Templates
Efek Imunomodulator Dalam Senyawa Aktif Madu
Keywords:
Imunomodulator, Madu, Propolis, Royal Jelly, Senyawa AktifSynopsis
Sistem imun makhluk hidup bertugas melindungi tubuh dari penyebab infeksi seperti bakteri, virus, atau jamur. Sistem ini sangat kompleks dan terus berkembang untuk menjaga kesehatan dan mempertahankan kehidupan setiap makhluk, termasuk manusia. Imunitas yang kuat memerlukan nutrisi yang baik pula. Salah satu jenis bahan alami yang kandungannya memiliki sifat imunomodulator yang ampuh sebagai peningkat kekebalan tubuh adalah produk-produk dari lebah seperti madu, propolis, dan royal jelly yang telah diyakini sejak lama memiliki khasiat dalam kesehatan dan hingga kini terus diteliti karena potensi manfaat terapeutiknya. Penggunaan bahan-bahan alami tersebut masih terus lestari karena pengobatan tradisional telah dianggap sebagai alternatif penting bagi pengobatan medis modern. Berdasarkan hasil dari berbagai studi, senyawa bioaktif dalam ketiga jenis produk alami tersebut terbukti memperkuat respons imun serta banyak mencegah kerusakan sel karena sifat antimikrob, antioksidan, dan antiinflamasinya yang kuat.
Buku ini mengkaji secara deskriptif dan sistematis kemampuan imunomodulator madu, propolis, dan royal jelly berdasarkan literatur yang dihasilkan riset-riset ilmiah di seluruh dunia. Selain itu, buku ini mengupas mekanisme molekuler yang mendasari khasiat peningkat kekebalan tubuh dari beberapa senyawa bioaktif dari agen infeksi. Oleh karena itu, buku ini baik untuk dibaca oleh para pendidik, peneliti, serta para mahasiswa di bidang keilmuan yang relevan seperti ilmu pangan, kesehatan/kedokteran, farmasi, kosmetik, dan sains hayati sebagai salah satu referensi ilmiah. Meski demikian, buku ini juga dapat dibaca oleh masyarakat umum untuk meningkatkan wawasan dan pengetahuan tentang fakta madu dan produk turunan lebah (propolis dan royal jelly), terutama aspek imunologinya.
Downloads
Download data is not yet available.
References
Abu-Seida, A. M. (2015). Effect of propolis on experimental cutaneous wound healing in dogs. Veterinary Medicine International, 2015, 672643. https://doi.org/10.1155/2015/672643
Abuharfeil, N., Aloran, R., & Aboshehada, M. (1999). The effect of bee honey on the proliferative activity of human B and T-lymphocytes and the activity of phagocytes. Food and Agricultural Immunology, 11(2), 169–177. https://doi.org/10.1080/09540109999843
Aden, & Muhaimin, R. (2014). Bioactivity of ethanolic extract of propolis (EEP) in Balb/C mice’s CD4+CD25+ and B220+ lymphocyte cells. The Journal of Experimental Life Sciences, 4(2), 39–44. https://doi.org/10.21776/ub.jels.2014.004.02.03
Afrin, S., Gasparrini, M., Forbes-Hernández, T. Y., Cianciosi, D., Reboredo-Rodriguez, P., Manna, P. P., Battino, M., & Giampieri, F. (2018). Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages (Part 1: Enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality). Food and Chemical Toxicology, 121, 203–213. https://doi.org/10.1016/j.fct.2018.09.001
Agussalim, Umami, N., Nurliyani, & Agus, A. (2022). Stingless bee honey (Tetragonula laeviceps): Chemical composition and their potential roles as an immunomodulator in malnourished rats. Saudi Journal of Biological Sciences, 29(10), 103–111. https://doi.org/10.1016/j.sjbs.2022.103404
Ahmad, J. (2018). Desain penelitian analisis isi (content analysis). ResearchGate, 5(9), 1–20.
Ahmad, A., Khan, R. A., & Mesaik, M. A. (2009). Anti-inflammatory effect of natural honey on bovine thrombin-induced oxidative burst in phagocytes. Phytotherapy Research, 23, 801–808. https://doi.org/10.1002/ptr.2648
Ahmad, S., Campos, M. G., Fratini, F., Altaye, S. Z., & Li, J. (2020). New insights into the biological and pharmaceutical properties of royal jelly. International Journal of Molecular Sciences, 21(2), 382. https://doi.org/10.3390/ijms21020382
Ahmed, S., Sulaiman, S., Baig, A., Ibrahim, M., Liaqat, S., Fatima, S., Jabeen, S., Shamim, N., & Othman, N. H. (2018). Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxidative Medicine and Cellular Longevity, 2018, 8367846. https://doi.org/10.1155/2018/8367846
Ahmed, R., & Gray, D. (1996). Immunological memory and protective immunity: Understanding their relation. Science, 272(5258), 54–60. https://doi.org/10.1126/science.272.5258.54
Ai, X. Y., Qin, Y., Liu, H. J., Cui, Z. H., Li, M., Yang, J. H., Zhong, W. L., Liu, Y. R., Chen, S., Sun, T., Zhou, H. G., & Yang, C. (2017). Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-kB signaling. Oncotarget, 8(59), 100216–100226. https://doi.org/10.18632/oncotarget.22145
Al Quran (Muhammad Saifudin, Penerj.). (2010). Sygma Publishing.
Alaerjani, W. M. A., Abu-Melha, S., Alshareef, R. M. H., Al-Farhan, B. S., Ghramh, H. A., Al-Shehri, B. M. A., Bajaber, M. A., Khan, K. A., Alrooqi, M. M., Modawe, G. A., et al. (2022). Biochemical reactions and their biological contributions in honey. Molecules, 27, 4719. https://doi.org/10.3390/molecules27154719
Alencar, S. M., Oldoni, T. L. C., & Castro, M. L. (2007). Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis. Journal of Ethnopharmacology, 113(2), 278–283. https://doi.org/10.1016/j.jep.2007.06.005
Alfons, B., & Matthys, P. (2001). Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. Journal of Leukocyte Biology, 70(6), 849–860. https://doi.org/10.1189/jlb.0701401
Al-Hatamleh, M. A., Hatmal, M. M. M., Sattar, K., Ahmad, S., Mustafa, M. Z., Bittencourt, M. D. C., & Mohamud, R. (2020). Antiviral and immunomodulatory effects of phytochemicals from honey against COVID-19: Potential mechanisms of action and future directions. Molecules, 25(21), 1–23. https://doi.org/10.3390/molecules25215017
Al-Kafaween, H., & Soliman, M. (2020a). Immunomodulatory and anti-inflammatory potentials of Trigona honey in the therapy and prevention against respiratory infection in wistar rats. International Journal of Research in Pharmaceutical Sciences, 11(13), 2955–2962.
Al-Kafaween, M. A., Hilmi, A. B. M., Jaffar, N., Al-Jamal, H. A. N., Zahri, M. K., & Jibril, F. I. (2020b). Antibacterial and antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan Journal of Biological Sciences, 13, 69–76.
Al-Kafaween, M. A., Abu Bakar, M. H., Al-Jamal, H. A. N., Elsahoryi, N. A., Jaffar, N. B., & Zahri, M. K. (2020c). Pseudomonas aeruginosa and Streptococcus pyogenes exposed to Malaysian Trigona honey in vitro demonstrated downregulation of virulence factors. Iranian Journal of Biotechnology, 18, 115–123. https://doi.org/10.30498/IJB.2020.2542
Aliyu, M., Odunola, O. A., Farooq, A. D., Rasheed, H., Mesaik, A. M., Choudhary, M. I., Channa, I. S., Khan, S. A., & Erukainure, O. L. (2013). Molecular mechanism of antiproliferation potential of acacia honey on NCI-H460 cell line. Nutrition and Cancer, 65(2), 296–304.
Alvarez-Suarez, J., Giampieri, F., & Battino, M. (2013). Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Current Medicinal Chemistry, 20(5), 621–638. https://doi.org/10.2174/0929867311320050005
Alvazer-Suarez, J. M., Tulipan, S., Diaz, D., Estevez, Y., Romandini, S., Giampieri, F., Damaiani, E., Astolfi, P., Bompadre, S., & Battino, M. (2010). Antioxidant and antimicrobial capacity of several monofloral Cuban honey and their correlation with color, polyphenol content and other chemical compounds. Food Chemical Toxicology, 28(5), 2490–2499.
Almasaudi, S. B., El-Shitany, N. A., Abbas, A. T., Abdel-Dayem, U. A., Ali, S. S., Al Jaouni, S. K., & Harakeh, S. (2016). Antioxidant, anti-inflammatory, and antiulcer potential of Manuka honey against gastric ulcer in rats. Oxidative Medicine and Cellular Longevity, 2016, 3643824. https://doi.org/10.1155/2016/3643824
Alwafi, A., Almas, A. I., & Abi, Y. E. (2018). Perbandingan efektivitas produk lebah dan salep luka bakar terhadap kecepatan penyembuhan luka bakar derajat II pada tikus putih jantan galur wistar. JIMKI J Ilm Mhs Kedokteran Indonesia, 6(2), 63–71.
Al-Waili, N. S. (2001). Therapeutic and prophylactic effects of crude honey on chronic seborrheic dermatitis and dandruff. European Journal of Medical Research, 6, 306–308.
Al-Waili, N. S. (2003). Topical application of natural honey, beeswax and olive oil mixture for atopic dermatitis or psoriasis: Partially controlled single-blinded study. Complementary Therapies in Medicine, 11, 226–234.
Al-Waili, N. S. (2004). An alternative treatment for pityriasis versicolor, tinea cruris, tinea corporis and tinea faciei with topical application of honey, olive oil, and beeswax mixture: An open pilot study. Complementary Therapies in Medicine, 12, 45–47.
Amalia, L., Irwan, I., & Hiola, F. (2020). Analisis gejala klinis dan peningkatan kekebalan tubuh untuk mencegah penyakit COVID-19. Jambura Journal of Health Sciences and Research, 2(2), 71–76.
Anjum, S. I., Ullah, A., Khan, K. A., Attaullah, M., Khan, H., Ali, H., Bashir, M. A., Tahir, M., Ansari, M.J., Ghramh, H. A., Adgaba, N., & Dash, C.K. (2019). Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, 26(7), 1695–1703. https://doi.org/10.1016/j.sjbs.2018.08.013
Antinelli, J. F., Zeggane, S., Dav Ico, R., Rognone, C., Faucon, J. P., & Lizzani, L. (2003). Evaluation of (E)-10-hydroxydec-2-enoic acid as a freshness parameter for royal jelly. Food Chemistry, 80, 85–89.
Annunziato, F., Romagnani, C., & Romagnani, S. (2015). The 3 major types of innate and adaptive cell-mediated effector immunity. Journal of Allergy and Clinical Immunology, 135, 626–635.
Araujo, M. A. R., Libério, S. A., Guerra, R. N. M., Ribeiro, M. N. S., & Nascimento, F. R. F. (2012). Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: A brief review. Revista Brasileira de Farmacognosia, 22(1), 208–219.
Arsani, M. (2010). Pengaruh pemberian ekstrak etanolik daun kersen (Muntingia calabura L.) terhadap peningkatan titer imunoglobulin G (Ig G) dan fagositosis makrofag pada tikus yang diinduksi vaksin hepatitis B [Tesis tidak diterbitkan]. Universitas Gajah Mada.
Askenase, P. W. (1980). Immunopathology of parasitic diseases: Involvement of basophils and mast cells. Springer Seminars in Immunopathology, 2, 417–442. https://doi.org/10.1007/BF01990212
Aurongzeb, M., & Kamran Azim, M. (2011). Antimicrobial properties of natural honey: A review of literature. Journal Biochem Molekul Biologi, 44(3), 118–124.
Awaliah, Z. (2016). Efek imunomodulator ekstrak metanol daun namnam (C. Cauliflora L.) dan propolis terhadap kemampuan fagositosis makrofag peritoneum tikus secara in vitro [Skripsi]. UIN Syarif Hidayatullah Jakarta.
Babaei, S., Rahimi, S., Torshizi, M. A. K., Tahmasebi, G., & Miran, S. N. K. (2016). Effects of propolis, royal jelly, honey, and bee pollen on growth performance and immune system of Japanese quails. Veterinary Research Forum: An International Quarterly Journal, 7(1), 13–20.
Baek, K.-S., Yi, Y.-S., Son, Y.-J., Jeong, D., Sung, N. Y., Aravinthan, A., Kim, J.-H., & Cho, J. Y. (2017). Comparison of anticancer activities of Korean red ginseng-derived fractions. Journal of Ginseng Research, 41, 386–391. https://doi.org/10.1016/j.jgr.2016.07.004
Baek, K.-S., Yi, Y.-S., Son, Y.-J., Yoo, S., Sung, N. Y., Kim, Y., Hong, S., Aravinthan, A., Kim, J.-H., & Cho, J. Y. (2016). In vitro and in vivo anti-inflammatory activities of Korean red ginseng-derived components. Journal of Ginseng Research, 40, 437–444. https://doi.org/10.1016/j.jgr.2015.09.004
Badolato, M., Carullo, G., Cione, E., Aiello, F., & Caroleo, M. C. (2017). From the hive: Honey, a novel weapon against cancer. European Journal of Medicinal Chemistry, 14(2), 290–299. https://doi.org/10.1016/j.ejmech.2017.07.018
Balasubramaniam, M., Sapuan, S., Hashim, I. F., Ismail, N. I., Yaakop, A. S., Kamaruzaman, N. A., & Mokhtar, A. M. A. (2024). The properties and mechanism of action of plant immunomodulators in regulation of immune response: A narrative review focusing on Curcuma longa L., Panax ginseng C. A. Meyer, and Moringa oleifera Lam. Heliyon, 10(7), e28261. https://doi.org/10.1016/j.heliyon.2024.e28261
Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase—An overview. Biotechnology Advances, 27, 489–501. https://doi.org/10.1016/j.biotechadv.2009.04.003
Banskota, A. H., Tezuka, Y., & Kadota, S. (2001). Recent progress in pharmacological research of propolis. Phytotherapy Research, 15(7), 561–571. https://doi.org/10.1002/ptr.1029
Banskota, A. H., Tezuka, Y., Prasain, J. K., Matsushige, K., Saiki, I., & Kadota, S. (1998). Chemical constituents of Brazilian propolis and their cytotoxic activities. Journal of Natural Products, 61(7), 896–900. https://doi.org/10.1021/np980028c
Bankova, V. S., De Castro, S. L., & Marcucci, M. C. (2000). Propolis: Recent advances in chemistry and plant origin. Apidologie, 31(1), 3–15. https://doi.org/10.1051/apido:2000100
Baratawidjaja, K.G. (2006). Imunologi Dasar (Ed. 7, 6–33). Balai Penerbit FKUI.
Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic-Canic, M. (2008). Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 16(5), 585–601. https://doi.org/10.1111/j.1524-475X.2008.00440.x
Barui, A., Mandal, N., Majumder, S., Das, R. K., Sengupta, S., Banerjee, P., Ray, A. K., Chaudhuri, R., & Chaterjee, J. (2013). Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience. Materials Science and Engineering C: Materials for Biological Applications, 33(6), 3418–3425. https://doi.org/10.1016/j.msec.2013.04.034
Bayat, P., Farshchi, M., Yousefian, M., Mahmoudi, M., & Robati, R. Y. (2021). Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. International Immunopharmacology, 95, 107562. https://doi.org/10.1016/j.intimp.2021.107562
Bazaid, A. S., Alamri, A., Almashjary, M. N., Qanash, H., Almishaal, A. A., Amin, J., Binsaleh, N. K., Kraiem, J., Aldarhami, A., & Alafnan, A. (2022). Antioxidant, anticancer, antibacterial, antibiofilm properties and gas chromatography and mass spectrometry analysis of Manuka honey: A nature’s bioactive honey. Applied Sciences, 12, 9928. https://doi.org/10.3390/app12199928
Ben Amor, S., Mekious, S., Allal Benfekih, L., Abdellattif, M. H., Boussebaa, W., Almalki, F. A., Ben Hadda, T., & Kawsar, S. M. (2022). Phytochemical characterization and bioactivity of different honey samples collected in the pre-Saharan region in Algeria. Life, 12, 927. https://doi.org/10.3390/life12060927
Benfekih, L. A., Bellache, M., Aoudia, B., & Mahmoudi, A. (2018). Impact of insecticides on pollinator populations: Role of phytosanitary performance indicators in tomato crops. AGROFOR International Journal, 3, 5–13.
Benveniste, J., Henson, P. M., & Cochrane, C. G. (1972). A possible role for IgE in immune complex disease. Dalam K. Ishizaka & D. H. Dayton (Ed.), The biological role of the immunoglobulin E system (187). U.S. Government Printing Office.
Bertoncelj, J., Doberšek, U., Jamnik, M., & Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity, and color of Slovenian honey. Food Chemistry, 105, 822–828. https://doi.org/10.1016/j.foodchem.2007.04.038
Beura, L. K., Fares-Frederickson, N. J., Steinert, E. M., Scott, M. C., Thompson, E. A., Fraser, K. A., Schenkel, J. M., Vezys, V., & Masopust, D. L. (2019). CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. Journal of Experimental Medicine, 216, 1214–1229. https://doi.org/10.1084/jem.20181365
Bhatt, A. (2016). Phytopharmaceuticals: A new drug class regulated in India. Perspectives in Clinical Research, 7(2), 59–61. https://doi.org/10.4103/2229-3485.179435
Bhimani, R.S., Troll, W., Grunberger, D., & Frenkel, K. (1993). Inhibition of oxidative stress in HeLa cells by chemopreventive agents. Cancer Research, 53, 4528–4533.
Biagi, G., Piva, A., Moschini, M., Vezzali, E., & Roth, F. X. (2006). Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. Journal of Animal Science, 84, 370–378. https://doi.org/10.2527/2006.842370x
Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P., & Salazar-Mather, T. P. (1999). Natural killer cells in antiviral defense: Function and regulation by innate cytokines. Annual Review of Immunology, 17, 189–220. https://doi.org/10.1146/annurev.immunol.17.1.189
Bonomi, A., Marletto, F., Luccelli, L., Anghinetti, A., Bonomi, A., & Sabbioni, A. (1986). Composizione chimico-bromatologica della gelatina reale in rapporto alla flora nettarifera e pollinifera. La Rivista della Società Italiana di Scienza dell’Alimentazione, 15, 53–62.
Borutinskaite, V., Treigyte, G., Ceksteryte, V., Kurtinaitiene, B., & Navakauskiene, R. (2018). Proteomic identification and enzymatic activity of buckwheat (Fagopyrum esculentum) honey based on different assays. Journal of Food and Nutrition Research, 57, 57–69.
Boselli, E., Caboni, M. F., Sabatini, A. G., Marcazzan, G. L., & Lercker, G. (2003). Determination and changes of free amino acids in royal jelly during storage. Apidologie, 34(2), 129–137. https://doi.org/10.1051/apido:2003011
Bouamama, S., Merzouk, H., Latrech, H., Charif, N., & Bouamama, A. (2021). Royal jelly alleviates the detrimental effects of aging on immune functions by enhancing the in vitro cellular proliferation, cytokines, and nitric oxide release in aged human PBMCs. Journal of Food Biochemistry, 45(2), e13619. https://doi.org/10.1111/jfbc.13619
Bucekova, M., Sojka, M., Valachova, I., Martinotti, S., Ranzato, E., Szep, Z., Majtan, V., Klaudiny, J., & Majtan, J. (2017). Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo. Scientific Reports, 7(1), 7340. https://doi.org/10.1038/s41598-017-07494-0
Búfalo, M. C., Bordon-Graciani, A. P., Conti, B. J., De Assis Golim, M., & Sforcin, J. M. (2014). The immunomodulatory effect of propolis on receptors expression, cytokine production and fungicidal activity of human monocytes. Journal of Pharmacy and Pharmacology, 66(10), 1497–1504. https://doi.org/10.1111/jphp.12279
Buratti, S., Benedetti, S., & Cosio, M. S. (2007). Evaluation of the antioxidant power of honey, propolis and royal jelly by amperometric flow injection analysis. Talanta, 71, 1387–1392. https://doi.org/10.1016/j.talanta.2006.07.006
Burdock, G. A. (1998). Review of the biological properties and toxicity of bee propolis. Food and Chemical Toxicology, 36(4), 347–363. https://doi.org/10.1016/s0278-6915(97)00145-2
Buss, N. A. P. S., Henderson, S. J., McFarlane, M., Shenton, J. M., & De Haan, L. (2012). Monoclonal antibody therapeutics: History and future. Current Opinion in Pharmacology, 12(5), 615–622. https://doi.org/10.1016/j.coph.2012.08.001
Cardenas, H., Arango, D., Nicholas, C., Duarte, S., Nuovo, G. J., He, W., Voss, O. H., Gonzalez-Mejia, M. E., Guttridge, D. C., Grotewold, E., & Doseff, A. I. (2016). Dietary apigenin exerts immune-regulatory activity in vivo by reducing NF-kB activity, halting leukocyte infiltration and restoring normal metabolic function. International Journal of Molecular Sciences, 17(3), 1–17. https://doi.org/10.3390/ijms17030323
Cava, E., Neri, B., Carbonelli, M. G., Riso, S., & Carbone, S. (2021). Obesity pandemic during COVID-19 outbreak: Narrative review and future considerations. Clinical Nutrition, 40(4), 1637–1643. https://doi.org/10.1016/j.clnu.2021.02.038
Cavalcanti, E., Vadrucci, E., Delvecchio, F. R., Addabbo, F., Bettini, S., Liou, R., Monsurro, V., Huang, A. Y. C., Pizarro, T. T., Santino, A., & Chieppa, M. (2014). Administration of reconstituted polyphenol oil bodies efficiently suppresses dendritic cell inflammatory pathways and acute intestinal inflammation. PLoS ONE, 9(2), e88898. https://doi.org/10.1371/journal.pone.0088898
Chayati, I., & Miladiyah, I. (2019). Study of phenolic compounds, total phenolic, and antioxidant activities of monofloral honeys from some areas in Java and Sumatera. MGMI, 6(1), 11–24. https://doi.org/10.22435/mgmi.v6i1.3872
Chen, F., Tan, Y. F., Li, H. L., Qin, Z. M., Cai, H. D., Lai, W. Y., Zhang, X. P., Li, Y. H., Guan, W. W., Li, Y. B., & Zhang, J. Q. (2015). Differential systemic exposure to galangin after oral and intravenous administration to rats. Chemistry Central Journal, 9, 14. https://doi.org/10.1186/s13065-015-0092-5
Chepulis, L. M., & Francis, E. (2012). An initial investigation into the anti-inflammatory activity and antioxidant capacity of alpha-cyclodextrin-complexed Manuka honey. Journal of Complementary and Integrative Medicine, 9. https://doi.org/10.1515/1553-3840.1646
Chinembiri, T. N., du Plessis, L. H., Gerber, M., Hamman, J. H., & du Plessis, J. (2014). Review of natural compounds for potential skin cancer treatment. Molecules, 19(8), 11679–11721. https://doi.org/10.3390/molecules190811679
Choi, C., Kim, W.-S., Park, Y. H., Park, S.-C., Jang, M.-K., & Nah, J. W. (2014). Water soluble chitosan and herbal honey compound alleviates atopic dermatitis-like lesions in NC/Nga mice. Journal of Industrial and Engineering Chemistry, 20(2), 499–504. https://doi.org/10.1016/j.jiec.2013.05.008
Chua, L., Rahaman, N., Adnan, N., & Tan, T. (2013). Antioxidant activity of three honey samples in relation with their biochemical components. Journal of Analytical Methods in Chemistry, 2(7), 1–8. https://doi.org/10.1155/2013/313798
Clearwater, M. J., Revell, M., Noe, S., & Manley-Harris, M. (2018). Influence of genotype, floral stage, and water stress on floral nectar yield and composition of Manuka (Leptospermum scoparium). Annals of Botany, 121(3), 501–512. https://doi.org/10.1093/aob/mcx183
Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
Crotty, S. (2019). T follicular helper cell biology: A decade of discovery and diseases. Immunity, 50(5), 1132–1148. https://doi.org/10.1016/j.immuni.2019.04.011
Crotty, S. (2011). Follicular helper CD4 T cells (TFH). Annual Review of Immunology, 29, 621–663. https://doi.org/10.1146/annurev-immunol-031210-101400
Cruse, J. M., & Lewis, R. E. (1999). History of Immunology. Dalam Atlas of immunology. Springer. https://doi.org/10.1007/978-3-662-11196-3_1
Curtis, J. L. (2017). A hairline crack in the levee: Focal secretory IgA deficiency as a first step toward emphysema. American Journal of Respiratory and Critical Care Medicine, 195, 970–973. https://doi.org/10.1164/rccm.201612-2509ED
Danciu, C. S. C., Diana, A., Popescu, A., Ghiulai, R., Pavel, I. Z., Avram, S., Daliana, M., & Dehelean, C. (2017). An update on natural compounds and their modern formulations for the management of malignant melanoma. Dalam F. A. Badria (Ed.), Natural products and cancer drug discovery (pp. 42). IntechOpen. https://doi.org/10.5772/67647
Da Silveira, M. P., da Silva Fagundes, K. K., Bizuti, M. R., Starck, E., Rossi, R. C., & de R. Silva, D. T. (2020). Physical exercise as a tool to help the immune system against COVID-19: An integrative review of the current literature. Clinical and Experimental Medicine, 218(1), 15–28. https://doi.org/10.1007/s10238-020-00650-3
Da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
Daleprane, J. B., & Abdalla, D. S. (2013). Emerging roles of propolis: Antioxidant, cardioprotective, and antiangiogenic actions. Evidence-Based Complementary and Alternative Medicine, 4(10), 56–65. https://doi.org/10.1155/2013/175135
Darmawan, K. H. (2017). Utilization of nano ethanolic extract combination chamber bitter (Phyllanthus niruri L.) and garlic (Allium sativum L.) as a natural immunomodulator in nanoherbal development, in silico and in vitro study. JPSCR: Journal of Pharmaceutical Science and Clinical Research, 2(2), 110–117. https://doi.org/10.20961/jpscr.v2i02.14394
Das, J., Jyotirmoy, G., Anandita, R., & Parames, C. S. (2012). Mangiferin exerts hepatoprotective activity against D-galactosamine induced acute toxicity and oxidative/nitrosative stress via Nrf2-NFkB pathways. Toxicology and Applied Pharmacology, 260(1), 35–47. https://doi.org/10.1016/j.taap.2012.01.015
De Castro, S. L. (2001). Propolis: Biological and pharmacological activities. Therapeutic uses of this bee-product. Annual Review of Biomedical Sciences, 3, 49–83. https://doi.org/10.5016/1806-8774.2001v3p49
De Santis, S., Kunde, D., Serino, G., Galleggiante, V., Caruso, M. L., Mastronardi, M., Cavalcanti, E., Ranson, N., Pinto, A., Campiglia, P., Santino, A., Eri, R., & Chieppa, M. (2016). Secretory leukoprotease inhibitor is required for efficient quercetin-mediated suppression of TNFa secretion. Oncotarget, 7(46), 75800–75809. https://doi.org/10.18632/oncotarget.12415
Dixit, P. K., & Patel, N. G. (1964). Insulin-like activity in larval foods of the honeybee. Nature, 202, 189–190. https://doi.org/10.1038/202189a0
Du, Q., Gu, X., Cai, J., Huang, M., & Su, M. (2012). Chrysin attenuates allergic airway inflammation by modulating the transcription factors T-bet and GATA-3 in mice. Molecular Medicine Reports, 6, 100–104. https://doi.org/10.3892/mmr.2012.893
Dutta, T., Das, T., Gopalakrishnan, A. V., Saha, S. C., Ghorai, M., Nandy, S., Kumar, M., Radha, Ghosh, A., Mukerjee, N., & Dey, A. (2023). Mangiferin: The miraculous xanthone with diverse pharmacological properties. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396, 851–863. https://doi.org/10.1007/s00210-022-02373-6
El-Seedi, H. R., Eid, N., Abd El-Wahed, A. A., Rateb, M. E., Afifi, H. S., Algethami, A. F., Zhao, C., Al Naggar, Y., Alsharif, S. M., Tahir, H. E., Xu, B., Wang, K., & Khalifa, S. A. M. (2022). Honey bee products: Preclinical and clinical studies of their anti-inflammatory and immunomodulatory properties. Frontiers in Nutrition, 8(2), 156–163. https://doi.org/10.3389/fnut.2021.761267
El-Sheikh, A. L. K. (2008). Renal transport and drug interactions of immunosuppressants [Disertasi]. University Nijmegen, The Netherlands.
Erejuwa, O. O., Sulaiman, S. A., & Ab Wahab, M. S. (2012). Honey—A novel antidiabetic agent. International Journal of Biological Sciences, 8(6), 913–934. https://doi.org/10.7150/ijbs.3697
Erejuwa, O. O., Sulaiman, S. A., & Ab Wahab, M. S. (2014). Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules, 19(2), 2497–2522. https://doi.org/10.3390/molecules19022497
Erem, C., Deger, O., Ovali, E., & Barlak, Y. (2006). The effects of royal jelly on autoimmunity in graves’ disease. Endocrine, 30(2), 175–183. https://doi.org/10.1385/ENDO:30:2:175
Erkmen, O., & Bozoglu, T.F. (2016). Enzymatic and nonenzymatic food spoilage. Dalam Food Microbiology: Principles into Practice (401–406). John Wiley & Sons, Ltd.
Eslami-Kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K. (2021). 10-hydroxy-2-decenoic acid a bio-immunomodulator in tissue engineering: Generates tolerogenic dendritic cells by blocking the toll-like receptor4. Journal of Biomedical Materials Research, Part A(9), 1575–1587. https://doi.org/10.1002/jbm.a.37152
Fan, P., Han, B., Hu, H., Wei, Q., Zhang, X., Meng, L., Ni, J., Tang, X., Tian, X., Zhang, L., Wang, L., & Li, J. (2020). Proteome of thymus and spleen reveals that 10-hydroxydec-2-enoic acid could enhance immunity in mice. Expert Opinion on Therapeutic Targets, 24(3), 267–279. https://doi.org/10.1080/14728222.2020.1733529
Farhat, A., Ben Hlima, H., Khemakhem, B., Ben Halima, Y., Michaud, P., Abdelkafi, S., & Fendri, I. (2022). Apigenin analogues as SARS-CoV-2 main protease inhibitors: In-silico screening approach. Bioengineered, 13(2), 3350–3361. https://doi.org/10.1080/21655979.2022.2027181
Faris, M. (2020). Potensi immunodulator ekstrak cengkeh pada kadar limfosit dan makrofag sebagai mekanisme pertahanan tubuh. Khazanah: Jurnal Mahasiswa, 12(1), 33–40. https://doi.org/10.20885/khazanah.vol12.iss1.art8
Fernandes, M. H. V., Ferreira, L. das N., Vargas, G. D. A., Fischer, G., & Hübner, S. D. O. (2015). Effect of water extract from brown propolis on production of IFN-y after immunization against canine parvovirus (CPV) and canine coronavirus (CCOV). Ciencia Animal Brasileira, 16(2), 235–242. https://doi.org/10.6084/m9.figshare.7517459.v1
Fink, A. (2013). Conducting research literature reviews: From the Internet to paper. Qualitative Research Journal, 7(2), 103–108.
Fitria, F., & Marwayana, O. N. (2015). Potensi propolis sebagai imunomodulator pada tikus (Rattus norvegicus Berkenhout, 1769) galur Wistar yang diinduksi penisilin-G. Biogenesis. Jurnal Ilmiah Biologi, 3(2), 124–131. https://doi.org/10.24252/bio.v3i2.937
Franken, L., Schiwon, M., & Kurts, C. (2016). Macrophages: Sentinels and regulators of the immune system. Cellular Microbiology, 18(4), 475–487. https://doi.org/10.1111/cmi.12580
Fratini, F., Cilia, G., Mancini, S., & Felicioli, A. (2016). Royal jelly: An ancient remedy with remarkable antibacterial properties. Microbiological Research, 19(2), 130–141. https://doi.org/10.1016/j.micres.2016.06.007
Frisch, M., Biggar, R. J., Engels, E. A., Goedert, J. J. (2001). Association of cancer with AIDS-related immunosuppression in adults. JAMA, 285(13), 1736–1745. https://doi.org/10.1001/jama.285.13.1736
Fujii, A., Kobayashi, S., Kuboyama, N., Furukawa, Y., Kaneko, Y., Ishihama, S., Yamamoto, H., & Tamura, T. (1990). Augmentation of wound healing by royal jelly (RJ) in streptozotocin-diabetic rats. Japan Journal of Pharmacy, 53, 331–337.
Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T., & Kobayashi, K. (1990). A potent antibacterial protein in royal jelly: Purification and determination of the primary structure of royalisin. Journal of Biological Chemistry, 265(19), 11333–11337.
Gamen, S., Hanson, D.A., Kaspar, A., Naval, J., Krensky, A.M., & Anel, A. (1998). Granulysin-induced apoptosis: I. Involvement of at least two distinct pathways. Journal of Immunology, 161(4), 1758–1764.
Ganeshpurkar, A., & Saluja, A. K. (2018). Protective effect of catechin on humoral and cell-mediated immunity in rat model. International Immunopharmacology, 54(10), 261–266.
Gannabathula, S., Skinner, M. A., Rosendale, D., Greenwood, J. M., Mutukumira, A. N., Steinhorn, G., Stephens, J., Krissansen, G. W., & Schlothauer, R. C. (2012). Arabinogalactan proteins contribute to the immunostimulatory properties of New Zealand honeys. Immunopharmacology and Immunotoxicology, 34(4), 598–607.
Gao, A.M., Ke, Z.P., Shi, F., Sun, G.C., & Chen, H. (2013). Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chemico-Biological Interactions, 206(1), 100–108.
Garcia-Amoedo, L. H., & Almeida-Muradian, L. B. (2007). Physicochemical composition of pure and adulterated royal jelly. Quimica Nova, 30(2), 257–259.
Gasmi, A., Shanaida, M., Oleshchuk, O., Semenova, Y., Mujawdiya, P. K., Ivankiv, Y., Pokryshko, O., Noor, S., Piscopo, S., Adamiv, S., & Bjørklund, G. (2023). Natural ingredients to improve immunity. Pharmaceuticals, 16, 528. https://doi.org/10.3390/ph16040528
Gertsch, J. (2011). Botanical drugs, synergy, and network pharmacology: Forth and back to intelligent mixtures. Planta Medica, 77(11), 1086–1098. https://doi.org/10.1055/s-0030-1270904
Ghanadian, S. M., Ayatollahi, A. M., Afsharypour, S., Hareem, S., Abdalla, O. M., & Bankeu, J. J. K. (2012). Flavonol glycosides from Euphorbia microsciadia Bioss. with their immunomodulatory activities. Iranian Journal of Pharmaceutical Research, 11(3), 925–930.
Ghisalberti, E. L. (1979). Propolis: A review. Bee World, 60, 59–84. https://doi.org/10.1016/j.sjbs.2018.08.013
Glennie, N. D., Volk, S. W., & Scott, P. (2017). Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLOS Pathogens, 13, e1006349. https://doi.org/10.1371/journal.ppat.1006349
Goodarzi, H., Trowbridge, J., & Gallo, R. L. (2007). Innate immunity: A cutaneous perspective. Clinical Reviews in Allergy & Immunology, 33, 15–26. https://doi.org/10.1007/s12016-007-0037-4
Gohar, A., Dastagir, N., Jabeen, A., & Azim, M. K. (2021). Characterization of immunomodulatory activity of proteins of natural honeys. Journal of Food Measurement and Characterization, 15(5), 4475–4481. https://doi.org/10.1007/s11694-021-01033-2
Gomez-Caravaca, A. M., Gomez-Romero, M., Arraez-Roman, D., Segura-Carretero, A., & Fernandez-Gutierrez, A. (2006). Advances in the analysis of phenolic compounds in products derived from bees. Journal of Pharmaceutical and Biomedical Analysis, 41, 1220–1234. https://doi.org/10.1016/j.jpba.2006.03.002
González-Navajas, J. M., Lee, J., David, M., & Raz, E. (2012). Immunomodulatory functions of type I interferons. Nature Reviews Immunology, 12(2), 125–135. https://doi.org/10.1038/nri3133
Gowans, J. L. (1957). The effect of the continuous re-infusion of lymph and lymphocytes on the output of lymphocytes from the thoracic duct of unanaesthetized rats. British journal of experimental pathology, 38(1), 67–78.
Gowans, J. L. (1959). The recirculation of lymphocytes from blood to lymph in the rat. The Journal of Physiology, 146(1), 54–69. https://doi.org/10.1113/jphysiol.1959.sp006177
Greenlee-Wacker, M. C., Rigby, K. M., Kobayashi, S. D., Porter, A. R., DeLeo, F. R., & Nauseef, W. M. (2014). Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. The Journal of Immunology, 192(10), 4709–4717. https://doi.org/10.4049/jimmunol.1302692
Gu, H., & In-bong Song, Hye-ju Han. (2018). Anti-inflammatory and immune-enhancing effects of enzyme-treated royal jelly. Applied Biological Chemistry, 7(4), 72-84. https://doi.org/10.1007/s13765-018-0349-5
Hachimura, S., Totsuka, M., & Hosono, A. (2018). Immunomodulation by food: Impact on gut immunity and immune cell function. Bioscience, Biotechnology, and Biochemistry, 82(4), 584-599. https://doi.org/10.1080/09168451.2018.1433017
Hadagali, M. D., & Chua, L. S. (2014). The anti-inflammatory and wound healing properties of honey. European Food Research and Technology, 239(6), 1003-1014. https://doi.org/10.1007/s00217-014-2297-6
Halim, E., Hardinsyah, Sutandyo, N., Sulaeman, A., Artika, M., & Yahdiana Harahap, Y. (2012). Kajian bioaktif dan zat gizi propolis Indonesia dan Brasil. Jurnal Gizi Dan Pangan, 7(1), 1–6. https://doi.org/10.25182/jgp.2012.7.1.1-7
Harrison, R. A., & Lachmann, P. J. (1980). The physiological breakdown of the third component of human complement. Molecular Immunology, 17(1), 9–20. https://doi.org/10.1016/0161-5890(80)90119-4
Haryanto. (2009). Penggunaan madu dalam perawatan luka. Palmal.
Hansen, J. D, & Strassburger, P. (2000). Description of an ectothermic TCR coreceptor, CD8 alpha, in rainbow trout. The Journal of Immunology, 164(6), 3132–3139. https://doi.org/10.4049/jimmunol.164.6.3132.
Hausen, B. M., Wollenweber, E., Senff, H., & Post, B. (1987). Propolis allergy: (II) The sensitizing properties of 1,1-dimethylallyl caffeic acid ester. Contact Dermatitis, 17(3), 171–177. https://doi.org/10.1155/2013/308249
Hegazi, A., Abdel-Rahman, E., Abd-Allah, F., & Abdou, A. M. H. (2015). Influence of honey on immune status in mice-bearing ehrlich carcinoma. Journal of Clinical and Cellular Immunology, 6(1), 295–234. https://doi.org/10.4172/2155-9899.1000295
Helfenberg, K. D. (1908). The analysis of beeswax and propolis. Chemiker Zeitung, 31, 987–998. https://doi.org/10.1155/2013/308249
Henriques, A., Jackson, S., Cooper, R., & Burton, N. (2006). Free radical production and quenching in honeys with wound healing potential. Journal of Antimicrobial Chemotherapy, 58(4), 773–777. https://doi.org/10.1093/jac/dkl336
Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682-690. https://doi.org/10.1038/nchembio.118
Hossain, K. S., Hossain, M. G., Moni, A., Rahman, M. M., Rahman, U. H., Alam, M., Kundu, S., Rahman, M. M., Hannan, M. A., & Uddin, M. J. (2020). Prospects of honey in fighting against COVID-19: Pharmacological insights and therapeutic promises. Heliyon, 6(12), e05798. https://doi.org/10.1016/j.heliyon.2020.e05798
Hussein, S. Z., Mohd Yusoff, K., Makpol, S., & Mohd Yusof, Y. A. (2012). Gelam honey inhibits the production of proinflammatory mediators NO, PGE2, TNF-a, and IL-6 in carrageenan-induced acute paw edema in rats. Evidence-Based Complementary and Alternative Medicine, 12(3), 74–82. https://doi.org/10.1155/2012/109636
Iannuzzi, L. (1990). An improved characterization of cattle chromosomes by means of high-resolution G- and R-band comparison. Journal of Heredity, 81(1), 80–83. https://doi.org/10.1093/oxfordjournals.jhered.a110933
Ibrahim, A. A. E. M. (2014). Immunomodulatory effects of royal jelly on aorta CD3, CD68, and eNOS expression in hypercholesterolemic rats. The Journal of Basic & Applied Zoology, 67(4), 140–148. https://doi.org/10.1016/j.jobaz.2014.08.006
Iddir, M., Brito, A., Dingeo, G., Del Campo, S. S. F., Samouda, H., La Frano, M. R., & Bohn, T. (2020). Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis. Nutrients, 12(6), 1562. https://doi.org/10.3390/nu12061562
Imai, K., Matsuyama, S., Miyake, S., Suga, K., & Nakachi, K. (2000). Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet, 356(9244), 1795–1799. https://doi.org/10.1016/S0140-6736(00)03231-1
Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., Imran, A., Orhan, I. E., Rizwan, M., & Atif, M. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy, 112, 108612. https://doi.org/10.1016/j.biopha.2019.108612
Inoue, S. I., Koya-Miyata, S., Ushio, S., Iwaki, K., Ikeda, M., & Kurimoto, M. (2003). Royal jelly prolongs the life span of C3H/H3J mice: Correlation with reduced DNA damage. Experimental Gerontology, 38(9), 965–969. https://doi.org/10.1016/s0531-5565(03)00165-7
Isidorova, V. A., Czyzewska, U., Isidorov, A. G., & Bakier, S. (2009). Gas chromatographic and mass spectrometric characterization of the organic acids extracted from some preparations containing lyophilized royal jelly. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 877(29), 3776–3780. https://doi.org/10.1016/j.jchromb.2009.09.016
Israili, Z. H. (2014). Antimicrobial properties of honey. American Journal of Therapeutics, 21(4), 304–323. https://doi.org/10.1097/MJT.0b013e318293b09b
Iwasaki, A., & Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nature Immunology, 16(4), 343–353. https://doi.org/10.1038/ni.3123
Izzati, S. A., Sumarno, S., & Winarsih, S. (2016). Peran komplemen, fagosit (leukosit) dan antibodi dalam menurunkan jumlah Mycobacterium tuberculosis. Majalah Kesehatan FKUB, 2(2), 74–80.
Janeway Jr., C. A. (1992). The immune system evolved to discriminate infectious nonself from noninfectious self. Immunology Today, 13(1), 11–16. https://doi.org/10.1016/0167-5699(92)90198-G
Jiang, Y., Gong, F. L., Zhao, G. B., & Li, J. (2014). Chrysin suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats. International Journal of Molecular Sciences, 15, 12270–12279. https://doi.org/10.3390/ijms150712270
Johnson, R. M. (2015). Honey bee toxicology. Annual Review of Entomology, 60, 415–434.
Jordan, M. A., & Baxter, A. G. (2008) Quantitative and qualitative approaches to GOD: the first 10 years of the clonal selection theory. Immunology & Cell Biology, 86(1), 72–79. https://doi.org/10.1038/sj.icb.7100140
Josefowicz, S. Z., Lu, L. F., & Rudensky, A. Y. (2012). Regulatory T cells: Mechanisms of differentiation and function. Annual Review of Immunology, 30, 531–564. https://doi.org/10.1146/annurev.immunol.25.022106.141623
Jull, A. B., Cullum, N., Dumville, J. C., Westby, M. J., Deshpande, S., & Walker, N. (2015). Honey as a topical treatment for wounds. The Cochrane Database of Systematic Reviews, 3, CD005083. https://doi.org/10.1002/14651858.CD005083.pub4
Kadir, E. A., Sulaiman, S. A., Yahya, N. K., & Othman, N. H. (2013). Inhibitory effects of Tualang honey on experimental breast cancer in rats: A preliminary study. Asian Pacific Journal of Cancer Prevention, 14(4), 2249–2254. https://doi.org/10.7314/apjcp.2013.14.4.2249
Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K. J., Podack, E. R., Zinkernagel, R. M., & Hengartner, H. (1994). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature, 369, 31–37. https://doi.org/10.1038/369031a0
Kalsum, N., Sulaeman, A., Setiawan, B., & Wibawan, I. W. T. (2017). Efek propolis cair Trigona spp. terhadap respons imun tikus sprague dawley yang diinfeksi Staphylococcus aureus. Jurnal Gizi Dan Pangan, 12(1), 23–30. https://doi.org/10.25182/jgp.2017.12.1.23-30
Kamaratos, A. V., Tzirogiannis, K. N., Iraklianou, S. A., Panoutsopoulos, G. I., Kanellos, I. E., & Melidonis, A. I. (2014). Manuka honey-impregnated dressings in the treatment of neuropathic diabetic foot ulcers. International Wound Journal, 11(3), 259–263. https://doi.org/10.1111/j.1742-481X.2012.01082.x
Kapat, A., Jung, J.K., & Park, Y.H. (1998). Improvement of extracellular recombinant glucose oxidase production in fed-batch culture of Saccharomyces cerevisiae: Effect of different feeding strategies. Biotechnology Letters, 20(4), 319–323. https://doi.org/10.1023/A:1005354608653
Kato, L. M., Kawamoto, S., Maruya, M., & Fagarasan, S. (2014). The role of the adaptive immune system in regulation of gut microbiota. Immunological Reviews, 260(1), 67–75. https://doi.org/10.1111/imr.12185
Kato, A., Onodera, M., & Ishijima, Y. (1988). Effect of royal jelly on development of genital organs in male mice. Journal of Tokyo Veterinary Animal Science, 35, 1–4.
Kawamura, J. (1961). Influence of gelee royale on embryos. Journal of Showa Medical Association, 20, 1465–1471.
Keyt, B. A., Baliga, R., Sinclair, A. M., Carroll, S. F., & Peterson, M. S. (2020). Structure, function, and therapeutic use of IgM antibodies. Antibodies, 9(4), 1–35. https://doi.org/10.3390/antib9040053
Khairinal. (2012). Efek kurkumin terhadap proliferasi sel limfosit dari limpa mencit C3H bertumor payudara secara in vitro [Skripsi]. Universitas Indonesia.
Khazaei, M., Ansarian, A., & Ghanbari, E. (2018). New findings on biological actions and clinical applications of royal jelly: A review. Journal of Dietary Supplements, 15(5), 757–775. https://doi.org/10.1080/19390211.2017.1363843
Killick, J., Morisse, G., Sieger, D., & Astier, A.L. (2018). Complement as a regulator of adaptive immunity. Seminars in Immunopathology, 40(1), 37–48. https://doi.org/10.1007/s00281-017-0644-y
Kim, H. H., Bae, Y., & Kim, S. H. (2013). Galangin attenuates mast cell-mediated allergic inflammation. Food and Chemical Toxicology, 57, 209–216. https://doi.org/10.1016/j.fct.2013.03.015
Kiran, G., Karthik, L., Shree Devi, M. S., Sathiyarajeswaran, P., Kanakavalli, K., Kumar, K. M., & Ramesh Kumar, D. (2022). In silico computational screening of Kabasura Kudineer—Official Siddha formulation and JACOM against SARS-CoV-2 spike protein. Journal of Ayurveda and Integrative Medicine, 13(1), 100324–100331. https://doi.org/10.1016/j.jaim.2020.05.009
Kramer, K. J., Tager, H. S., Childs, C. N., & Speirs, R. D. (1977). Insulin like hypoglycemic and immunological activities in honeybee royal jelly. Journal of Insect Physiology, 23(4), 293–295. https://doi.org/10.1016/0022-1910(77)90044-0
Krol, W., Bankova, V., Sforcin, J. M., Szliszka, E., Czuba, Z., & Kuropatnicki, A. K. (2013). Propolis: Properties, application, and its potential. Evidence-Based Complementary and Alternative Medicine, 7(3), 160–167. https://doi.org/10.1155/2013/807578
Kseibati, M. O., Sharawy, M. H., & Salem, H. A. (2020). Chrysin mitigates bleomycin-induced pulmonary fibrosis in rats through regulating inflammation, oxidative stress, and hypoxia. International Immunopharmacology, 89(9), 2148–2154. https://doi.org/10.1016/j.intimp.2020.107011
Kucuk, M., Kolayli, S., Karaoglu, S., Ulusoy, E., Baltaci, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100(2), 526–534. https://doi.org/10.1016/j.foodchem.2005.10.010
Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., & Popov, S. (1999). Antibacterial, antifungal, and antiviral activity of propolis of different geographic origin. Journal of Ethnopharmacology, 64(3), 235–240. https://doi.org/10.1016/s0378-8741(98)00131-7
Kumar, N., Ahmad, M. K. K., Dang, R., & Husain, A. (2008). Antioxidant and antimicrobial activity of propolis from Tamil Nadu zone. Journal of Medicinal Plants Research, 2(12), 361–364. https://doi.org/10.1155/2013/308249
Kumar, G. R., Reybroeck, W., Van Veen, J. W., & Gupta, A. (2014). Taxonomy and distribution of different honeybee species. Dalam Beekeeping for poverty alleviation and livelihood security (76–83). Springer. https://doi.org/10.1007/978-94-017-9199-1_2
Kumar, R., Sharma, A., Pattnaik, A. K., & Varadwaj, P. K. (2010). Stem cells: An overview with respect to cardiovascular and renal disease. Journal of Natural Science, Biology and Medicine, 1(1), 43–52. https://doi.org/10.4103/0976-9668.71674
Kwakman, P. H. S., & Zaat, S. A. J. (2012). Antibacterial components of honey. IUBMB Life, 64(1), 48–55. https://doi.org/10.1002/iub.578
Kwan, W. H., van der Touw, W., & Heeger, P. S. (2012). Complement regulation of T cell immunity. Immunologic Research, 54(1–3), 247–253. https://doi.org/10.1007/s12026-012-8327-1
Kwong, W. K., Mancenido, A. L., & Moran, N. A. (2017). Immune system stimulation by the native gut microbiota of honey bees. Royal Society Open Science, 4(2), 1–9. https://doi.org/10.1098/rsos.170003
Lackey, D. E., & Olefsky, J. M. (2016). Regulation of metabolism by the innate immune system. Nature Reviews Endocrinology, 12(1), 15–28. https://doi.org/10.1038/nrendo.2015.189
Lee, J.H., Park, J.H., Cho, M.H., & Lee, J. (2012). Flavone reduces the production of virulence factors, staphyloxanthin and alpha-hemolysin, in Staphylococcus aureus. Current Microbiology, 65(6), 726–732. https://doi.org/10.1007/s00284-012-0229-x
Lee, S.J., Yoon, J.H., & Song, K.S. (2007). Chrysin inhibited stem cell factor (SCF)/c-Kit complex-induced cell proliferation in human myeloid leukemia cells. Biochemical Pharmacology, 74(2), 215–225. https://doi.org/10.1016/j.bcp.2007.04.011
Laidlaw, B. J., Craft, J. E., & Kaech, S. M. (2016). The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nature Reviews Immunology, 16(2), 102–111. https://doi.org/10.1038/nri.2015.10
Lercker, G., Caboni, M. F., Conti, L. S., Ruini, F., & Giordani, G. (1981). Components of royal jelly: I. Identification of the organic acids. Lipids, 16(11), 912–919. https://doi.org/10.1007/BF02534997
Lercker, G., Caboni, M. F., Conti, L. S., Ruini, F., & Giordani, G. (1982). Components of royal jelly: II. The lipid fraction, hydrocarbons and sterols. Journal of Apicultural Research, 21(3), 178–184. https://doi.org/10.1080/00218839.1982.11100538
Lercker, G., Savioli, S., Vecchi, M. A., Sabtini, A. G., Nanetti, A., & Piana, L. (1986). Carbohydrate determination of royal jelly by high resolution gas chromatography (HRGC). Food Chemistry, 19(4), 255–264. https://doi.org/10.1016/0308-8146(86)90049-X
Li, H., Wu, F., Tan, J., Wang, K., Zhang, C., Zheng, H., & Hu, F. (2016). Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components. Journal of Pharmaceutical and Biomedical Analysis, 122, 21–28. https://doi.org/10.1016/j.jpba.2016.01.040
Lim, S.M., Jeong, J.J., Choi, H.S., Chang, H.B., & Kim, D.H. (2016). Mangiferin corrects the imbalance of Th17/Treg cells in mice with TNBS-induced colitis. International Immunopharmacology, 34, 220–228. https://doi.org/10.1016/j.intimp.2016.03.004
Lin, T., Matsuzaki, G., Yoshida, H., Kobayashi, N., Kenai, H., Omoto, K., & Nomoto, K. (1994). CD3-CD8+ intestinal intraepithelial lymphocytes (IEL) and the extrathymic development of IEL. European Journal of Immunology, 24(5), 1080-1087. https://doi.org/10.1002/eji.1830240511
Lin, Y., Shi, R., Wang, X., & Shen, H.-M. (2008). Luteolin, a flavonoid with potential for cancer prevention and therapy. Current Cancer Drug Targets, 8(7), 634–646. https://doi.org/10.2174/156800908786241050
Listiani, N., & Susilawati, Y. (2013). Potensi tumbuhan sebagai immunostimulan. Farmaka, 17(2), 1–15.
Lisnyak, Y. V., & Martynov, A. V. (2018). Docking study of molecular mechanism behind the quercetin inhibition of Mycobacterium tuberculosis urease. Annals of Mechnikov Institute, 2(5), 40–47.
Liu, J., Liu, G., Chen, Z., Zheng, A., Cai, H., Chang, W., Li, C., Chen, J., & Wu, Z. (2020). Effects of glucose oxidase on growth performance, immune function, and intestinal barrier of ducks infected with Escherichia coli O88. Poultry Science, 99(12), 6549–6558. https://doi.org/10.1016/j.psj.2020.09.038
Liu, J. R., Yang, Y. C., Shi, L. S., & Peng, C. C. (2008). Antioxidant properties of royal jelly associated with larval age and time of harvest. Journal of Agricultural and Food Chemistry, 56(23), 11447–11452. https://doi.org/10.1021/jf802494e
Liu, C. C., Walsh, C. M., & Young, J. D. (1995a). Perforin: Structure and function. Immunology Today, 16(4), 194–201. https://doi.org/10.1016/0167-5699(95)80121-9
Liu, C. C., Persechini, P. M., & Young, J. D. (1995b). Perforin and lymphocyte-mediated cytolysis. Immunological Reviews, 146, 145–175. https://doi.org/10.1111/j.1600-065x.1995.tb00688.x
Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini-Reviews in Medicinal Chemistry, 9(1), 31–59. https://doi.org/10.2174/138955709787001712
Majtan, J. (2014). Honey: An immunomodulator in wound healing. Wound Repair and Regeneration, 22(2), 187–192. https://doi.org/10.1111/wrr.12117
Majtan, J., Bohova, J., Garcia-Villalba, R., Tomas-Barberan, F. A., Madakova, Z., Majtan, T., Majtan, V., & Klaudiny, J. (2013). Fir honey dew honey flavonoids inhibit TNF-a induced MMP-9 expression in human keratinocytes: A new action of honey in wound healing. Archives of Dermatological Research, 305(7), 619–627. https://doi.org/10.1007/s00403-013-1385-y
Majtan, J., Kumar, P., Majtan, T., Walls, A. F., & Klaudiny, J. (2009). Effect of honey and its major royal jelly protein 1 on cytokine MMP-9 mRNA transcripts in human keratinocytes. Experimental Dermatology, 19(8), e73–e79. https://doi.org/10.1111/j.1600-0625.2009.00994.x
Makhloufi, C., Kerkvliet, J. D., D'albore, G. R., Choukri, A., & Samar, R. (2010). Characterization of Algerian honeys by palynological and physico-chemical methods. Apidologie, 41, 509–521.
Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 14(5), 187–196. https://doi.org/10.1016/j.phytochem.2017.09.016
Marcucci, M. (1995). Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie, 26(2), 83–99. https://doi.org/10.1007/978-3-319-59689-1_7
Masad, R. J., Haneefa, S. M., Mohamed, Y. A., Al-Sbiei, A., Bashir, G., Fernandez-Cabezudo, M. J., & Al-Ramadi, B. K. (2021). The immunomodulatory effects of honey and associated flavonoids in cancer. Nutrients, 13(4), 121–128. https://doi.org/10.3390/nu13041269
McLoone, P., Warnock, M., & Fyfe, L. (2015). Honey: An immunomodulatory agent for disorders of the skin. Food and Agricultural Immunology, 27(3), 338–349. https://doi.org/10.1080/09540105.2015.1104653
Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature, 449, 819–826. https://doi.org/10.1038/nature06246
Meena, N. L., Verma, P., Pande, R., Kumar, M., Watts, A., & Gupta, O. (2020). Bioavailability and nutritional analysis of flavonoids. Dalam Plant phenolics in sustainable agriculture (135–156). Springer. https://doi.org/10.1007/978-981-15-4890-1_6
Menezes da Silveira, C. C. S., Luz, D. A., da Silva, C. C. S., Prediger, R. D. S., Martins, M. D., Martins, M. A. T., Fontes-Junior, E. A., & Maia, C. S. F. (2021). Propolis: A useful agent on psychiatric and neurological disorders? A focus on CAPE and pinocembrin components. Medicinal Research Reviews, 41(2), 1195–1215. https://doi.org/10.1002/med.21757
Mesaik, M. A., Dastagir, N., Uddin, N., Rehman, K., & Azim, M. K. (2015). Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides. Journal of Agricultural and Food Chemistry, 63(1), 177–184. https://doi.org/10.1021/jf505131p
Meri, S., Morgan, B. P., Davies, A., Daniels, R. H., Olavesen, M. G., Waldmann, H., & Lachmann, P. J. (1990). Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology, 71(1), 1–9.
Mihajlovic, D., Rajkovic, I., Chinou, I., & Colic, M. (2013). Dose-dependent immunomodulatory effects of 10-hydroxy-2-decenoic acid on human monocyte-derived dendritic cells. Journal of Functional Foods, 5(2), 838–846. https://doi.org/10.1016/j.jff.2013.01.031
Mihajlovic, D., Vucevic, D., Chinou, I., & Colic, M. (2014). Royal jelly fatty acids modulate proliferation and cytokine production by human peripheral blood mononuclear cells. European Food Research and Technology, 238(5), 881–887. https://doi.org/10.1007/s00217-014-2154-7
Moesby, L., Jensen, S., Hansen, E. W., & Christensen, J. A. (1999). A comparative study of Mono Mac 6 cells, isolated mononuclear cells and Limulus amoebocyte lysate assay in pyrogen testing. International Journal of Pharmacology, 191(2), 141–149. https://doi.org/10.1016/s0378-5173(99)00294-x
Moniruzzaman, M., Khalil, M., Sulaiman, S., & Gan, S. (2012). Advances in the analytical methods for determining the antioxidant properties of honey: A review. African Journal of Traditional, Complementary and Alternative Medicines, 9(1), 36–42. https://doi.org/10.4314/ajtcam.v9i1.5
Montecino-Rodriguez, E., Berent-Maoz, B., & Dorshkind, K. (2013). Causes, consequences, and reversal of immune system aging. Journal of Clinical Investigation, 123(3), 958–965. https://doi.org/10.1172/JCI64096
Monti, M., Berti, E., Carminati, G., & Cusini, M. (1983). Occupational and cosmetic dermatitis from propolis. Contact Dermatitis, 9(2), 163. https://doi.org/10.1111/j.1600-0536.1983.tb04341.x
Moore, L. J., Somamoto, T., Lie, K. K., Dijkstra, J. M., & Hordvik, I. (2005). Characterisation of salmon and trout CD8a and CD8b. Molecular Immunology, 42, 1225–1234. https://doi.org/10.1016/j.molimm.2004.11.017
Moriyama, T., Yanagihara, M., Yano, E., Kimura, G., Seishima, M., Tani, H., Kanno, T., Nakamura-Hirota, T., Hashimoto, K., Tatefuji, T., Ogawa, T., & Kawamura, Y. (2013). Hypoallergenicity and immunological characterization of enzyme-treated royal jelly from Apis mellifera. Bioscience, Biotechnology and Biochemistry, 77(4), 789–795. https://doi.org/10.1271/bbb.120924
Mu, S. Q., Li, N., Yan, J., Zheng, X., Ma, Y., Li, Q. J., & Zhang, C. H. (2018). Effect of glucose oxidase on the growth performance and serum biochemical indexes of piglets. China Animal Husbandry & Veterinary Medicine, 45, 2212–2218.
Murtaza, G., Karim, S., Akram, M. R., Khan, S. A., Azhar, S., Mumtaz, A., & Bin Asad, M. H. (2014). Caffeic acid phenethyl ester and therapeutic potentials. BioMed Research International, 2014, 145342. https:/doi.org/10.1155/2014/145342
Najafi, M., Hashemi Goradel, N., Farhood, B., Salehi, E., Nashtaei, M. S., Khanlarkhani, N., Khezri, Z., Majidpoor, J., Abouzaripour, M., Habibi, M., Kashani, I. R., & Mortezaee, K. (2019). Macrophage polarity in cancer: A review. Journal of Cellular Biochemistry, 120(3), 2756–2765. https://doi.org/10.1002/jcb.27646
Nagai, T., & Inoue, R. (2004). Preparation and the functional properties of water extract and alkaline extract of royal jelly. Food Chemistry, 84, 181–186. https://doi.org/10.1016/S0308-8146(03)00198-5
Nagai, T., Sakai, M., Inoue, R., Inoue, H., & Suzuki, N. (2001). Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chemistry, 75, 237–240. https://doi.org/10.1016/S0308-8146(01)00193-5
Naidoo, N., Molan, P., Litter, R., Mok, G., Jameson, M., & Round, G. (2011). A phase II randomized controlled trial of Manuka honey as a prophylaxis against radiation induced dermatitis in breast cancer patients. European Journal of Cancer, 47(1), S367. https://doi.org/10.1016/S0959-8049(11)71566-0
Nakajin, S., Okiyama, K., Yamashita, S., Akiyama, Y., & Shinoda, M. (1982). Effect of royal jelly on experimental hypercholesterolemia in rabbits. Yakugaku Zasshi, 36, 65–69. (in Japanese)
Nakano, Y., Nakamura, S., Hirata, M., Harada, K., Ando, K., Tabuchi, T., & Matunaga, I., Oda, H. (1998). Immune function and lifestyle of taxi drivers in Japan. Industrial Health, 36(1), 32–39. https://doi.org/10.2486/indhealth.36.32
Nguyen, D. T., Orgill, D. P., & Murphy, G. F. (2009). The pathophysiologic basis for wound healing and cutaneous regeneration. Dalam D. P. Orgill & C. Blanco (Ed.), Biomaterials for treating skin loss (25–57). Woodhead Publishing. https://doi.org/10.1533/9781845695545.1.25
Natarajan, K., Singh, S., Burke Jr., T. R., Grunberger, D., & Aggarwal B. B. (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kB. Proceedings of the National Academy of Sciences (Vol. 93, 9090–9095). doi: 10.1073/pnas.93.17.9090
Natarajan, O., Angeloni, J. T., Bilodeau, M. F., Russi, K. E., Dong, Y., & Cao, M. (2021). The immunomodulatory effects of royal jelly on defending against bacterial infections in the Caenorhabditis elegans model. Journal of Medicinal Food, 24(4), 358–369. https://doi.org/10.1089/jmf.2020.0050
Nigussie, K., Subramanian, P., & Mebrahtu, G. (2012). Physicochemical analysis of Tigray honey: An attempt to determine major quality markers of honey. Bulletin of the Chemical Society of Ethiopia, 26, 127–133. http://dx.doi.org/10.4314/bcse.v26i1.14
Nishitani, Y., Yamamoto, K., Yoshida, M., Azuma, T., Kanazawa, K., Hashimoto, T., & Mizuno, M. (2013). Intestinal anti-inflammatory activity of luteolin: Role of the aglycone in NF-kB inactivation in macrophages co-cultured with intestinal epithelial cells. BioFactors, 39(5), 522–533. https://doi.org/10.1002/biof.1091
Nikaein, D., Khosravi, A. R., Moosavi, Z., Shokri, H., Erfanmanesh, A., Ghorbani-Choboghlo, H., & Bagheri, H. (2014). Effect of honey as an immunomodulator against invasive aspergillosis in BALB/c mice. Journal of Apicultural Research, 53(1), 84–90. https://doi.org/10.3896/IBRA.1.53.1.08
Nooh, H. Z., & Nour-Eldien, N. M. (2016). The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochemica, 118(6), 588–595. https://doi.org/10.1016/j.acthis.2016.06.006
Novitasari, C. (2019). Analisis sarang lebah madu dalam geometri matematika dan Al-Quran surat An-Nahl ayat 68-69. Skripsi, Universitas Islam Negeri Raden.
Novo, E., & Parola, M. (2012). The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair, 5(Suppl. 1), S4. https://doi.org/10.1186/1755-1536-5-S1-S4
Olgierd, B., Kamila, Z., Anna, B., & Emilia, M. (2021). The pluripotent activities of caffeic acid phenethyl ester. Molecules, 26(5), 1335. https://doi.org/10.3390/molecules26051335
Omene, C., Kalac, M., Wu, J., Marchi, E., Frenkel, K., & O'Connor, O. (2013). Propolis and its active component, caffeic acid phenethyl ester (CAPE), modulate breast cancer therapeutic targets via an epigenetically mediated mechanism of action. Journal of Cancer Science & Therapeutics, 5(10), 334–342.
Orsolic, N., & Jazvinscak Jembrek, M. (2024). Royal jelly: Biological action and health benefits. International Journal of Molecular Sciences, 25(11), 6023. https://doi.org/10.3390/ijms25116023
Palaniyar, N., Nadesalingam, J., & Reid, K. B. (2002). Pulmonary innate immune proteins and receptors that interact with gram-positive bacterial ligands. Immunobiology, 205, 575–594. https://doi.org/10.1078/0171-2985-00156
Park, Y. K., Alencar, S. M., & Aguiar, C. L. (2002). Botanical origin and chemical composition of Brazilian propolis. Journal of Agricultural and Food Chemistry, 50(9), 2502–2506. https://doi.org/10.1021/jf011432b
Pasparakis, M., Haase, I., & Nestle, F. O. (2014). Mechanisms regulating skin immunity and inflammation. Nature Reviews Immunology, 14(5), 289–301. https://doi.org/10.1038/nri3646
Patel, D. K., Patel, K., Gadewar, M., & Tahilyani, V. (2012). Pharmacological and bioanalytical aspects of galangin: A concise report. Asian Pacific Journal of Tropical Biomedicine, 2(1), S449–S455. https://doi.org/10.1016/S2221-1691(12)60205-6
Pavlova, T., Dimov, I., Kalevska, T., & Nakov, G. (2018). Quality characteristics of honey: A review. Proceedings of University of Ruse, 57(9), 31–37.
Picchietti, S., Guerra, L., Selleri, L., Buonocore, F., Abelli, L., Scapigliati, L., Mazzini, M., & Fausto, A. M. (2008). Compartmentalisation of T cells expressing CD8a and TCRb in developing thymus of sea bass Dicentrarchus labrax (L.). Developmental & Comparatove Immunology, 32(2), 92–99. https://doi.org/10.1016/j.dci.2007.04.002
Pick, A., Müller, H., Mayer, R., Haenisch, B., Pajeva, I. K., Weigt, M., Bönisch, H., Müller, C. E., & Wiese, M. (2011). Structure–activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic & Medicinal Chemistry, 19, 2090–2102. https://doi.org/10.1016/j.bmc.2010.12.043
Pietta, P. G., Gardana, C., & Pietta, A. M. (2002). Analytical methods for quality control of propolis. Fitoterapia, 73(1), S7–S20. https://doi.org/10.1155/2013/308249
Pinca, Djati, M. S., & Rifa’I, M. (2013). Analisis mobilisasi sel T CD4+ dan CD8+ pada timus ayam pedaging pasca infeksi Salmonella typhimurium dan pemberian simplisia Polyscias obtuse. Jurnal Biotropika, 1(1), 27–32.
Pooladvand, P., Kim, P. S., & Fazekas de St Groth, B. (2021). The role of antigen-competitive dynamics in regulating the immune response. Bulletin of Mathematical Biology, 83(5), 1–22. https://doi.org/10.1007/s11538-021-00867-7
Pourtallier, J., Davico, R., & Rognone, M. C. (1990). Les analyses dans le contrôle de pureté de la gelée royale. Abeille de France et l’Apiculteur, 753, 405–407.
Prakoeswa, F. R. (2020). Peranan sel limfosit dalam imunologi: Artikel review. Jurnal Sains Dan Kesehatan, 2(4), 525–537.
Pratiwi, K. N., Yuwindry, I., & Dhea, O. (2020). Studi farmakovigilans efek samping multivitamin di masyarakat Palangka Raya. Journal of Pharmaceutical Care and Science, 1(1), 28–35. http://repository.unism.ac.id/id/eprint/1723
Putri, N. A., & Asparini, R. R. (2017). Peran madu dalam menghambat pertumbuhan bakteri pada luka bakar. Saintika Medika, 13(2), 63.
Quiniou, S. M., Sahoo, M., Edholm, E. S., Bengten, E., & Wilson, M. (2011). Channel catfish CD8a and CD8B co-receptors: characterization, expression and polymorphism. Fish and Shellfish Immunology, 30, 894–901. http://dx.doi.org/10.1016/j.fsi.2011.01.011
Rembold, H. (1965). Biologically active substances in royal jelly. Vitamins and Hormones, 23, 359–382. https://doi.org/10.1016/s0083-6729(08)60385-4
Rahmawati, S., Khaerunnisa, I., Nugraheni, N. I., & Ariyani, R. (2018). Sistem kekebalan tubuh ditinjau dari pandangan Islam dan sains. Prosiding Integrasi Interkoneksi Islam dan Sains, 1(9), 189–192.
Rajendran, P., Jayakumar, T., Nishigaki, I., Ekambaram, G., Nishigaki, Y., Vetriselvi, J., & Sakthisekaran, D. (2013). Immunomodulatory effect of mangiferin in experimental animals with benzo(a)pyrene-induced lung carcinogenesis. International Journal of Biomedical Science, 9(2), 68–74.
Rakha, A., Umar, N., Rabail, R., Butt, M. S., Kieliszek, M., Hassoun, A., & Aadil, R. M. (2022). Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomedicine & Pharmacotherapy, 156, 113945. https://doi.org/10.1016/j.biopha.2022.113945
Rana, S., Mishra, M., Yadav, D., Subramani, S. K., Katare, C., & Prasad, G. (2018). Medicinal uses of honey: A review on its benefits to human health. Progress in Nutrition, 20, 5–14. https://doi.org/10.23751/pn.v20i1-S.6394
Ranneh, Y., Akim, A. M., Hamid, H. A., Khazaai, H., Fadel, A., Zakaria, Z. A., Albujja, M., & Bakar, M. F. A. (2021). Honey and its nutritional and anti-inflammatory value. BMC Complementary Medicine and Therapies, 21, 30. https://doi.org/10.1186/s12906-020-03170-5
Ranzato, E., Martinotti, S., & Burlando, B. (2012). Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: Comparison among different honeys. Wound Repair and Regeneration, 20(5), 778–785. https://doi.org/10.1111/j.1524-475X.2012.00825.x
Ranzato, E., Martinotti, S., & Burlando, B. (2013). Honey exposure stimulates wound repair of human dermal fibroblasts. Burns & Trauma, 1(1), 32–38. https://doi.org/10.4103/2321-3868.113333
Rao, P. V., Krishnan, K. T., Salleh, N., & Gan, S. H. (2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Revista Brasileira de Farmacognosia, 26(5), 657–664. https://doi.org/10.1016/j.bjp.2016.01.012
Rashid, S., Ali, N., Nafees, S., Ahmad, S. T., Arjumand, W., Hasan, S. K., & Sultana, S. (2013). Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicology Mechanisms and Methods, 23, 337–345. https://doi.org/10.3109/15376516.2012.759306
Ratnayani, K., Adhi, S., & Gitadewi. (2008). Penentuan kadar glukosa dan fruktosa madu randu dan madu kelengkeng. Journal of Chemistry, 4(1), 62–70.
Raynaud, A., Ghezali, L., Gloaguen, V., Liagre, B., Quero, F., & Petit, J. M. (2013). Honey-induced macrophage stimulation: AP-1 and NF-kB activation and cytokine production are unrelated to LPS content of honey. International Immunopharmacology, 17, 874–879. https://doi.org/10.1016/j.intimp.2013.09.014
Ribatti, D. (2006). The fundamental contribution of Robert A. Good to the discovery of the crucial role of thymus in mammalian immunity. Immunology, 119(3), 291–295. https://doi.org/10.1111/j.1365-2567.2006.02484.x
Rier, S. E. (2008). Environmental immune disruption: A comorbidity factor for reproduction? Fertility and Sterility, 89(2 Suppl), e103–e108. https://doi.org/10.1016/j.fertnstert.2007.12.040
Robi'aqalbi, R. (2019). Kebenaran dan peranan Al-Qur’an dalam kesempurnaan sistem imun tubuh manusia. Al-I'jaz: Jurnal Studi Al-Qur’an, Falsafah Dan Keislaman, 1(2), 40–55. https://doi.org/10.53563/ai.v1i2.22
Rossano, R., Larocca, M., Polito, T., Perna, A. M., Padula, M. C., Martelli, G., & Riccio, P. (2012). What are the proteolytic enzymes of honey and what do they tell us? A fingerprint analysis by 2-D zymography of unifloral honeys. PLOS ONE, 7(11), e49164. https://doi.org/10.1371/journal.pone.0049164
Sahoo, B. K., Zaidi, A. H., Gupta, P., Mokhamatam, R. B., Raviprakash, N., Mahali, S. K., & Manna, S. K. (2015). A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines. European Journal of Pharmacology, 764, 520–528. https://doi.org/10.1016/j.ejphar.2015.07.046
Saifulhaq. (2016). Pengaruh pemberian ekstrak buah mahkota dewa dosis bertingkat terhadap proliferasi limfosit lien pada mencit BALB/C [Skripsi]. Universitas Diponegoro.
Samarghandian, S., Azimi-Nezhad, M., Farkhondeh, T., & Samini, F. (2017). Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver, and kidney. Biomedicine and Pharmacotherapy, 87, 223–229. https://doi.org/10.1016/j.biopha.2016.12.105
Sabatini, A. G., Marcazzan, G. L., Caboni, M. F., Bogdanov, S., & de Almeida-Muradian, L. B. (2009). Quality and standardisation of royal jelly. Journal of ApiProduction ApiMedical Science, 1, 1–6. https://doi.org/10.3896/IBRA.4.01.1.04
Sabatini, A. G., Marcazzan, G. L., Caboni, M. F., Bogdanov, S., & de Almeida-Muradian, L. B. (2009). Quality and standardisation of royal jelly. Journal of ApiProduction ApiMedical Science, 1, 1–6. https://doi.org/10.3896/IBRA.4.01.1.04
Sampietro, D. A., Sampietro Vattuone, M. M., & Vattuone, M. A. (2016). Immunomodulatory activity of Apis mellifera propolis from the North of Argentina. LWT - Food Science and Technology, 70(2), 9–15. https://doi.org/10.1016/j.lwt.2016.02.028
Sato, K., Hida, S., Takayanagi, H., Yokochi, T., Kayagaki, N., Takeda, K., Yagita, H., Okumura, K., Tanaka, N., Taniguchi, T., & Ogasawara, K. (2001). Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. European Journal of Immunology, 31, 3138–3146. https://doi.org/10.1002/1521-4141(200111)31:11<3138::aid-immu3138>3.0.co;2-b
Sehrawat, S., & Rouse, B. T. (2017). Immunity to infections. In eLS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0000478.pub3
Sela-Culang, I., Kunik, V., & Ofran, Y. (2013). The structural basis of antibody–antigen recognition. Frontiers in Immunology, 4(10), 1–13. https://doi.org/10.3389/fimmu.2013.00302
Senas, K. S., & Linawati, Y. (2012). Pengaruh pemberian madu hutan terhadap proliferasi limfosit pada hewan uji tikus jantan galur wistar. Journal Farmasi dan Komunitas, 9(2), 85–90. https://doi.org/10.24071/jpsc.0075
Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacterial cells in the body. PLOS Biology, 14, e1002533. https://doi.org/10.1371/journal.pbio.1002533
Sforcin, J. M. (2016). Biological properties and therapeutic applications of propolis. Phytotherapy Research, 30(6), 894–905. https://doi.org/10.1002/ptr.5605
Sharma, A., & Rudra, D. (2018). Emerging functions of regulatory T cells in tissue homeostasis. Frontiers in Immunology, 9, 883. https://doi.org/10.3389/fimmu.2018.00883
Shinoda, M., Nakajin, S., Oikawa, T., Sato, K., Kamogawa, A., & Akiyama, Y. (1978). Biochemical studies on vasodilative factor in royal jelly. Yakugaku Zasshi, 98, 139–145. https://doi.org/10.1248/yakushi1947.98.2_139
Sig, A. K., Oz-Sig, O., & Guney, M. (2019). Royal jelly: A natural therapeutic. Ortadogu Tip Dergisi, 11(3), 333–341. https://doi.org/10.21601/ortadogutipdergisi.500434
Simuth, J. (2001). Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie, 32(1), 69–80. https://doi.org/10.1051/apido:2001112
SNI. (2013). Madu. Badan Standarisasi Nasional 3545.
Sokolowska, M., Lukasik, Z. M., Agache, I., Akdis, C. A., Akdis, D., Akdis, M., Barcik, W., Brough, H. A., Eiwegger, T., Eljaszewicz, A., Eyerich, S., Feleszko, W., Gomez-Casado, C., Hoffmann-Sommergruber, K., Janda, J., Jimenez-Saiz, R., Jutel, M., Knol, E. F., Kortekaas Krohn, I., … Untersmayr, E. (2020). Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives. European Journal of Allergy and Clinical Immunology, 75(10), 2445–2476. https://doi.org/10.1111/all.14462
Somamoto, T., Yoshiura, Y., Nakanishi, T., & Ototake, M. (2005). Molecular cloning and characterization of two types of CD8a from ginbuna crucian carp, Carassius auratus langsdorfii. Developmental & Comparatove Immunology, 29, 693–702. https://doi.org/10.1016/j.dci.2004.11.006
Song, H. Y., Kim, W. S., Han, J. M., Seo, H. S., Lim, S. T., & Byun, E. B. (2021). Galangin treatment during dendritic cell differentiation confers tolerogenic properties in response to lipopolysaccharide stimulation. The Journal of Nutritional Biochemistry, 87, 108524.
Spencer, J. P., Vafeiadou, K., Williams, R. J., & Vauzour, D. (2012). Neuroinflammation: Modulation by flavonoids and mechanisms of action. Molecular Aspects of Medicine, 33, 83–97. https://doi.org/10.1016/j.mam.2011.10.016
Sriningsih, & Wibowo, A. E. (2006). Efek pemberian ekstrak etanol herba meniran (Phyllanthus niruri L.) terhadap aktivitas dan kapasitas fagositosis makrofag peritoneum tikus. Artocarpus, 6(2), 91–96
Srisuparbh, D., Klinbunga, S., Wongsiri, S., & Sittipraneed, S. (2003). Isolation and characterization of major royal jelly cDNAs and proteins of the honey bee (Apis cerana). Journal of Biochemistry and Molecular Biology, 36, 572–579. https://doi.org/10.5483/BMBRep.2003.36.6.572
Sudiono, J. (2014). Sistem kekebalan tubuh. Kedokteran EGC, 18–37.
Suetake, H., Araki, K., & Suzuki, Y. (2004). Cloning, expression and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics 56, 368–374. https://doi.org/10.1007/s00251-004-0694-x
Sugiyama, T., Takahashi, K., & Mori, H. (2012). Royal jelly acid, 10-hydroxy-trans-2-decenoic acid, as a modulator of the innate immune responses. Endocrine, Metabolic & Immune Disorders - Drug Targets, 12(4), 368–376. https://doi.org/10.2174/187153012803832530
Suhaenah, A., & Nissa, N. I. A. (2013). Uji aktivitas imunoglobulin M (IgM) kelinci jantan (Oryctolagus cuniculus) akibat pengaruh pemberian produk madu. Jurnal Ilmiah As-Syifaa, 5(2), 176–184. https://doi.org/10.56711/jifa.v5i2.59
Sung, N. Y., Yang, M. S., Song, D. S., Byun, E. B., Kim, J. K., Park, J. H., Song, B. S., Lee, J. W., Park, S. H., Park, H. J., Byun, M. W., Byun, E. H., & Kim, J. H. (2013). The procyanidin trimer C1 induces macrophage activation via NF-kB and MAPK pathways, leading to Th1 polarization in murine splenocytes. European Journal of Pharmacology, 714(3), 218–228. https://doi.org/10.1016/j.ejphar.2013.02.059
Swain, S. L., McKinstry, K. K., & Strutt, T. M. (2012). Expanding roles for CD4+ T cells in immunity to viruses. Nature Reviews Immunology, 12, 136–148. https://doi.org/10.1038/nri3152
Syaikh Shafiyyurrahman Al-Mubarakfuri. (2007). Al-mishbahul munir fi tahdzib tafsir Ibnu Katsir (Vol. 1). Pustaka Ibnu Katsir.
Tafalla, C., Leal, E., Yamaguchi, T., & Fischer, U. (2016). T cell immunity in the teleost digestive tract. Developmental & Comparatove Immunology, 64, 167–177. https://doi.org/10.1016/j.dci.2016.02.019
Takenaka, T., & Echigo, T. (1980). General chemical composition of the royal jelly. Bulletin of the Faculty of Agriculture, Tamagawa University, 20, 71–78.
Tamura, T., Fujii, A., & Kuboyama, N. (1987). Antitumor effect of royal jelly. Folia Pharmacologica Japonica, 89, 73–80.
Tan, K. T., Li, S., Panny, L., Lin, C. C., & Lin, S. C. (2021). Galangin ameliorates experimental autoimmune encephalomyelitis in mice via modulation of cellular immunity. Journal of Immunotoxicology, 18(1), 50–60. https://doi.org/10.1080/1547691X.2021.1890863
Tao, Y., Wang, D., Hu, Y., Huang, Y., Yu, Y., & Wang, D. (2014). The immunological enhancement activity of propolis flavonoids liposome in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine, 7(4), 54–63. https://doi.org/10.1155/2014/483513
Tashkandi, H. (2021). Honey in wound healing: An updated review. Open Life Sciences, 16(1), 1091–1100. https://doi.org/10.1515/biol-2021-0084
Tay, M. Z., Wiehe, K., & Pollara, J. (2019). Antibody-dependent cellular phagocytosis in antiviral immune responses. Frontiers in Immunology, 10(2), 1–18. https://doi.org/10.3389/fimmu.2019.00332
Thorburn, A. N., Macia, L., & Mackay, C. R. (2014). Diet, metabolites, and “Western-lifestyle” inflammatory diseases. Immunity, 40(6), 833–842. https://doi.org/10.1016/j.immuni.2014.05.014
Takahashi, K., Sugiyama, T., Tokoro, S., Neri, P., & Mori, H. (2013). Inhibitory effect of 10-hydroxydecanoic acid on lipopolysaccharide-induced nitric oxide production via translational downregulation of interferon regulatory factor-1 in RAW264 murine macrophages. Biomedical Research, 34(4), 205–214. https://doi.org/10.2220/biomedres.34.205
Terabe, M., & Berzofsky, J. A. (2008). The role of NKT cells in tumor immunity. Advances in Cancer Research, 101, 277–348. https://doi.org/10.1016/S0065-230X(08)00408-9
Timm, M., Bartfelt, S., & Hansen, E. W. (2008). Immunomodulatory effects of honey cannot be distinguished from endotoxin. Cytokine, 42(1), 113–121. https://doi.org/10.1016/j.cyto.2008.01.005
Tiwari, P. C., Chaudhary, M. J., Pal, R., Rishi, K., Kartik, S., & Nath, R. (2021). Pharmacological, biochemical and immunological studies on the protective effect of mangiferin in 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease in rats. Annals of Neurosciences, 28(3–4), 137–149. https://doi.org/10.1177/09727531211051976
Tonks, A., Cooper, R. A., Price, A. J., Molan, P. C., & Jones, K. P. (2001). Stimulation of TNF-alpha release in monocytes by honey. Cytokine, 14(4), 240–242. https://doi.org/10.1006/cyto.2001.0868
Tonks, A. J., Cooper, R. A., Jones, K. P., Blair, S., Parton, J., & Tonks, A. (2003). Honey stimulates inflammatory cytokine production from monocytes. Cytokine, 21(5), 242–247. https://doi.org/10.1016/s1043-4666(03)00092-9
Tonks, A. J., Dudley, E., Porter, N. G., Parton, J., Brazier, J., Smith, E. L., & Tonks, A. (2007). A 5.8 kDa component of Manuka honey stimulates immune cells via TLR4. Journal of Leukocyte Biology, 82(5), 1147–1155. https://doi.org/10.1189/jlb.1106683
Townsend, G. F., Brown, W. H., Felauer, E. E., & Hazlett, B. (1961). Studies on the in vitro antitumor activity of fatty acid IV. The esters of acids closely related to 10-hydroxy-2-decenoic acid from royal jelly against transplantable mouse leukaemia. Canadian Journal of Biochemistry and Physiology, 39, 1765–1770.
Townsend, G. F., Morgan, J. F., & Hazlett, B. (1959). Activity of 10-hydrodecenoic acid from royal jelly against experimental leukaemia and ascitic tumors. Nature, 183, 1270–1271. https://doi.org/10.1038/1831270a0
Usman, A. N., Syam, Y., Natzir, R., Rahardjo, S. P., Hatta, M., Dwiyanti, R., Widaningsih, Y., Ainurafiq, & Prihantono. (2016). The effect of giving Trigona honey and honey propolis Trigona to the mRNA Foxp3 expression in mice Balb/c strain induced by Salmonella Typhi. American Journal of Biomedical Research, 4(2), 42–45. https://doi.org/10.12691/ajbr-4-2-3
Utzeri, V. J., Schiavo, G., Ribani, A., et al. (2018). Entomological signatures in honey: An environmental DNA metabarcoding approach can disclose information on plant-sucking insects in agricultural and forest landscapes. Scientific Reports, 8, 9996. https://doi.org/10.1038/s41598-018-27933-w
Vajdi, M., Karimi, A., Karimi, M., Farhangi, M. A., & Askari, G. (2023). Effects of luteolin on sepsis: A comprehensive systematic review. Phytomedicine, 113, 154734. https://doi.org/10.1016/j.phymed.2023.154734
Veillette, A., Bookman, M. A., Horak, E. M., & Bolen, J. B. (1988). The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell, 55(2), 301–308. https://doi.org/10.1016/0092-8674(88)90053-0
Venet, F., & Monneret, G. (2018). Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews Nephrology, 14(2), 121–137. https://doi.org/10.1038/nrneph.2017.165
Vinuesa, C. G., Linterman, M. A., Yu, D., & MacLennan, I. C. (2016). Follicular helper T cells. Annual Review of Immunology, 34, 335–368. https://doi.org/10.1146/annurev-immunol-041015-055605
Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Alvarez, J. A. (2008). Functional properties of honey, propolis, and royal jelly. Journal of Food Science, 73(9), R117–R124. https://doi.org/10.1111/j.1750-3841.2008.00966.x
Voisin, G. A. (1976). Biological roles of rodent anaphylactic IgG1 antibodies. Agents and Actions, 6, 5. https://doi.org/10.1007/BF01972180
Wagner, H. (1999). Imunomodulatory agents from plants. Birkahauser.
Walker, P., & Crane, E. (1987). Constituents of propolis. Apidologie, 18, 327–334. https://doi.org/10.1016/j.sjbs.2018.08.013
Wang, Y. J., Fletcher, R., Yu, J., & Zhang, L. (2018). Immunogenic effects of chemotherapy-induced tumor cell death. Genes & Diseases, 5(3), 194–203. https://doi.org/10.1016/j.gendis.2018.05.003
Wang, S. Y., Chang, C. Y., & Chen, C. W. (2018). Effects of vinegar–egg on growth inhibition, differentiation of human leukemic U937 cells and its immunomodulatory activity. Journal of Food and Drug Analysis, 26(2), 731–740. https://doi.org/10.1016/j.jfda.2017.10.007
Wang, J., & Li, Q. X. (2011). Chemical composition, characterization, and differentiation of honey botanical and geographical origins. Advances in Food and Nutrition Research, 62, 89–137. https://doi.org/10.1016/B978-0-12-385989-1.00003-X
Watanabe, K., Shinmoto, H., Kobori, M., Tsushida, T., Shinohara, K., & Kanaeda, J. (1998). Stimulation of cell growth in the U-937 human myeloid cell line by honey royal jelly protein. Cytotechnology, 26, 23–27. https://doi.org/10.1023/A:1007928408128
Weuanggi, D. A. (2020). Aktivitas imunomodulator sediaan self nano emulsifying drug delivery system (Snedds) propolis terhadap aktivitas fagositosis makrofag pada tikus wistar jantan [Skripsi]. Universitas Islam Indonesia.
Widgerow, A. D. (2011). Chronic wound fluid–thinking outside the box. Wound Repair and Regeneration, 19(3), 287–291. https://doi.org/10.1111/j.1524-475X.2011.00683.x
Wineri, E., Rasyid, R., & Alioes, Y. (2014). Perbandingan daya hambat madu alami dengan madu kemasan secara in vitro terhadap Streptococcus beta hemoliticus Group A sebagai penyebab faringitis. Jurnal Kesehatan Andalas, 3(3), 215–224. https://doi.org/10.25077/jka.v3i3.140
Wlaschek, M., & Scharffetter-Kochanek, K. (2005). Oxidative stress in chronic venous leg ulcers. Wound Repair and Regeneration, 13(5), 452–461. https://doi.org/10.1111/j.1067-1927.2005.00065.x
Wollenweber, E., Hausen, B. M., & Greenaway, W. (1990). Phenolic constituents and sensitizing properties of propolis, poplar balsam and balsam of Peru. Bulletin de Liaison—Groupe Polyphenols, 15, 112–120. https://doi.org/10.1155/2013/308249
Wolska, K., Gorska, A., Antosik, K., & Lugowska, K. (2019). Immunomodulatory effects of propolis and its components on basic immune cell functions. Indian Journal of Pharmaceutical Sciences, 81(4), 575–588. https://doi.org/10.36468/pharmaceutical-sciences.548
Wulan, & Agusni, I. (2015). Immunomodulators for a variety of viral infections of the skin. Periodical of Dermatology and Venereology, 27(1), 63–39. https://doi.org/10.20473/bikk.V27.1.2015.63-69
Wusiman, A., Xu, S., Ni, H., Gu, P., Liu, Z., Zhang, Y., Qiu, T., Hu, Y., Liu, J., Wu, Y., Wang, D., & Lu, Y. (2019). Immunomodulatory effects of Alhagi honey polysaccharides encapsulated into PLGA nanoparticles. Carbohydrate Polymers, 211, 217–226. https://doi.org/10.1016/j.carbpol.2019.01.102
Xia, Y., Lian, S., Khoi, P. N., Yoon, H. J., Han, J. Y., Chay, K. O., Kim, K. K., & Jung, Y. D. (2015). Chrysin inhibits cell invasion by inhibition of Recepteur d’origine Nantais via suppressing early growth response-1 and NF-kappaB transcription factor activities in gastric cancer cells. International Journal of Oncology, 46(4), 1835–1843. https://doi.org/10.3892/ijo.2015.2847
Xia, N., Chen, G., Liu, M., Ye, X., Pan, Y., Ge, J., Mao, Y., Wang, H., Wang, J., & Xie, S. (2016). Anti-inflammatory effects of luteolin on experimental autoimmune thyroiditis in mice. Experimental and Therapeutic Medicine, 12(6), 4049–4054. https://doi.org/10.3892/etm.2016.3854
Xiao, J., Zhai, H., Yao, Y., Wang, C., Jiang, W., Zhang, C., Simard, A. R., Zhang, R., & Hao, J. (2014). Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neuroscience, 262, 156–164. https://doi.org/10.1016/j.neuroscience.2014.01.004
Yaacob, M., Rajab, N. F., Shahar, S., & Sharif, R. (2018). Stingless bee honey and its potential value: A systematic review. Food Research, 2(2), 124–133. https://doi.org/10.26656/fr.2017.2(2).212
Yatsunami, K., & Echigo, T. (1985). Antibacterial action of royal jelly. Bulletin of the Faculty of Agriculture, The Tamagawa University, 25, 13–22.
Yuan, J., Liu, J., Hu, Y. L., Fan, Y., Wang, D., Guo, L., Nguyen, T. L., Zhao, X., Liu, X., Liu, C., & Wu, Y. (2012). The immunological activity of propolis flavonoids liposome on the immune response against ND vaccine. International Journal of Biological Macromolecules, 51(4), 400–405. https://doi.org/10.1016/j.ijbiomac.2012.06.002
Yuksel, P. (2011). Comparison of the VersaTrek and BACTEC MGIT 960 systems for the contamination rate, time of detection, and recovery of mycobacteria from clinical specimens. African Journal of Microbiology Research, 5(9), 985–989.
Yulianti, R., Pramono, A., Citra Pradana, D. L., & Sahlan, M. (2020). The effectiveness of tetragonola honey combinations Aff.Biroi and royal jelly as immunomodulators: Immunomodulators modelling in facing the plague of COVID-19. Jurnal Profesi Medika: Jurnal Kedokteran Dan Kesehatan, 7(2), 56–62.
Yuliarto, H. (2015). Latihan fisik dan kekebalan tubuh. Medikora, 4(1), 47–65.
Zahran, A. M., Elsayh, K. I., Saad, K., Eloseily, E. M. A., Osman, N. S., Alblihed, M. A., Badr, G., & Mahmoud, M. H. (2016). Effects of royal jelly supplementation on regulatory T cells in children with SLE. Food & Nutrition Research, 1(5), 1–10. https://doi.org/10.3402/fnr.v60.32963
Zamoyska, R. (1994). The CD8 coreceptor revisited: One chain good, two chains better. Immunity, 1(4), 243–246. https://doi.org/10.1016/1074-7613(94)90075-2
Zargar, H. R., Hemmati, A. A., Ghafourian, M., Arzi, A., Rezaie, A., & Javad-Moosavi, S. A. (2017). Long-term treatment with royal jelly improves bleomycin-induced pulmonary fibrosis in rats. Canadian Journal of Physiology and Pharmacology, 95(1), 23–31. https://doi.org/10.1139/cjpp-2015-0451
Zeedan, G. S. G., Allam, A. M. M., Nasr, S. M., & Aballhamed, A. M. (2014). Evaluation of the efficacy of Egyptian propolis against parapox viruses by production of IFN-y, TNF-a, and immunoglobulin in experimental rats. World Applied Sciences Journal, 31(2), 199–207. https://doi.org/10.5829/idosi.wasj.2014.31.02.82118
Zeng, W., Wu, C., & Dai, Y. (2014). Regulatory effects of luteolin on airway inflammation in asthmatic rats. Zhonghua Yi Xue Za Zhi, 94(32), 2535–2539.
Zhang, S., Shao, Q., Geng, H., & Su, S. (2017). The effect of royal jelly on the growth of breast cancer in mice. Oncology Letters, 14(6), 7615–7621. https://doi.org/10.3892/ol.2017.7078
Zullkiflee, N., Taha, H., & Usman, A. (2022). Propolis: Its role and efficacy in human health and diseases. Molecules, 27, 6120. https://doi.org/10.3390/molecules27186120
Downloads
Published
May 15, 2025
HOW TO CITE
Copyright (c) 2025 National Research and Innovation Agency
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Details about this monograph
ISBN-13 (15)
978-602-6303-66-0












