020). Historical development and prospects of photocatalysts for pollutant removal in water. Journal of Hazardous Materials, 395, 122599. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.122599
Mevold, A. H. H., Hsu, W.-W., Hardiansyah, A., Huang, L.-Y., Yang, M.-C., Liu, T.-Y., Chan, T.-Y., Wang, K.-S., Su, Y.-A., Jeng, R.-J., Wang, J.-K., & Wang, Y.-L. (2015). Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Bio-detection by SERS Nanotechnology. Nanoscale Research Letters, 10(1), 397. https://doi.org/10.1186/s11671-015-1101-2
Mohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.01.013
Nugroho, A., Wahyudhi, A., Oktaviano, H. S., Yudianti, R., Hardiansyah, A., Destyorini, F., & Irmawati, Y. (2022). Effect of Iron Loading on Controlling Fe/N-C Electrocatalyst Structure for Oxygen Reduction Reaction. ChemistrySelect, 7(45), e202202042. https://doi.org/https://doi.org/10.1002/slct.202202042
Peng, G.-Z., Hardiansyah, A., Lin, H.-T., Lee, R.-Y., Kuo, C.-Y., Pu, Y.-C., & Liu, T.-Y. (2022). Photocatalytic degradation and reusable SERS detection by Ag nanoparticles immobilized on g-C3N4/graphene oxide nanosheets. Surface and Coatings Technology, 435, 128212. https://doi.org/https://doi.org/10.1016/j.surfcoat.2022.128212
Putri, W. B. K., Sausan, Z. N., Estri, A. N., Asri, N. S., & Hardiansyah, A. (2024). Morphological and magnetic properties of electrospun Fe3O4-polyvinylidene fluoride. AIP Conference Proceedings, 3003(1), 020102. https://doi.org/10.1063/5.0186303
Raharjo, A. B., Putra, R. D. A., Indayaningsih, N., Srifiana, Y., Hardiansyah, A., Irmawati, Y., Widodo, H., & Destyorini, F. (2020). Preparation of polyvinyl alcohol/asiaticoside/chitosan membrane nano-composite using electrospinning technique for wound dressing. AIP Conference Proceedings, 2256(1), 030023. https://doi.org/10.1063/5.0014545
Rowley-Neale, S. J., Randviir, E. P., Abo Dena, A. S., & Banks, C. E. (2018). An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today, 10, 218–226. https://doi.org/https://doi.org/10.1016/j.apmt.2017.11.010
Sampora, Y., Hardiansyah, A., Hikmat, Khaerudini, D. S., Burhani, D., Sondari, D., Septiyanti, M., & Septevani, A. A. (2022). Synthesis and characterization of magnetite nanoparticle for removal of heavy metal ions from aqueous solutions. IOP Conference Series: Earth and Environmental Science, 1017(1), 012017. https://doi.org/10.1088/1755-1315/1017/1/012017
Septiani, N. L. W., Shukri, G., Saputro, A. G., Nugraha, Karim, M. R., Al-Mubaddel, F., Hardiansyah, A., Yamauchi, Y., Kaneti, Y. V., & Yuliarto, B. (2022). Palm Sugar-Induced Formation of Hexagonal Tungsten Oxide with Nanorod-Assembled Three-Dimensional Hierarchical Frameworks for Nitrogen Dioxide Sensing. ACS Sustainable Chemistry & Engineering, 10(46), 15035–15045. https://doi.org/10.1021/acssuschemeng.2c03315
Setiawan, S., Hardiansyah, A., Kartikowati, C. W., Arif, A. F., Priatmoko, S., & Arutanti, O. (2021). Microwave-Assisted Synthesis of TiO2/GO Composite and Its Adsorption-Photocatalysis Property under Visible Light. IOP Conference Series: Materials Science and Engineering, 1143(1), 012055. https://doi.org/10.1088/1757-899X/1143/1/012055
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8), 1178–1271. https://doi.org/https://doi.org/10.1016/j.pmatsci.2011.03.003
Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47. https://doi.org/https://doi.org/10.1016/j.nanoms.2019.02.004
Sonda, K., Kodama, T., Wea Siga, M. D., Masumoto, K., Iwai, M., Fadil, M., Ahmad, M. S., Christopher Agutaya, J. K., Inomata, Y., Quitain, A. T., Hardiansyah, A., & Kida, T. (2023). Selective Detection of CO Using Proton-Conducting Graphene Oxide Membranes with Pt-Doped SnO2 Electrocatalysts: Mechanistic Study by Operando DRIFTS. ACS Applied Materials & Interfaces, 15(45), 52724–52734. https://doi.org/10.1021/acsami.3c10349
Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1(3), 203–212. https://doi.org/10.1007/s12274-008-8021-8
Thomas, H. R., Day, S. P., Woodruff, W. E., Vallés, C., Young, R. J., Kinloch, I. A., Morley, G. W., Hanna, J. V, Wilson, N. R., & Rourke, J. P. (2013). Deoxygenation of Graphene Oxide: Reduction or Cleaning? Chemistry of Materials, 25(18), 3580–3588. https://doi.org/10.1021/cm401922e
Vacanti, C. A. (2006). The history of tissue engineering. Journal of Cellular and Molecular Medicine, 10(3), 569-576. https://doi.org/https://doi.org/10.1111/j.1582-4934.2006.tb00421.x
Wardhani, R. A. K., Primadona, I., & Hardiansyah, A. (2022). Electrospun a-mangosteen-chitosan-poly(ethylene oxide) nanofibers. Materials Research Express, 9(11), 115005. https://doi.org/10.1088/2053-1591/ac9de2
Wulan Septiani, N. L., Chowdhury, S., Hardiansyah, A., Rinawati, M., Yeh, M.-H., Nara, H., Yamauchi, Y., Kaneti, Y. V., & Yuliarto, B. (2024). Selective synthesis of monodisperse bimetallic nickel–cobalt phosphates with different nanoarchitectures for battery-like supercapacitors. Journal of Materials Chemistry A, 12(23), 14045–14058. https://doi.org/10.1039/D3TA06584G
Yang, M.-C., Hardiansyah, A., Cheng, Y.-W., Liao, H.-L., Wang, K.-S., Randy, A., Harito, C., Chen, J.-S., Jeng, R.-J., & Liu, T.-Y. (2022). Reduced graphene oxide nanosheets decorated with core-shell of Fe3O4-Au nanoparticles for rapid SERS detection and hyperthermia treatment of bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 281, 121578. https://doi.org/https://doi.org/10.1016/j.saa.2022.121578
Yang, Y., Asiri, A. M., Tang, Z., Du, D., & Lin, Y. (2013). Graphene based materials for biomedical applications. Materials Today, 16(10), 365–373. https://doi.org/https://doi.org/10.1016/j.mattod.2013.09.004
Yudasari, N., Hardiansyah, A., Herbani, Y., Isnaeni, Suliyanti, M. M., & Djuhana, D. (2023). Single-step laser ablation synthesis of ZnO–Ag nanocomposites for broad-spectrum dye photodegradation and bacterial photoinactivation. Journal of Photochemistry and Photobiology A: Chemistry, 441, 114717. https://doi.org/https://doi.org/10.1016/j.jphotochem.2023.114717
Yulianti, R. T., Irmawati, Y., Destyorini, F., Ghozali, M., Suhandi, A., Kartolo, S., Hardiansyah, A., Byun, J.-H., Fauzi, M. H., & Yudianti, R. (2021). Highly Stretchable and Sensitive Single-Walled Carbon Nanotube-Based Sensor Decorated on a Polyether Ester Urethane Substrate by a Low Hydrothermal Process. ACS Omega, 6(50), 34866–34875. https://doi.org/10.1021/acsomega.1c05543
Yulianti, R. T., Irmawati, Y., Destyorini, F., Hardiansyah, A., Yudianti, R., & Oktaviano, H. S. (2020). Facile Glycine-Assisted Synthesis of Non-Noble Metal Fe-N/C Electrocatalyst for Oxygen Reduction Reaction. ECS Meeting Abstracts, MA2020-02(53), 3850. https://doi.org/10.1149/MA2020-02533850mtgabs
Zheng, S., Tian, Y., Ouyang, J., Shen, Y., Wang, X., & Luan, J. (2022). Carbon nanomaterials for drug delivery and tissue engineering. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.990362
Zheng, X., Zhang, P., Fu, Z., Meng, S., Dai, L., & Yang, H. (2021). Applications of nanomaterials in tissue engineering. RSC Advances, 11(31), 19041–19058. https://doi.org/10.1039/D1RA01849C
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906–3924. https://doi.org/https://doi.org/10.1002/adma.201001068
Downloads
Published
December 9, 2024
HOW TO CITE
Copyright (c) 2024 National Research and Innovation Agency
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.