Kontribusi Citra Satelit Multiresolusi Tutupan Awan Minimum Akurasi Tinggi untuk Mendukung Ketersediaan Data Siap Pakai di Indonesia

Authors

Danang Surya Candra
Badan Riset dan Inovasi Nasional (BRIN)

Keywords:

Citra satelit tutupan awan minimum akurasi tinggi, Data siap pakai (analysis ready data, ARD), Artificial intelligence (AI), Teknologi Optik, Citra Satelit Multiresolusi, 3. Analysis Ready Data (ARD)

Synopsis

Pada orasi ini disampaikan state of the art tentang perkembangan, tantangan, penemuan, kontribusi dan hilirisasi citra satelit multiresolusi tutupan awan minimum akurasi tinggi untuk mendukung ketersediaan data siap pakai di Indonesia. Penemuan-penemuan tersebut dapat memberikan pemahaman yang lebih baik mengenai pengolahan citra satelit multiresolusi tutupan awan minimum akurasi tinggi di Indonesia sehingga dapat digunakan untuk meningkatkan akurasi model deteksi awan yang menghasilkan tutupan awan minimum melalui teknologi berbasis artificial intelligence (AI). Deep learning yang merupakan subset dari AI digunakan untuk mendeteksi multikelas awan meliputi awan tebal, awan tipis, bayangan awan, dan non awan dengan menghasilkan akurasi tinggi. Hasilnya dapat digunakan untuk membuat citra tutupan awan minimum siap pakai yang dikenal dengan istilah Analysis Ready Data (ARD). Data ARD ini dapat digunakan untuk analisis lebih lanjut secara langsung oleh stakeholder atau pengguna.
Orasi ini diharapkan dapat memberikan pemahaman tentang metode pengolahan citra satelit multiresolusi tutupan awan minimum akurasi tinggi untuk mengatasi tutupan awan yang merupakan kendala utama pada citra satelit optik. Dengan demikian, citra satelit tutupan awan minimum yang akurat dapat dihasilkan, sehingga dapat memenuhi kebutuhan nasional yaitu citra satelit siap pakai dan mendukung kemandirian teknologi pengolahan citra dari satelit-satelit yang sudah ada maupun yang akan dibangun sehingga tercipta kemandirian bangsa.

Downloads

Download data is not yet available.

Author Biography

Danang Surya Candra, Badan Riset dan Inovasi Nasional (BRIN)

Ia lahir di Surakarta pada tanggal 10 Januari 1979 adalah anak ketiga dari Bapak Mulyanto dan Ibu Hermintarsih. Menikah dengan Raden Vitri Garvita Gandadikusumah. S.Si., M.Si. Berdasarkan Keputusan Presiden Republik Indonesia Nomor 38/M Tahun 2023 tanggal 18 September 2023 yang bersangkutan diangkat sebagai Peneliti Ahli Utama terhitung mulai 10 Oktober 2023. Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional Nomor 247/I/HK/2024 tanggal 8 November 2024 yang bersangkutan melakukan orasi pengukuhan Profesor Riset. Menamatkan Sekolah Dasar Negeri Dawung Tengah, tahun 1991, Sekolah Menengah Pertama Negeri 4 Surakarta, tahun 1994, dan Sekolah Menengah Atas Negeri 4 Surakarta, tahun 1997. Memperoleh gelar Sarjana Matematika dari Universitas Sebelas Maret (UNS) tahun 2002, gelar Magister of Science dari Beihang University, China tahun 2010, dan gelar Doktor bidang Penginderaan Jauh dari University of Queensland, Australia tahun 2019. 2 Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensi, antara lain: ASEAN-China Training Course di Beijing, China (2007), Basic Training Course Step 2 on ALOS Data Use di Jakarta (2010), JAXA Training on ALOS Data Use Advanced Course di Jakarta (2010), Building Advance Radar Capacity for Indonesia’s National Forest and Carbon Accounting Systems di Jakarta (2011), Workshop on Developing Atmospheric Correction of Satellite Imagery for Future INCAS Program di Jakarta (2015), Bimbingan Teknis Drafting Paten di Bogor (2019), Mastering Practical GNU R System for Machine Learning (2021), Workshop Pengolahan Data Penginderaan Jauh dan Koreksi Topografi Menggunakan R Studio di Jakarta (2021), Pelatihan dan Operasional UAV (Drone) Multispektral RTK dan Aplikasinya di Jakarta (2021), International Conference and Workshop on Artificial Intelligence Remote Sensing for Forestry Applications di Jakarta (2021). Jabatan fungsional peneliti diawali sebagai Peneliti Ahli Pertama III/a tahun 2010 dan Peneliti Ahli Muda III/c tahun 2013. Jabatan Peneliti Ahli Madya diperoleh tahun 2022, kemudian jabatan Peneliti Ahli Utama bidang Teknologi Penginderaan Jauh tahun 2023. Menghasilkan 39 karya tulis ilmiah (KTI), baik yang ditulis sendiri maupun bersama penulis lain dalam bentuk jurnal dan prosiding, serta 25 karya intelektual berupa paten dan hak cipta. Sebanyak 32 KTI ditulis dalam bahasa Inggris, dan 7 dalam bahasa Indonesia. Sebanyak 11 KTI ditulis sendiri dan 28 KTI ditulis bersama. 3 Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pembimbing jabatan fungsional peneliti pada BRIN, pembimbing skripsi (S-1) pada Universitas Brawijaya. Pembimbing disertasi (S-3) dan sebagai Penguji disertasi (S-3) pada Universitas Gunadarma. Aktif dalam organisasi profesi ilmiah, yaitu anggota Himpunan Peneliti Indonesia (Himpenindo) (2019-2022) dan anggota Perhimpunan Periset Indonesia (PPI) (2022–2024). Menerima tanda penghargaan Satyalancana Karya Satya X Tahun (2015) dari Presiden RI.

References

Bai, T., Li, D., Sun, K., Chen, Y., & Li, W. (2016). Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion. Remote Sensing, 8(9), 1–21. https://doi.org/10.3390/rs8090715

Bayanuddin, A. A., Zylshal, Setia, F. N., Siwi, S. E., Rahayu, M. I., Azis, U. A., & Candra, D. S. (2021). Comparison of Topographic Correction methods on SPOT-6/7 Multispectral Data In Indonesia: an Initial Evaluation in Hilly to Undulating Area. Proceedings of SPIE, 1208203(December). https://doi.org/10.1117/12.2619470

Brahmantara, R. P., Ulfa, K., Rahayu, M. I., Prabowo, Y., Hestrio, Y. F., Sartika, Kustiyo, Candra, D. S., & Novresiandi, D. A. (2022). Cloud-free mosaic for high-resolution satellite to support natural resources and disaster monitoring. International Symposium On Disaster Risk Reduction, Mitigation and Environmental Sciences, 1109, 1–10. https://doi.org/10.1088/1755-1315/1109/1/012053

Candra, D. S., Prabowo, Y., Hestrio, Y. F., Rasydy, F. H., Ulfa, K., & Rahayu, M. I. (2023). Metode Deteksi Multi-Kelas Awan Dan Bayangannya Dengan Menggunakan Pembelajaran Dalam untuk Citra Satelit Worldview-3. In Paten Reguler Nasional (Terdaftar): Vol. Nomor: P00.

Candra, D. S. (2008). Denoising of High Resolution Remote Sensing Data using Stationary Wavelet Transform. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 5:3, 27–34.

Candra, D. S. (2011a). Analysis of Critical Land in The Musi Watershed using Geographic Information Systems. International Journal of Remote Sensing and Earth Sciences, 8 (1).

Candra, D. S. (2011b). Pengembangan Teknik Normalisasi dan Denormalisasi pada Metode RPC untuk Orthorektifikasi Citra Satelit Penginderaan Jauh. Geomatika, 17 (2).

Candra, D. S. (2013). Analysis of SPOT-6 data fusion using Gram-Schmidt spectral sharpening on rural areas. International Journal of Remote Sensing and Earth Sciences, 10 (2), 839–844. https://doi.org/10.30536/j.ijreses.2013.v10.a1846

Candra, D. S. (2020). Deforestation detection using multitemporal satellite images. The Fifth International Conferences of Indonesian Society for Remote Sensing, 500, 1–13. https://doi.org/10.1088/1755-1315/500/1/012037

Candra, D. S. (2021a). Metode Penghapusan Awan Dan Bayangannya Untuk Citra Landsat 8 (Patent No. IDP000079909). Tanggal Pemberian 12 November 2021. DJKI.

Candra, D. S. (2021b). Metode Penghapusan Awan Dan Bayangannya Untuk Citra Sentinel-2 (Patent No. IDP000079910). Tanggal Pemberian 12 November 2021. DJKI.

Candra, D. S. (2022a). Metode Deteksi Awan Dan Bayangannya Untuk Citra Landsat 8 (Patent No. IDP000082003). Tanggal Pemberian 08 Juli 2022. DJKI.

Candra, D. S. (2022b). Metode Deteksi Awan Dan Bayangannya Untuk Citra Sentinel-2 (Patent No. IDP000081997). Tanggal Pemberian 07 Juli 2022. DJKI.

Candra, D. S., & Kustiyo. (2013). Metode Cloud Removal Citra Satelit Optik Menggunakan Maksimum NDVI dan Data Multitemporal. Jurnal Ilmiah Geomatika, 19, 6–9.

Candra, D. S., Kustiyo, & Ismaya, H. (2014). Cloud Masking Data SPOT-6 dengan Menggunakan Pendekatan Nilai Reflektansi dan Geometri. Seminar Nasional Penginderaan Jauh 2014, 189–197.

Candra, D. S., Phinn, S., & Scarth, P. (2016). Cloud and cloud shadow masking using multi-temporal cloud masking algorithm in tropical environmental. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B2, 95–100. https://doi.org/10.5194/isprs-archives-XLI-B2-95-2016

Candra, D. S., Phinn, S., & Scarth, P. (2017). Cloud and Cloud Shadow Removal of Landsat 8 Images using Multi-temporal Cloud Removal Method. 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 1–5. https://doi.org/10.1109/Agro-Geoinformatics.2017.8047007

Candra, D. S., Phinn, S., & Scarth, P. (2019). Automated cloud and cloud-shadow masking for Landsat 8 using multitemporal images in a variety of environments. Remote Sensing, 11(17). https://doi.org/10.3390/rs11172060

Candra, D. S., Phinn, S., & Scarth, P. (2020). Cloud and cloud shadow masking for Sentinel-2 using multitemporal images in global area. International Journal of Remote Sensing, 41(8), 2020. https://doi.org/https://doi.org/10.1080/01431161.2019.1697006

Candra, D. S., & Prabowo, Y. (2014). Analysis of Cloud Removal Method on Sea Area using Landsat-8 Multi-Temporal. 12th Biennial Conference of Pan Ocean Remote Sensing Conference, 1(November), 4–7.

Candra, D. S., Prabowo, Y., Hestrio, Y. F., Rasyidy, F. H., Ulfa, K., & Rahayu, M. I. (2023). Metode Deteksi Multi-Kelas Awan dan Bayangannya dengan Menggunakan Pembelajaran Dalam untuk Citra Satelit Worldview-3 (Patent No. P00202314625). Tanggal Pendaftaran 24 Desember 2023. DJKI.

Candra, D. S., Ulfa, K., Rasyidy, F. H., Hestrio, Y. F., Prabowo, Y., & Rahayu, M. I. (2023). Evaluation of Very-high Resolution Satellite Image Compression to Support Agriculture Monitoring. 2023 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), 1–6. https://doi.org/10.1109/ICARES60489.2023.10329899

Fidiyawati, & Candra, D. S. (2014). Analisis Perubahan Pola dan Penutup Lahan Sungai Bengawan Solo dengan Menggunakan Citra Satelit Penginderaan Jauh Multitemporal. Seminar Nasional Penginderaan Jauh, 740–749.

Goodwin, N. R., Collett, L. J., Denham, R. J., Flood, N., & Tindall, D. (2013). Cloud and cloud shadow screening across Queensland, Australia: An automated method for Landsat TM/ETM+ time series. Remote Sensing of Environment, 134, 50–65. https://doi.org/https://doi.org/10.1016/j.rse.2013.02.019

Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2010). A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 114(8), 1747–1755. https://doi.org/https://doi.org/10.1016/j.rse.2010.03.002

Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) Algorithm. Photogrammetric Engineering and Remote Sensing, 72, 1179–1188. https://api.semanticscholar.org/CorpusID:14451366

Kennedy, R. E., Cohen, W. B., & Schroeder, T. A. (2007). Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment, 110(3), 370–386. https://doi.org/https://doi.org/10.1016/j.rse.2007.03.010

Kurdianto, Susantoro, T. M., Candra, D. S., Sulma, S., Hestrio, Y. F., Khomarudin, M. R., Suliantara, Setiawan, H. L., Maryanto, A., Nugroho, G., Arief, R., & Harto, A. B. (2023). Impact of Oil Injection on Concentrations of Chlorophyll, Carotenoids, Anthocyanins in Banyan Leaves and Ketapang Dewa Leaves Using Hyperspectral Sensor. 2023 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), 149–155. https://doi.org/10.1109/AGERS61027.2023.10490693

Li, J., Li, Y., & Chapman, M. A. (2005). High-Resolution Satellite Image Sources for Disaster Management in Urban Areas BT - Geo-information for Disaster Management (P. van Oosterom, S. Zlatanova, & E. M. Fendel (eds.); pp. 1055–1070). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-27468-5_74

Li, Z., Shen, H., Cheng, Q., Liu, Y., You, S., & He, Z. (2019). Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 197–212. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.02.017

Li, Z., Shen, H., Li, H., Xia, G., Gamba, P., & Zhang, L. (2017). Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sensing of Environment, 191, 342–358. https://doi.org/https://doi.org/10.1016/j.rse.2017.01.026

Liang, K., Yang, G., Zuo, Y., Chen, J., Sun, W., Meng, X., & Chen, B. (2024). A Novel Method for Cloud and Cloud Shadow Detection Based on the Maximum and Minimum Values of Sentinel-2 Time Series Images. In Remote Sensing (Vol. 16, Issue 8). https://doi.org/10.3390/rs16081392

Maftukhaturrizqoh, O., Diwyacitta, K., Supriyani, I. S., Gustiandi, B., & Candra, D. S. (2023). Improving the Effectiveness of Remote Sensing Data Correction Using Phase Cross-Correlation Algorithm with Upsampling Factors Variable. 2023 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), 231–235. https://doi.org/10.1109/AGERS61027.2023.10490994

Mahajan, S., & Fataniya, B. (2020). Cloud detection methodologies: variants and development—a review. Complex & Intelligent Systems, 6(2), 251–261. https://doi.org/10.1007/s40747-019-00128-0

Marcello, J., Eugenio, F., Martin, J., & Marques, F. (2018). Seabed Mapping in Coastal Shallow Waters Using High Resolution Multispectral and Hyperspectral Imagery. Remote Sensing, 10(8). https://doi.org/10.3390/rs10081208

Marmorino, G., & Chen, W. (2019). Use of WorldView-2 Along-Track Stereo Imagery to Probe a Baltic Sea Algal Spiral. Remote Sensing, 11(7), 1–9. https://doi.org/10.3390/rs11070865

Marwoto, & Candra, D. S. (2007). Pembuatan Sistem Informasi Geografis Kesesuaian Lahan Tanaman Tebu Berbasis Web di Kabupaten Merauke. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 4(1), 60–71.

NASA. (2020). What is Synthetic Aperture Radar? Earth Data. https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar

Nugroho, F. S., Danoedoro, P., Arjasakusuma, S., Candra, D. S., Bayanuddin, A. A., Heru, R., & Wicaksono, P. (2023). The Utilization of Multi-Sensor Remote Sensing and Cloud- Computing Platform for Mapping Burned Areas. Proceedings of the 7th International Conference on Science and Technology, 2654,(2), 1–8. https://doi.org/https://doi.org/10.1063/5.0114317

Nugroho, F. S., Danoedoro, P., Arjasakusuma, S., Candra, D. S., Bayanuddin, A. A., & Samodra, G. (2021). Assessment of Sentinel-1 and Sentinel-2 Data for Landslides Identification using Google Earth Engine. 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1–6. https://doi.org/10.1109/APSAR52370.2021.9688356

Piermattei, L., Marty, M., Karel, W., Ressl, C., Hollaus, M., Ginzler, C., & Pfeifer, N. (2018). Impact of the Acquisition Geometry of Very High-Resolution Pleiades Imagery on the Accuracy of Canopy Height Models over Forested Alpine Regions. In Remote Sensing (Vol. 10, Issue 10). https://doi.org/10.3390/rs10101542

Prabowo, Y., Candra, D. S., & Ali, S. (2020). Cloud detection method for Pleiades images using spectral indices. Journal of Physics: Conference Series, 1528(1), 12011. https://doi.org/10.1088/1742-6596/1528/1/012011

Prabowo, Y., Candra, D. S., & Maulana, R. (2021). Cloud Detection for Pleiades and SPOT 6 / 7 Imageries Using Modified K-means and Deep Learning. International Journal on Advanced Science Engineering and Information Technology, 11(6).

Prabowo, Y., Pradono, K. A., Amriyah, Q., Rasyidy, F. H., Carolita, I., Setiyoko, A., Candra, D. S., Musyarofah, Ulfa, K., & Hestrio, Y. F. (2022). Palm Trees Counting Using MobileNet Convolutional Neural Network in Very High- Resolution Satellite Images. IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology, 79–83. https://doi.org/10.1109/AGERS56232.2022.10093287

Prabowo, Y., Sakti, A. D., Pradono, K. A., Amriyah, Q., Rasyidy, F. H., Bengkulah, I., Ulfa, K., Candra, D. S., Imdad, M. T., & Ali, S. (2022). Deep Learning Dataset for Estimating Burned Areas: Case Study , Indonesia. Data, 7(6)(78). https://doi.org/https://doi.org/10.3390/data7060078

Rahayu, & Candra, D. S. (2014). Koreksi Radiometrik Citra Landsat-8 Kanal Multispektral Menggunakan Top of Atmosphere (ToA) untuk Mendukung Klasifikasi Penutup Lahan. Seminar Nasional Penginderaan Jauh, 762–766.

Richter, R., Wang, X., Bachmann, M., & Schlapfer, D. (2011). Correction of cirrus effects in Sentinel-2 type of imagery. International Journal of Remote Sensing, 32(10), 2931–2941. https://doi.org/10.1080/01431161.2010.520346

Roswintiarti, O., Dewanti, R., Furby, S., Wallace, Jeremy, ...., Candra, D. S., ...., & Hidayat, S. (2014). The Remote Sensing Monitoring Program of Indonesia’s National Carbon Accounting System: Methodology and Products (version 1).

Sakti, A. D., Sembiring, E., Rohayani, P., Fauzan, K. N., Anggraini, T. S., Santoso, C., Patricia, V. A., Titon, K., Ihsan, N., Ramadan, A. H., Arjasakusuma, S., & Candra, D. S. (2023). Identification of illegally dumped plastic waste in a highly polluted river in Indonesia using Sentinel-2 satellite imagery. Scientific Reports, 13(5039), 1–14. https://doi.org/10.1038/s41598-023-32087-5

Sartika, S., Bayanuddin, A. A., Putri, F. A., Ulfa, K., Hadiyanto, A. L., Candra, D. S., & Chulafak, G. A. (2023). Determining the Precision of Spectral Patterns Arising from Atmospheric Correction Utilizing MODTRAN-FLAASH and 6S Approaches on High-Resolution SPOT-6 Imagery. The 9th International Seminar on Aerospace Science and Technology, 2941(1). https://doi.org/https://doi.org/10.1063/5.0181398

Sartika, S., Brahmantara, R. P., Rahayu, M. I., Candra, D. S., Hestrio, Y. F., Ulfa, K., Prabowo, Y., Novresiandi, D. A., & Veronica, K. W. (2023). A Sub-pixel Geometric Evaluation for Very High-Resolution Satellite Images using Phase Cross-Correlation Algorithm. The 9th International Seminar on Aerospace Science and Technology.

Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. https://doi.org/https://doi.org/10.1016/j.cogr.2023.04.001

Susantoro, T. M., Suliantara, Harto, A. B., Setiawan, H. L., Nugroho, G., Candra, D. S., Jayati, A., Sulma, S., Khomarudin, M. R., Arief, R., Maryanto, A., Hestrio, Y. F., & Kurdianto. (2023). The Potential of Remote Sensing Data for Oil And Gas Exploration in Indonesia: A Review. Scientific Contributions Oil and Gas, 46(1), 9–43. https://doi.org/10.29017/SCOG.46.1.1346

Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A., & Rahman, A. (2020). Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. In Remote Sensing (Vol. 12, Issue 7). https://doi.org/10.3390/rs12071135

Ulfa, K., Brahmantara, R. P., Oktavia, M. I., Prabowo, Y., Muchsin, F., Candra, D. S., Rahayu, M. I., Rangkuti, C. N., Siwi, S. E., & Fibriawati, L. (2023). The Effect of Color Balancing on The Accuracy of Land Cover Classification for Pleiades Mosaic Data. The 9th International Seminar on Aerospace Science and Technology.

Ulfa, K., Oktavia, M. I., Pradono, K. A., Fibriawati, L., Muchsin, F., Candra, D. S., & Damanik, K. W. V. (2020). Evaluation of atmospheric correction algorithms for Sentinel-2 over paddy field area. The Fifth International Conferences of Indonesian Society for Remote Sensing, 500, 6–12. https://doi.org/10.1088/1755-1315/500/1/012081

USGS. (2024). Landsat Project Statistics. https://www.usgs.gov/landsat-missions/landsat-project-statistics

Wang, B., Ono, A., Muramatsu, K., & Fujiwara, N. (1999). Automated Detection and Removal of Clouds and Their Shadows from Landsat TM Images. IEICE Transactions on Information and Systems, 82, 453–460. https://api.semanticscholar.org/CorpusID:15111232

You, Y., Wang, S., Ma, Y., Chen, G., Wang, B., Shen, M., & Liu, W. (2018). Building Detection from VHR Remote Sensing Imagery Based on the Morphological Building Index. Remote Sensing, 10(8), 1–22. https://doi.org/10.3390/rs10081287

Zhang, Wei, Tang, P., & Zhao, L. (2019). Remote Sensing Image Scene Classification Using CNN-CapsNet. Remote Sensing, 11(5). https://doi.org/10.3390/rs11050494

Zhang, Weidong, Jin, S., Zhou, L., Xie, X., Wang, F., Jiang, L., Zheng, Y., Qu, P., Li, G., & Pan, X. (2022). Multi-feature embedded learning SVM for cloud detection in remote sensing images. Computers and Electrical Engineering, 102, 108177. https://doi.org/https://doi.org/10.1016/j.compeleceng.2022.108177

Zhang, Y., Guindon, B., & Cihlar, J. (2002). An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sensing of Environment, 82(2), 173–187. https://doi.org/https://doi.org/10.1016/S0034-4257(02)00034-2

Zhang, Y., Guindon, B., & Li, X. (2014). A Robust Approach for Object-Based Detection and Radiometric Characterization of Cloud Shadow Using Haze Optimized Transformation. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5540–5547. https://doi.org/10.1109/TGRS.2013.2290237

Zhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). Land Use and Land Cover Classification Meets Deep Learning: A Review. In Sensors (Vol. 23, Issue 21). https://doi.org/10.3390/s23218966

Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269–277. https://doi.org/https://doi.org/10.1016/j.rse.2014.12.014

Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94. https://doi.org/https://doi.org/10.1016/j.rse.2011.10.028

Published

December 9, 2024
HOW TO CITE