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Chapter 6

Hydropower Technology: 
Potential, Challenges, and the 
Future

Harun Ardiansyah

A.		 Overview	of	Hydropower	Technology	in	
Indonesia

As the COVID-19 pandemic started to become endemic, Indonesia’s 
economy has been bouncing back and steadily growing. Indonesia is 
one of the 20 countries with the largest economy—and is projected to 
be the fourth-largest by 2050 (Hawksworth et al., 2017). Along with 
economic growth, economic expansion is inevitable. And economic 
development needs to be supported by a robust energy infrastructure 
that will provide 24/7 energy for Indonesia. The electricity demand 
is increasing for household use, but only for manufacturing and 
industrial applications. On the other hand, Indonesia is facing a 
climate change problem. As one of the most polluting countries in 
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the world, pressure is mounting for Indonesia to reduce—or even 
eliminate—its dependence on fossil fuel energy (Ritchie, 2019). As of 
2021, Indonesia is still relying heavily on fossil fuel energy. A report 
by National Energy Council shows that more than 60% of Indonesia’s 
electricity generation comes from fossil fuel energy (National Energy 
Council of Indonesia, 2020). This motivates the Government to 
introduce new policies to tackle the increasing demand for energy 
and electricity and the increasing threat of climate. This includes the 
introduction of Indonesia’s national energy plant (Rencana Umum 
Energi Nasional-RUEN) by the Ministry of Energy and Mineral 
Resources (Kementerian Energi dan Sumber Daya Mineral-ESDM) 
and multiple ordinances of National Electricity Supply Business Plan 
(Rencana Usaha Penyediaan Tenaga Listrik-RUPTL) by the State 
Electricity Company (Perusahaan Listrik Negara-PLTN) (Peraturan 
Presiden Nomor 22 Tahun 2017 Tentang Rencana Umum Energi 
Nasional, 2017; PT Perusahaan Listrik Negara, 2021). In RUEN, it 
is stated that Indonesia’s target 23% of its energy mix comes from 
renewable energy by 2025 and 31% by 2050. These targets are backed 
up by Indonesia’s Nationally Determined Commitment (NDC) in 
COP26 (Humas ESDM, 2021).

These commitments and targets boosted Indonesia’s expansion 
to renewable energy technologies, including hydropower technolo-
gies. Hydropower energy means converting the energy of moving 
water into electricity. This includes both large-scale and small-scale 
hydropower. In 2020, BP Statistical Review reported that hydropower 
energy contributes around 7% of all energy mix in Indonesia, con-
stituting almost 20,000 GWh of total electricity production in 2020 
(B.P. Statistical Review, 2020). Hydropower energy production has 
been Indonesia's most significant contributor of renewable energy. 
The electricity generated from hydropower constitutes more than 50% 
of the total renewable energy produced in Indonesia. However, this 
technology is very far from reaching its highest potential. With the 
geography of Indonesia, hydropower should have been one of the 
highest electricity sources. On the other hand, every development 
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always comes with a cost. In this case, the ecological price is one of 
the highest costs that should be paid to develop a reliable hydropower 
energy infrastructure.

Hydropower has many potential uses for power generation and 
sustaining crops through irrigation. The hydro dams can also be used 
for water supply, flood control, and navigation improvement. A typical 
cross-section of a conventional hydro dam can be seen in Figure 6.1. 
It contributes to tackling climate change as a renewable energy source 
by generating low-carbon, reliable energy. In the long term, it can 
produce electricity at a low cost and adjust electricity demand from 
the consumer. This chapter explores Indonesia’s hydropower potential 
and what can be done to achieve the goal. Also, this chapter explains 
the challenges that make hydropower energy is not reaching its highest 
potential. This chapter ends with two types of technology currently 
emerging and should be expanded on a larger scale in Indonesia.

Source: Tennessee Valley Authority (2000)

Figure 6.1 Cross-Section of a Conventional Hydroelectric Dam 
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B.	 The	Current	Status	of	Hydropower	in	Indonesia
The hydropower resources are primarily abundant in Indonesia and 
are blessed by divine nature. Indonesia has more than 800 rivers that 
can be a potential source of hydropower. It is estimated that Indonesia 
has the potential for 75 GW of electricity from more than 800 rivers 
(Hasan et al., 2012). These resources make Indonesia the fourth most 
significant potential for hydropower. However, because of the high 
capital necessary, only around 34 GW of electricity can be exploited 
from all the hydropower potential. Hydropower requires massive 
and complex infrastructures to extract the power from moving water 
into energy. These massive infrastructures are for the dams’ design, 
construction, and operation. On the other, potential issues may also 
come up due to social, political, and environmental issues.

Although there is no international consensus on the definition 
of the scales of a hydropower plant, some suggest that a hydropower 
plant that produces more than 10 MW of electricity is considered a 
large-scale hydropower plant. Plants that generate power between 
2.5 MW to 10 MW are considered small-scale hydropower plants. 
Below that range, the mini-hydropower plant produces below 2 MW, 
micro-hydropower makes below 500 kW, and the pico-hydropower 
plant has electricity below 10 kW (Erinofiardi et al., 2017).

With all these potentials, Indonesia has built hydropower 
infrastructures across the country. PT PLN has listed some of the 
large-scale hydropower stations in some provinces in Indonesia in 
Table 6.1.

Table 6.1 Some Operational Large-Scale Hydropower Stations in Indonesia

Hydropower Station Province Installed Unit 
(MW)

Installed Capacity 
(MW)

Cirata West Java 8 × 126 1008
Saguling West Java 4 × 175 700
Sulewana-Poso III Central Sulawesi 5 ×  80 400
Tangga North Sumatra 4 × 79.25 317
Sigura-gura North Sumatra 4 × 71.50 286
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Hydropower Station Province Installed Unit 
(MW)

Installed Capacity 
(MW)

Sutami/Brantas East Java 12 × 35 × 3 281
Musi Bengkulu 3 × 70 210
Sulewana-Poso II Central Sulawesi 3 × 65 195
Mrica Central Java 3 × 61.5 184.5
Asahan I North Sumatra 2 × 90 180
Singkarak West Sumatra 4 × 43.75 175
Jatiluhur West Java 7 × 25 175
Larona South Sulawesi 3 × 55 165
Sulewana-Poso I Central Sulawesi 4 × 40 160
Karebbe South Sulawesi 2 × 70 140
Balambano South Sulawesi 2 × 65 130
Bakaru South Sulawesi 2 × 63 126
Koto Panjang Riau 3 × 38 114
Karangkates East Java 3 × 35 105

Source: PT Perusahaan Listrik Negara (2021)

The Government of Indonesia has planned to increase the cu-
mulative capacity of large-scale hydropower plants in some Indonesia 
regions. Specifically, the plan includes an additional 20 MW in the 
east region of Indonesia, 21 MW in the Java-Bali connection, 11 MW 
in Sumatra, and 18 MW in the eastern part of Indonesia (Erinofiardi 
et al., 2017).

Besides the large-scale hydropower potential, Indonesia also 
has some potential to build smaller-scale hydropower by utilizing 
medium-sized rivers around the country. The utilization of small-scale 
hydropower has been done since 2005. At that time, 0.45 MW of 
electricity was generated by small-scale hydropower. Since then, the 
development is not significant in the coming years. From 2006 to 
2010, the electricity generated could only be increased to 0.69 MW 
(Erinofiardi et al., 2017).

Another example is to utilize micro-scale hydropower. It is 
estimated that the potential of micro-hydropower is about 459.91 
MW. From that number, 20.85 MW of it has been developed by PLN 
to provide electricity for rural areas (Hasan et al., 2012). Small- and 
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micro-scale hydropower plants might be an excellent option to expand 
the utilization of hydropower plants, considering Indonesia’s distribu-
tion of electricity in the islands and the safety of fish and other biotas 
in the water.

C.  Challenges	Facing	Hydropower
All types of development must come with some risks and costs. Even 
though in the previous section it is said that Indonesia has about 75 
GW of electricity potential from hydropower, it is undoubtedly hard 
to exploit all those potentials considering the landscape of Indonesia. 
Any development would indeed have some impact on the surrounding 
areas. These challenges include the engineering and socio-economic 
impact of the projects. 

1.  Geographical Challenges
Although some experts approximated that the hydropower potential 
in Indonesia is relatively more enormous than in some countries. 
Undeniably, Indonesia’s geography can create challenges that need to 
be solved or worked around. Indonesia indeed has many rivers that 
flow across the country. However, the rivers are relatively short. This 
geographical issue will create problems when a large-scale hydropower 
plant is constructed. The construction of a large-scale hydropower 
plant is done by blocking the passage of water to build a dam where 
the water flow will be directed to the turbines to produce electricity. 
Creating this dam will also generate a lot of impact on the plant site. 
In a short river, the construction of large-scale hydropower will be 
limited to the site constraint (Erinofiardi et al., 2017). It will need an 
extensive engineering workaround to be able to make the large-scale 
hydropower dams. 

Another problem is related to electricity transmission. As an 
archipelagic country, Indonesia has more than 17,000 islands. Al-
though some portions of those islands are not inhabited, the inhabited 
islands need constant electricity transmission to create better-living 
conditions. Electricity transmission has always been a problem for In-
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donesia to achieve 100% electrification and balance energy resources. 
It is well known that as electricity is transmitted among islands, there 
will be some losses. The losses make the consideration of investing 
in electricity transmission becomes harder. It also creates gaps in 
electricity resources in some regions of the country. Right now, most 
of the manufacturers are on the island of Java. This situation is due 
to the excessive energy resources accumulated in Java. These gaps 
will create inequality in the quality of life of the people in the region. 

2.  Ecological Challenges
Around the world, large-scale hydropower plants have affected fish-
ing activities and fishery production. These effects include direct and 
indirect impacts of the large-scale hydropower project. The immediate 
result is that the fish are killed, injured, or physically blocked from 
their migration. This consequence is likely to happen, especially in 
large-scale hydropower construction, where dams are the way to 
generate electricity. Fish can get drawn into the turbines and can 
injure the fish. Hydropower plants can also alter the habitat upstream 
and downstream of the river. First, the existence of upstream and 
downstream will create a barrier effect to the living organisms in the 
stream. This separation will affect the population of fish and other 
living organisms. These challenges can be avoided by implementing 
mitigation measures to the dams. However, it will increase the cost 
of hydropower plants cost. Upstream, if the condition is not well-
maintained, the reservoir can cultivate excess algae and weeds, crowd-
ing what has been a challenging environment for the living species 
in the reservoirs. While downstream, hydropower dams can affect 
the downstream flow regimes through hydropeaking. Hydropeaking 
can also alter the upstream habitat as the regime changes from fast-
flowing lotic habitat to a slow-flowing lentic habitat (Baumgartner & 
Wibowo, 2018). Therefore, fish and other living organisms face two 
types of problems, the existence of dams and turbines create a physical 
barrier to migration, and the dams alter the flow regimes and habitat 
availability. Both issues can be mitigated. However, it will increase 



Indonesia Post-Pandemic Outlook ...96

the cost of building large-scale hydropower plants and make more 
complicated investments.

For the fish migration problem, some research suggests that the 
construction of fish passages can be considered to solve the problem. 
However, some global evidence suggests that the fish passage may 
cause more harm than good in some instances. Therefore, many 
considerations need to be taken before constructing a fish passage. If 
the construction of the fish passage is justified, it will be an excellent 
way to maintain the river’s habitat and maximize the hydropower 
plants’ value.

3.  NIMBY-ism (Not In My Backyard Syndrome)
As mentioned in previous sections, the construction of large-scale 
hydropower plants could dramatically alter the livelihood of all types 
of organisms, including humans. Some villages might need to be 
emptied and sunk to construct a dam. This decision will create socio-
economic problems for the local villagers occupying the villages from 
far before the construction. It can make Not In My Backyard (NIMBY) 
syndrome. NIMBY often refers to intense, frequently emotional, and 
usually organized opposition to siting proposals that local community 
residents believe will result in adverse impacts. In this case, if the 
approach to the local community is not well-communicated, NIMBY 
is inevitable. NIMBY is a common phenomenon that can be seen in 
many countries. Furthermore, it does not limit to large-scale power 
generation projects. NIMBY can also happen for other projects, such 
as constructing Las Vegas-like Casino construction in Canada or 
constructing twenty-four homeless shelters in New York City (Wex-
ler, 1996). As a result, it will significantly impact the construction of 
hydropower plants. It is challenging for the vendor who builds the 
hydropower plants and the regulators.
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D.		 Current	and	Emerging	Hydropower	Technologies
With all the potentials and challenges explained in previous sections, 
hydropower plants will still considerably affect the landscape of 
renewable energy in Indonesia. Technologies have been developed 
in hydropower construction to minimize the ecological effects of 
hydropower plant construction.

1.  Micro-hydropower Plants
As mentioned in previous sections, the geographical landscape is not 
always suitable for large-scale hydropower plants. Although large-scale 
hydropower plant is essential to provide baseload from renewable 
energy, micro-hydropower plants can also be considered to expand to 
provide reliable electricity for residential purposes. Micro-hydropower 
plants can also be a decent option for delivering electricity and farm-
ing irrigation. Some locations of micro-hydropower plants are shown 
in Table 6.2.

Table 6.2 Some Locations of Installed Micro-Hydropower Plants 

No Province Number of Location Potential Capacity (MW)
1 South Sumatra 1 9.9
2 West Nusa Tenggara 4 2.02
3 East Nusa Tenggara 8 5.8
4 North Sumatra 1 7.5
5 West Sumatra 3 20.5

Total 45.72
Source: PT Perusahaan Listrik Negara (2021)

Of all these potentials, some of them have been built from 2011 
to 2014. The micro-hydro power plants that have been constructed are 
listed in Table 6.3. Some other plants are also built out of data provided 
in Table 6.3. Some of them are the Van Der Wick irrigation channel 
in Yogyakarta (11 kW capacity), Rimba Lestari in West Bandung 
(18 kW capacity), Mendolo hamlet in Pekalongan (22 kW capacity), 
Pancuang Taba, West Sumatra (40 kW capacity), Muaro Air, Jambi 
(30 kW capacity), and Koto Ranah, West Sumatra (30 kW capacity). 
The last three micro-hydropower plants are in Pesisir Selatan, West 
Sumatra (Erinofiardi et al., 2017). 
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Table 6.3 Installed Micro-Hydropower Plants in 2011–2014

No. Province Location Capacity (kW)
1 North Sumatra Samosir, South Tapanuli 56.2
2 West Sumatra West Pasaman, Mentawai, Solok 54
3 Riau Kampar 8
4 Jambi Sarolangun 18
5 South Sumatra South Ogan Komering Ulu, Muara Enim 43
6 Lampung West Lampung 80
7 West Java Ciamis 24.4
8 East Java Situbondo 15
9 West Nusa Tenggara Lombok, East Lombok, Sumbawa 350
10 East Nusa Tenggara Ngada, East Manggarai, Central Rote, 

Central Sumba, South Central Timor
273

11 West Kalimantan Kapuas Hulu, Landak 450
12 Central Kalimantan Gunung Mas, Lamandau 48.3
13 North Sulawesi Sangihe 14.1
14 Gorontalo Gorontalo, North Gorontalo, Bone 

Bolango
145.2

15 Central Sulawesi Lamatoli Morowali 20.6
16 West Sulawesi Mamasa 120
17 South Sulawesi North Luwu 40
18 Southeast Sulawesi North Konawe, North Buton 28
19 Maluku West Seram 30
20 West Papua South Sorong, Maybrat, Manokwari 596
21 Papua Bintang Mountains, Bintuni Bay, 

Yalimo, Jayapura
186.36

Total 2,600.75
Source: Kementerian ESDM (2016)

2.		 Pumped	Storage	Hydroelectricity	Plants
Pumped Storage Hydroelectricity (PHS) Plants use two water reser-
voirs at two different elevations, as seen in Figure 6.2. PHS offers the 
flexibility of electricity production based on the electricity demand. 
When there is low electricity demand or abundant electricity gen-
eration from other sources, the plant’s power is used to pump up 
the water from the lower elevation reservoir to the higher elevation 
reservoir. On the other hand, when the electricity demand is at its 



Hydropower Technology:   ... 99

peak, the power will be generated through water flows from higher 
elevations to lower elevations using a turbine. This generated power is 
then transmitted to satisfy the demand. The loop continues depending 
on the electricity demand. By this configuration, PHS can balance 
the demand and supply of electricity and improve the reliability of 
electricity services in an environmentally sustainable way (Stocks et 
al., 2019).

Source: Tennessee Valley Authority (2012)

Figure 6.2 Racoon Mountain Pumped-Storage Plant

The concept of PHS is relatively new in Indonesia. As of Septem-
ber 2021, the World Bank has approved a loan to create Indonesia’s 
first pumped-storage hydropower plant. This move aligns with the 
Government’s pledge toward climate change and energy transition. At 
the same time, the financing will be used to construct Upper Cisokan 
PHS between Jakarta and Bandung. The expected capacity for this 
facility is 1040 MW (World Bank, 2022).

PSH offers a unique opportunity to move beyond the first project, 
especially in Indonesia. PSH can be used to store other renewable 
energy such as solar PV and wind. PSH is a mature technology that 
is cheaper than many alternatives for energy storage. Some PSH can 
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be put in remote areas far from rivers and residential areas (off-river). 
It is possible as PSH can be a closed-loop system and located away 
from rivers and residential areas. As long as two reservoirs have two 
different elevations (100–1200 m altitude difference), it is possible to 
create PSH. The round-trip efficiency is typically about 80%, which 
is relatively good compared to other renewable energy sources. With 
Indonesia’s topography, PSH can be a good opportunity for reliable 
electricity storage at a relatively low cost (Stocks et al., 2019). 

E.  Conclusion
Indonesia has great potential in hydropower. However, those poten-
tials are limited to Indonesia’s geography and socio-economic issues. 
Indonesia’s rivers are typically not ideal for constructing a large-scale 
hydropower plant. Also, the ecological problems due to the possible 
destruction of the river ecosystem and NIMBY syndrome can af-
fect large-scale hydropower plant projects. Although hydropower 
plants are necessary to be the renewable energy baseload, the use of 
hydropower can be expanded in different ways. One way is to reduce 
the capacity of the hydropower plant and create micro-hydropower 
plants. Micro-hydropower plants will be an essential addition to 
residential and farming areas. The other way is to use pumped-storage 
hydroelectric plants. PSH offers flexibility and reliability to fulfill the 
supply and demand of electricity that can also be built far from rivers 
and residential areas. In these ways, hydropower can be a renewable 
energy backbone for Indonesia.
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