Templates
Kontribusi Citra Satelit Multiresolusi Tutupan Awan Minimum Akurasi Tinggi untuk Mendukung Ketersediaan Data Siap Pakai di Indonesia
Keywords:
Citra satelit tutupan awan minimum akurasi tinggi, Data siap pakai (analysis ready data, ARD), Artificial intelligence (AI), Teknologi Optik, Citra Satelit Multiresolusi, 3. Analysis Ready Data (ARD)Synopsis
Pada orasi ini disampaikan state of the art tentang perkembangan, tantangan, penemuan, kontribusi dan hilirisasi citra satelit multiresolusi tutupan awan minimum akurasi tinggi untuk mendukung ketersediaan data siap pakai di Indonesia. Penemuan-penemuan tersebut dapat memberikan pemahaman yang lebih baik mengenai pengolahan citra satelit multiresolusi tutupan awan minimum akurasi tinggi di Indonesia sehingga dapat digunakan untuk meningkatkan akurasi model deteksi awan yang menghasilkan tutupan awan minimum melalui teknologi berbasis artificial intelligence (AI). Deep learning yang merupakan subset dari AI digunakan untuk mendeteksi multikelas awan meliputi awan tebal, awan tipis, bayangan awan, dan non awan dengan menghasilkan akurasi tinggi. Hasilnya dapat digunakan untuk membuat citra tutupan awan minimum siap pakai yang dikenal dengan istilah Analysis Ready Data (ARD). Data ARD ini dapat digunakan untuk analisis lebih lanjut secara langsung oleh stakeholder atau pengguna.
Orasi ini diharapkan dapat memberikan pemahaman tentang metode pengolahan citra satelit multiresolusi tutupan awan minimum akurasi tinggi untuk mengatasi tutupan awan yang merupakan kendala utama pada citra satelit optik. Dengan demikian, citra satelit tutupan awan minimum yang akurat dapat dihasilkan, sehingga dapat memenuhi kebutuhan nasional yaitu citra satelit siap pakai dan mendukung kemandirian teknologi pengolahan citra dari satelit-satelit yang sudah ada maupun yang akan dibangun sehingga tercipta kemandirian bangsa.
Downloads
Download data is not yet available.
References
Bai, T., Li, D., Sun, K., Chen, Y., & Li, W. (2016). Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion. Remote Sensing, 8(9), 1–21. https://doi.org/10.3390/rs8090715
Bayanuddin, A. A., Zylshal, Setia, F. N., Siwi, S. E., Rahayu, M. I., Azis, U. A., & Candra, D. S. (2021). Comparison of Topographic Correction methods on SPOT-6/7 Multispectral Data In Indonesia: an Initial Evaluation in Hilly to Undulating Area. Proceedings of SPIE, 1208203(December). https://doi.org/10.1117/12.2619470
Brahmantara, R. P., Ulfa, K., Rahayu, M. I., Prabowo, Y., Hestrio, Y. F., Sartika, Kustiyo, Candra, D. S., & Novresiandi, D. A. (2022). Cloud-free mosaic for high-resolution satellite to support natural resources and disaster monitoring. International Symposium On Disaster Risk Reduction, Mitigation and Environmental Sciences, 1109, 1–10. https://doi.org/10.1088/1755-1315/1109/1/012053
Candra, D. S., Prabowo, Y., Hestrio, Y. F., Rasydy, F. H., Ulfa, K., & Rahayu, M. I. (2023). Metode Deteksi Multi-Kelas Awan Dan Bayangannya Dengan Menggunakan Pembelajaran Dalam untuk Citra Satelit Worldview-3. In Paten Reguler Nasional (Terdaftar): Vol. Nomor: P00.
Candra, D. S. (2008). Denoising of High Resolution Remote Sensing Data using Stationary Wavelet Transform. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 5:3, 27–34.
Candra, D. S. (2011a). Analysis of Critical Land in The Musi Watershed using Geographic Information Systems. International Journal of Remote Sensing and Earth Sciences, 8 (1).
Candra, D. S. (2011b). Pengembangan Teknik Normalisasi dan Denormalisasi pada Metode RPC untuk Orthorektifikasi Citra Satelit Penginderaan Jauh. Geomatika, 17 (2).
Candra, D. S. (2013). Analysis of SPOT-6 data fusion using Gram-Schmidt spectral sharpening on rural areas. International Journal of Remote Sensing and Earth Sciences, 10 (2), 839–844. https://doi.org/10.30536/j.ijreses.2013.v10.a1846
Candra, D. S. (2020). Deforestation detection using multitemporal satellite images. The Fifth International Conferences of Indonesian Society for Remote Sensing, 500, 1–13. https://doi.org/10.1088/1755-1315/500/1/012037
Candra, D. S. (2021a). Metode Penghapusan Awan Dan Bayangannya Untuk Citra Landsat 8 (Patent No. IDP000079909). Tanggal Pemberian 12 November 2021. DJKI.
Candra, D. S. (2021b). Metode Penghapusan Awan Dan Bayangannya Untuk Citra Sentinel-2 (Patent No. IDP000079910). Tanggal Pemberian 12 November 2021. DJKI.
Candra, D. S. (2022a). Metode Deteksi Awan Dan Bayangannya Untuk Citra Landsat 8 (Patent No. IDP000082003). Tanggal Pemberian 08 Juli 2022. DJKI.
Candra, D. S. (2022b). Metode Deteksi Awan Dan Bayangannya Untuk Citra Sentinel-2 (Patent No. IDP000081997). Tanggal Pemberian 07 Juli 2022. DJKI.
Candra, D. S., & Kustiyo. (2013). Metode Cloud Removal Citra Satelit Optik Menggunakan Maksimum NDVI dan Data Multitemporal. Jurnal Ilmiah Geomatika, 19, 6–9.
Candra, D. S., Kustiyo, & Ismaya, H. (2014). Cloud Masking Data SPOT-6 dengan Menggunakan Pendekatan Nilai Reflektansi dan Geometri. Seminar Nasional Penginderaan Jauh 2014, 189–197.
Candra, D. S., Phinn, S., & Scarth, P. (2016). Cloud and cloud shadow masking using multi-temporal cloud masking algorithm in tropical environmental. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B2, 95–100. https://doi.org/10.5194/isprs-archives-XLI-B2-95-2016
Candra, D. S., Phinn, S., & Scarth, P. (2017). Cloud and Cloud Shadow Removal of Landsat 8 Images using Multi-temporal Cloud Removal Method. 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 1–5. https://doi.org/10.1109/Agro-Geoinformatics.2017.8047007
Candra, D. S., Phinn, S., & Scarth, P. (2019). Automated cloud and cloud-shadow masking for Landsat 8 using multitemporal images in a variety of environments. Remote Sensing, 11(17). https://doi.org/10.3390/rs11172060
Candra, D. S., Phinn, S., & Scarth, P. (2020). Cloud and cloud shadow masking for Sentinel-2 using multitemporal images in global area. International Journal of Remote Sensing, 41(8), 2020. https://doi.org/https://doi.org/10.1080/01431161.2019.1697006
Candra, D. S., & Prabowo, Y. (2014). Analysis of Cloud Removal Method on Sea Area using Landsat-8 Multi-Temporal. 12th Biennial Conference of Pan Ocean Remote Sensing Conference, 1(November), 4–7.
Candra, D. S., Prabowo, Y., Hestrio, Y. F., Rasyidy, F. H., Ulfa, K., & Rahayu, M. I. (2023). Metode Deteksi Multi-Kelas Awan dan Bayangannya dengan Menggunakan Pembelajaran Dalam untuk Citra Satelit Worldview-3 (Patent No. P00202314625). Tanggal Pendaftaran 24 Desember 2023. DJKI.
Candra, D. S., Ulfa, K., Rasyidy, F. H., Hestrio, Y. F., Prabowo, Y., & Rahayu, M. I. (2023). Evaluation of Very-high Resolution Satellite Image Compression to Support Agriculture Monitoring. 2023 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), 1–6. https://doi.org/10.1109/ICARES60489.2023.10329899
Fidiyawati, & Candra, D. S. (2014). Analisis Perubahan Pola dan Penutup Lahan Sungai Bengawan Solo dengan Menggunakan Citra Satelit Penginderaan Jauh Multitemporal. Seminar Nasional Penginderaan Jauh, 740–749.
Goodwin, N. R., Collett, L. J., Denham, R. J., Flood, N., & Tindall, D. (2013). Cloud and cloud shadow screening across Queensland, Australia: An automated method for Landsat TM/ETM+ time series. Remote Sensing of Environment, 134, 50–65. https://doi.org/https://doi.org/10.1016/j.rse.2013.02.019
Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747–1755. https://doi.org/https://doi.org/10.1016/j.rse.2010.03.002
Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) Algorithm. Photogrammetric Engineering and Remote Sensing, 72, 1179–1188. https://api.semanticscholar.org/CorpusID:14451366
Kennedy, R. E., Cohen, W. B., & Schroeder, T. A. (2007). Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment, 110(3), 370–386. https://doi.org/https://doi.org/10.1016/j.rse.2007.03.010
Kurdianto, Susantoro, T. M., Candra, D. S., Sulma, S., Hestrio, Y. F., Khomarudin, M. R., Suliantara, Setiawan, H. L., Maryanto, A., Nugroho, G., Arief, R., & Harto, A. B. (2023). Impact of Oil Injection on Concentrations of Chlorophyll, Carotenoids, Anthocyanins in Banyan Leaves and Ketapang Dewa Leaves Using Hyperspectral Sensor. 2023 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), 149–155. https://doi.org/10.1109/AGERS61027.2023.10490693
Li, J., Li, Y., & Chapman, M. A. (2005). High-Resolution Satellite Image Sources for Disaster Management in Urban Areas BT - Geo-information for Disaster Management (P. van Oosterom, S. Zlatanova, & E. M. Fendel (eds.); pp. 1055–1070). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-27468-5_74
Li, Z., Shen, H., Cheng, Q., Liu, Y., You, S., & He, Z. (2019). Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 197–212. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.02.017
Li, Z., Shen, H., Li, H., Xia, G., Gamba, P., & Zhang, L. (2017). Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sensing of Environment, 191, 342–358. https://doi.org/https://doi.org/10.1016/j.rse.2017.01.026
Liang, K., Yang, G., Zuo, Y., Chen, J., Sun, W., Meng, X., & Chen, B. (2024). A Novel Method for Cloud and Cloud Shadow Detection Based on the Maximum and Minimum Values of Sentinel-2 Time Series Images. In Remote Sensing (Vol. 16, Issue 8). https://doi.org/10.3390/rs16081392
Maftukhaturrizqoh, O., Diwyacitta, K., Supriyani, I. S., Gustiandi, B., & Candra, D. S. (2023). Improving the Effectiveness of Remote Sensing Data Correction Using Phase Cross-Correlation Algorithm with Upsampling Factors Variable. 2023 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), 231–235. https://doi.org/10.1109/AGERS61027.2023.10490994
Mahajan, S., & Fataniya, B. (2020). Cloud detection methodologies: variants and development—a review. Complex & Intelligent Systems, 6(2), 251–261. https://doi.org/10.1007/s40747-019-00128-0
Marcello, J., Eugenio, F., Martin, J., & Marques, F. (2018). Seabed Mapping in Coastal Shallow Waters Using High Resolution Multispectral and Hyperspectral Imagery. Remote Sensing, 10(8). https://doi.org/10.3390/rs10081208
Marmorino, G., & Chen, W. (2019). Use of WorldView-2 Along-Track Stereo Imagery to Probe a Baltic Sea Algal Spiral. Remote Sensing, 11(7), 1–9. https://doi.org/10.3390/rs11070865
Marwoto, & Candra, D. S. (2007). Pembuatan Sistem Informasi Geografis Kesesuaian Lahan Tanaman Tebu Berbasis Web di Kabupaten Merauke. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 4(1), 60–71.
NASA. (2020). What is Synthetic Aperture Radar? Earth Data. https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar
Nugroho, F. S., Danoedoro, P., Arjasakusuma, S., Candra, D. S., Bayanuddin, A. A., Heru, R., & Wicaksono, P. (2023). The Utilization of Multi-Sensor Remote Sensing and Cloud- Computing Platform for Mapping Burned Areas. Proceedings of the 7th International Conference on Science and Technology, 2654,(2), 1–8. https://doi.org/https://doi.org/10.1063/5.0114317
Nugroho, F. S., Danoedoro, P., Arjasakusuma, S., Candra, D. S., Bayanuddin, A. A., & Samodra, G. (2021). Assessment of Sentinel-1 and Sentinel-2 Data for Landslides Identification using Google Earth Engine. 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1–6. https://doi.org/10.1109/APSAR52370.2021.9688356
Piermattei, L., Marty, M., Karel, W., Ressl, C., Hollaus, M., Ginzler, C., & Pfeifer, N. (2018). Impact of the Acquisition Geometry of Very High-Resolution Pleiades Imagery on the Accuracy of Canopy Height Models over Forested Alpine Regions. In Remote Sensing (Vol. 10, Issue 10). https://doi.org/10.3390/rs10101542
Prabowo, Y., Candra, D. S., & Ali, S. (2020). Cloud detection method for Pleiades images using spectral indices. Journal of Physics: Conference Series, 1528(1), 12011. https://doi.org/10.1088/1742-6596/1528/1/012011
Prabowo, Y., Candra, D. S., & Maulana, R. (2021). Cloud Detection for Pleiades and SPOT 6 / 7 Imageries Using Modified K-means and Deep Learning. International Journal on Advanced Science Engineering and Information Technology, 11(6).
Prabowo, Y., Pradono, K. A., Amriyah, Q., Rasyidy, F. H., Carolita, I., Setiyoko, A., Candra, D. S., Musyarofah, Ulfa, K., & Hestrio, Y. F. (2022). Palm Trees Counting Using MobileNet Convolutional Neural Network in Very High- Resolution Satellite Images. IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology, 79–83. https://doi.org/10.1109/AGERS56232.2022.10093287
Prabowo, Y., Sakti, A. D., Pradono, K. A., Amriyah, Q., Rasyidy, F. H., Bengkulah, I., Ulfa, K., Candra, D. S., Imdad, M. T., & Ali, S. (2022). Deep Learning Dataset for Estimating Burned Areas: Case Study , Indonesia. Data, 7(6)(78). https://doi.org/https://doi.org/10.3390/data7060078
Rahayu, & Candra, D. S. (2014). Koreksi Radiometrik Citra Landsat-8 Kanal Multispektral Menggunakan Top of Atmosphere (ToA) untuk Mendukung Klasifikasi Penutup Lahan. Seminar Nasional Penginderaan Jauh, 762–766.
Richter, R., Wang, X., Bachmann, M., & Schlapfer, D. (2011). Correction of cirrus effects in Sentinel-2 type of imagery. International Journal of Remote Sensing, 32(10), 2931–2941. https://doi.org/10.1080/01431161.2010.520346
Roswintiarti, O., Dewanti, R., Furby, S., Wallace, Jeremy, ...., Candra, D. S., ...., & Hidayat, S. (2014). The Remote Sensing Monitoring Program of Indonesia’s National Carbon Accounting System: Methodology and Products (version 1).
Sakti, A. D., Sembiring, E., Rohayani, P., Fauzan, K. N., Anggraini, T. S., Santoso, C., Patricia, V. A., Titon, K., Ihsan, N., Ramadan, A. H., Arjasakusuma, S., & Candra, D. S. (2023). Identification of illegally dumped plastic waste in a highly polluted river in Indonesia using Sentinel-2 satellite imagery. Scientific Reports, 13(5039), 1–14. https://doi.org/10.1038/s41598-023-32087-5
Sartika, S., Bayanuddin, A. A., Putri, F. A., Ulfa, K., Hadiyanto, A. L., Candra, D. S., & Chulafak, G. A. (2023). Determining the Precision of Spectral Patterns Arising from Atmospheric Correction Utilizing MODTRAN-FLAASH and 6S Approaches on High-Resolution SPOT-6 Imagery. The 9th International Seminar on Aerospace Science and Technology, 2941(1). https://doi.org/https://doi.org/10.1063/5.0181398
Sartika, S., Brahmantara, R. P., Rahayu, M. I., Candra, D. S., Hestrio, Y. F., Ulfa, K., Prabowo, Y., Novresiandi, D. A., & Veronica, K. W. (2023). A Sub-pixel Geometric Evaluation for Very High-Resolution Satellite Images using Phase Cross-Correlation Algorithm. The 9th International Seminar on Aerospace Science and Technology.
Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. https://doi.org/https://doi.org/10.1016/j.cogr.2023.04.001
Susantoro, T. M., Suliantara, Harto, A. B., Setiawan, H. L., Nugroho, G., Candra, D. S., Jayati, A., Sulma, S., Khomarudin, M. R., Arief, R., Maryanto, A., Hestrio, Y. F., & Kurdianto. (2023). The Potential of Remote Sensing Data for Oil And Gas Exploration in Indonesia: A Review. Scientific Contributions Oil and Gas, 46(1), 9–43. https://doi.org/10.29017/SCOG.46.1.1346
Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A., & Rahman, A. (2020). Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. In Remote Sensing (Vol. 12, Issue 7). https://doi.org/10.3390/rs12071135
Ulfa, K., Brahmantara, R. P., Oktavia, M. I., Prabowo, Y., Muchsin, F., Candra, D. S., Rahayu, M. I., Rangkuti, C. N., Siwi, S. E., & Fibriawati, L. (2023). The Effect of Color Balancing on The Accuracy of Land Cover Classification for Pleiades Mosaic Data. The 9th International Seminar on Aerospace Science and Technology.
Ulfa, K., Oktavia, M. I., Pradono, K. A., Fibriawati, L., Muchsin, F., Candra, D. S., & Damanik, K. W. V. (2020). Evaluation of atmospheric correction algorithms for Sentinel-2 over paddy field area. The Fifth International Conferences of Indonesian Society for Remote Sensing, 500, 6–12. https://doi.org/10.1088/1755-1315/500/1/012081
USGS. (2024). Landsat Project Statistics. https://www.usgs.gov/landsat-missions/landsat-project-statistics
Wang, B., Ono, A., Muramatsu, K., & Fujiwara, N. (1999). Automated Detection and Removal of Clouds and Their Shadows from Landsat TM Images. IEICE Transactions on Information and Systems, 82, 453–460. https://api.semanticscholar.org/CorpusID:15111232
You, Y., Wang, S., Ma, Y., Chen, G., Wang, B., Shen, M., & Liu, W. (2018). Building Detection from VHR Remote Sensing Imagery Based on the Morphological Building Index. Remote Sensing, 10(8), 1–22. https://doi.org/10.3390/rs10081287
Zhang, Wei, Tang, P., & Zhao, L. (2019). Remote Sensing Image Scene Classification Using CNN-CapsNet. Remote Sensing, 11(5). https://doi.org/10.3390/rs11050494
Zhang, Weidong, Jin, S., Zhou, L., Xie, X., Wang, F., Jiang, L., Zheng, Y., Qu, P., Li, G., & Pan, X. (2022). Multi-feature embedded learning SVM for cloud detection in remote sensing images. Computers and Electrical Engineering, 102, 108177. https://doi.org/https://doi.org/10.1016/j.compeleceng.2022.108177
Zhang, Y., Guindon, B., & Cihlar, J. (2002). An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sensing of Environment, 82(2), 173–187. https://doi.org/https://doi.org/10.1016/S0034-4257(02)00034-2
Zhang, Y., Guindon, B., & Li, X. (2014). A Robust Approach for Object-Based Detection and Radiometric Characterization of Cloud Shadow Using Haze Optimized Transformation. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5540–5547. https://doi.org/10.1109/TGRS.2013.2290237
Zhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). Land Use and Land Cover Classification Meets Deep Learning: A Review. In Sensors (Vol. 23, Issue 21). https://doi.org/10.3390/s23218966
Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269–277. https://doi.org/https://doi.org/10.1016/j.rse.2014.12.014
Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94. https://doi.org/https://doi.org/10.1016/j.rse.2011.10.028
Published
December 9, 2024
HOW TO CITE
Copyright (c) 2024 Badan Riset dan Inovasi Nasional (BRIN)
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.