Templates
KARAKTERISASI GELOMBANG INTERNAL DAN PERCAMPURAN TURBULEN LAUT UNTUK PEMBANGUNAN KEMARITIMAN NASIONAL
Keywords:
oseanografi fisik, gelombang internal, percampuran turbulen, pasang surut, observasi kelautanSynopsis
Perbedaan tinggi muka laut antara Samudera Pasifik dan Samudera Hindia menjadikan perairan Nusantara perlintasan bagi aliran massa air dari Samudera Pasifik menuju Samudera Hindia sepanjang tahun, atau yang dikenal dengan Arus Lintas Indonesia (ARLINDO). Hingga tahun 2010, riset oseanografi fisik di perairan Nusantara sebagian besar hanya berfokus pada dinamika fenomena berfrekuensi rendah, yakni fenomena musiman dan antar-tahunan karakteristik massa air dan sirkulasi ARLINDO dan belum banyak yang berfokus pada riset yang berfrekuensi tinggi dan proses-proses skala kecil. Kondisi ini mengakibatkan kurang intensifnya riset percampuran turbulen massa air dan soliton di tanah air.
Buku Karakterisasi Gelombang Internal dan Percampuran Turbulen Laut untuk Pembangunan Kemaritiman Nasional hadir untuk memberikan solusi permasalahan di atas melalui kajian seputar kondisi dan capaian riset gelombang internal dan percampuran turbulen vertikal massa air di perairan laut di Indonesia serta perspektif riset dan inovasinya di masa mendatang untuk menunjang kegiatan pengelolaan ekosistem kelautan serta keselamatan kegiatan bawah air di Indonesia. Buku ini diharapkan dapat mendorong para periset untuk melanjutkan riset mengenai kajian seputar variabilitas gelombang internal dan percampuran turbulen vertikal massa air beserta dampaknya, terutama di perairan laut Indonesia karena perairan di negara kita menyimpan potensi manfaat yang sangat besar dan dapat menjadi aset bagi pengembangan riset di masa mendatang.
Downloads
Download data is not yet available.
References
Aiki, H., Matthews, J. P., & Lamb, K. G. (2011). Modeling and energetics of tidally generated wave trains in the Lombok Strait: Impact of the Indonesian Throughflow. Journal of Geophysical Research: Oceans, 116(3), 1–17. doi: 10.1029/2010JC006589
Alford, M. H., Gregg, M. C., & Ilyas, M. (1999). Diapycnal mixing in the Banda Sea: Results of the first microstructure measurements in the Indonesian throughflow. Geophysical Research Letters, 26(17), 2741–2744. doi: 10.1029/1999GL002337
Atmadipoera, A. S., Kusmanto, E., Purwandana, A., & Nurjaya, I. W. (2015). Observation of coastal front and circulation in the Northeastern Java Sea, Indonesia. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 7(1), 91–108. doi: 10.29244/jitkt.v7i1.9786
BAPPENAS. (2017). Peta jalan Sustainable Development Goals (SDGs) di Indonesia. In Kementerian PPN/Bappenas. Kementerian Perencanaan Pembangunan Nasional. Retrieved from https://sdgs.bappenas.go.id/website/wp-content/uploads/2021/02/Roadmap_Bahasa-Indonesia_File-Upload.pdf
Bayhaqi, A., Lenn, Y.-D., Surinati, D., Polton, J., Nur, M., Corvianawatie, C., & Purwandana, A. (2019). The variability of Indonesian Throughflow in Sumba Strait and its linkage to the climate events. American Journal of Applied Sciences, 16(4), 118–133. doi: 10.3844/ajassp.2019.118.133
Bourgault, D., Morsilli, M., Richards, C., Neumeier, U., & Kelley, D. E. (2014). Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Continental Shelf Research, 72, 21–33. doi: https://doi.org/10.1016/j.csr.2013.10.019
Chonnaniyah, Osawa, T., & Karang, I. W. G. A. (2019). Study of internal solitary waves feature extraction based on stationary wavelet transform by Sentinel-1a image in Lombok Strait. Ecotrophic, 13(1), 29–40. doi: 10.24843/EJES.2019.v13.i01.p04
Conroy, G. (2021). What we know about the internal waves that may have sunk Indonesia’s submarine may have sunk Indonesia’s submarine. ABC News, 8–9. Retrieved from https://www.abc.net.au/news/science/2021-05-01/indonesian-sunken-submarine-internal-waves-what-do-we-know/100107196
Davis, K. A., & Monismith, S. G. (2011). The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. Journal of Physical Oceanography, 41(11), 2223–2241. doi: 10.1175/2011JPO4344.1
Dietrich, G., Kalle, K., Krauss, W., & Siedler, G. (1975). General Oceanography (2nd ed.). Kiel: John Wiley & Sons, Ltd.
Edinger, E. (2012). Gold mining and submarine tailings disposal. Oceanography, 25(2), 184–199. Retrieved from http://www.jstor.org/stable/24861356
Ffield, A., & Robertson, R. (2008). Temperature finestructure in the Indonesian seas. Journal of Geophysical Research: Oceans, 113(9), 1–19. doi: 10.1029/2006JC003864
Firdaus, M., Rahmawitri, H., Haryoadji, S., Atmadipoera, A. S., Suteja, Y., Yuliardi, A. Y., & Syamsudin, F. (2021). Indirect estimation of turbulent mixing in western route of Indonesian throughflow. IOP Conference Series: Earth and Environmental Science, 944(1). doi: 10.1088/1755-1315/944/1/012059
Gong, Y., Xie, J., Xu, J., Chen, Z., He, Y., & Cai, S. (2022). Spatial asymmetry of nonlinear internal waves in the Lombok Strait. Progress in Oceanography, 202, 102759. https://doi.org/10.1016/j.pocean.2022.102759
Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, R. D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., & Wirasantosa, S. (2010). The Indonesian throughflow during 2004-2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2), 115–128. doi: 10.1016/j.dynatmoce.2009.12.002
Gregg, M. C. (1989). Scaling turbulent dissipation in the thermocline. Journal of Geophysical Research, 94(C7), 9686. doi: 10.1029/jc094ic07p09686
Hatayama, T. (2004). Transformation of the Indonesian throughflow water by vertical mixing and its relation to tidally generated internal waves. Journal of Oceanography, 60(3), 569–585. doi: 10.1023/B:JOCE.0000038350.32155.cb
Horhoruw, S. M., Atmadipoera, A. S., Purba, M., & Purwandana, A. (2015a). Current structure and spatial variation of Indonesian Throughflow in Makassar Strait Under Ewin 2013 (Struktur arus dan variasi spasial Arlindo di Selat Makassar dari Ewin 2013). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 20(2), 87. doi: 10.14710/ik.ijms.20.2.87-100
Horhoruw, S. M., Atmadipoera, A. S., Purba, M., & Purwandana, A. (2015b). Struktur Arus dan Variasi Spasial Arlindo di Selat Makassar dari EWIN 2013. 20(2), 87–100. doi: 10.14710/ik.ijms.20.2.87-100
Iskandar, M. R., Purwandana, A., Surinati, D., & Zheng, W. (2021). Observed features of the water masses in the Halmahera Sea in November 2016. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 26(4), 225–236. doi: 10.14710/ik.ijms.26.4.225-236
Ismail, M. F. A., Budiman, A. S., Basit, A., Yulihastin, E., Ratnawati, H. I., Surinati, D., Purwandana, A., Pranowo, W. S., Mujiasih, S., Hatmaja, R. B., & Avianto, P. (2023). Warming of the upper ocean in the Indonesian Maritime Continent (A. Basit, E. Yulihastin, S. Y. Cahyarini, H. Santoso, W. S. Pranowo, L. Slamet S., & H. A. Belgaman (eds.); pp. 489–496). Singapore: Springer Nature Singapore.
Ismail, M. F. A., Gerhaneu, N. Y., Yulihastin, E., Ratnawati, H. I., & Purwandana, A. (2021). Assessment of marine warming in Indonesia: A case study off the coast of West Sumatra. IOP Conference Series: Earth and Environmental Science, 718(1). doi: 10.1088/1755-1315/718/1/012006
Ismail, M. F. A., Karstensen, J., Sulaiman, A., Priyono, B., Budiman, A. S., Basit, A., Purwandana, A., & Arifin, T. (2023). Observations of barrier layer seasonal variation in the Banda Sea. ESS Open Archive. doi: 10.22541/au.170319446.61837644/v1
Ismail, M. F. A., Taofiqurohman, A., & Purwandana, A. (2020). Circulation dynamics of the Banda Sea estimated from argo profiles. IOP Conference Series: Earth and Environmental Science, 584(1). doi: 10.1088/1755-1315/584/1/012017
Jackson, C. R., Da Silva, J. C. B., & Jeans, G. (2012). The generation of nonlinear internal waves. Oceanography, 25(2), 108–123. doi: 10.5670/oceanog.2012.46
Jayanti, N., Wicaksono, A., & Purwandana, A. (2024). Characterization of solitary internal waves in the northern Bali waters. BIO Web Conf., 89. Retrieved from https://doi.org/10.1051/bioconf/20248901006
Kane, I. A., Clare, M. A., Hodgson, D. M., & Kane, I. A. (2019). Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: A review and future directions. Frontiers in Earth Science, 7(April). doi: 10.3389/feart.2019.00080
Karang, I. W. G. A., Chonnaniyah, & Osawa, T. (2020). Internal solitary wave observations in the Flores Sea using the Himawari-8 geostationary satellite. International Journal of Remote Sensing, 41(15), 5726–5742. doi: https://doi.org/10.1080/01431161.2019.1693079
Ko, Y. H., Park, G.-H., Kim, D., & Kim, T.-W. (2021). Variations in seawater pCO2 associated with vertical mixing during tropical cyclone season in the Northwestern Subtropical Pacific Ocean. Frontiers in Marine Science, 8. Retrieved from https://www.frontiersin.org/articles/10.3389/fmars.2021.679314
Koch-Larrouy, A., Atmadipoera, A., van Beek, P., Madec, G., Aucan, J., Lyard, F., Grelet, J., & Souhaut, M. (2015). Estimates of tidal mixing in the Indonesian archipelago from multidisciplinary INDOMIX in-situ data. Deep-Sea Research Part I: Oceanographic Research Papers, 106, 136–153. doi: 10.1016/j.dsr.2015.09.007
Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G., & Masson, S. (2009). Tidal mixing in the Indonesian seas and its effect on the tropical climate system. Climate Dynamics, 34(6), 891–904. doi: 10.1007/s00382-009-0642-4
KRS. (2018). Agenda Riset Samudera 2020-2045.
Latuapo, N. H., Atmadipoera, A. S., Natih, N. M. N., Purwandana, A., Basit, A., Zuraida, R., & Noya, Y. (2024). Stratification of Indonesian Throughflow Water and Its Circulation along 125E in the Banggai - Maluku Sea. BIO Web Conf., 106. Retrieved from https://doi.org/10.1051/bioconf/202410603009
Li, X., Yuan, D., Li, Y., Zheng, W., Jing, W., Hu, X., Yang, Y., Corvianawatie, C., Surinati, D., Sandra Budiman, A., Bayhaqi, A., Avianto, P., Kusmanto, E., Dwi Santoso, P., Purwandana, A., Azis Ismail, M. F., Dirhamsyah, D., & Arifin, Z. (2021). Moored observations of currents and water mass properties between Talaud and Halmahera Islands at the entrance of the Indonesian Seas. Journal of Physical Oceanography, 51, 3557–3572. doi: 10.1175/JPO-D-21-0048.1
MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S., Sun, O. M., St. Laurent, L. C., Simmons, H. L., Polzin, K., Pinkel, R., Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M., Melet, A. V, Mater, B., Legg, S., Large, W. G., … Alford, M. H. (2017). Climate process team on internal wave–driven ocean mixing. Bulletin of the American Meteorological Society, 98(11), 2429–2454. doi: 10.1175/BAMS-D-16-0030.1
Munandar, B., Wirasatriya, A., Sugianto, D. N., Susanto, R. D., Purwandana, A., & Kunarso. (2023). Distinct mechanisms of chlorophyll-a blooms occur in the Northern Maluku Sea and Sulu Sill revealed by satellite data. Dynamics of Atmospheres and Oceans, 102(February), 101360. doi: 10.1016/j.dynatmoce.2023.101360
Nagai, T., & Hibiya, T. (2015). Internal tides and associated vertical mixing in the Indonesian Archipelago. Journal of Geophysical Research: Oceans, 120(5), 3373–3390. doi: https://doi.org/10.1002/2014JC010592
Nagai, T., Hibiya, T., & Bouruet-Aubertot, P. (2017). Nonhydrostatic simulations of tide-induced mixing in the Halmahera Sea: A possible role in the transformation of the Indonesian Throughflow waters. Journal of Geophysical Research: Oceans, 122(11), 8933–8943. doi: https://doi.org/10.1002/2017JC013381
Nagai, T., Hibiya, T., & Syamsudin, F. (2021). Direct estimates of turbulent mixing in the Indonesian Archipelago and its role in the transformation of the Indonesian Throughflow waters. Geophysical Research Letters, 48(6), e2020GL091731. doi: https://doi.org/10.1029/2020GL091731
Nugroho, D., Koch-Larrouy, A., Gaspar, P., Lyard, F., Reffray, G., & Tranchant, B. (2018). Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties. Marine Pollution Bulletin, 131(June), 7–18. doi: 10.1016/j.marpolbul.2017.06.033
Osborne, A. R., & Burch, T. L. (1980). Osborne1980. 208(4443), 451–460.
Prasetya, I. A., Atmadipoera, A. S., Budhiman, S., & Nugroho, U. C. (2021). Internal solitary waves in the Northwest Sumatra Sea-Indonesia: From observation and modeling. IOP Conference Series: Earth and Environmental Science, 944(1). doi: 10.1088/1755-1315/944/1/012056
Prasetyo, W., Wicaksono, A., Purwandana, A., Edikusmanto, Surinati, D., & Zheng, W. (2024). Transformation of South Pacific water masses in the Halmahera Sea. BIO Web Conf., 89. Retrieved from https://doi.org/10.1051/bioconf/20248901002
Prihatini, D., Purba, M., Naulita, Y., & Purwandana, A. (2016). Vertical turbulent at thermocline layer in Makassar Strait. International Journal of Marine Science, January. doi: 10.5376/ijms.2016.06.0051
Priyono, B., Purwandana, A., Kusmanto, E., Nuratmojo, & Muhadjirin. (2023). Vertical mixing in the onshore region of the Northwestern Maluku Sea, Indonesia. Omni-Akuatika, 19(2), 196–204.
Purwandana, A. (2008). Velocity structure and transport of the throughflow in Dampier Strait, West Papua. Segara, 4(2), 133–141.
Purwandana, A. (2013). Sebaran medan massa , medan tekanan dan arus geostropik di Perairan Utara Papua pada bulan Desember 1991. Prosiding Seminar Nasional Fisika IV Tahun 2013, January 2013, FB1–FB10.
Purwandana, A. (2014). Turbulent mixing in Labani Channel, Makassar Strait. Oseanologi Dan Limnologi Di Indonesia (OLDI), 40(2), 155–169.
Purwandana, A. (2022). Vertical mixing in the deep region of the Sunda Strait, Indonesia. Oseanologi Dan Limnologi Di Indonesia, 7(1), 43–51. doi: https://doi.org/10.14203/oldi.2022.v7i1.397
Purwandana, A. (2023a). Estimasi percampuran turbulen vertikal massa air dari data CTD: OTHORPE 1.0 (Nomor Sertifikat Hak Cipta: 000453035, 9 Maret 2023). Indonesia: DJKI.
Purwandana, A. (2023b). hydrography and mixing estimates in the Komodo Islands waters, Indonesia. AIP Conference Proceedings, 2604(1), 0400031–0400037. https://doi.org/10.1063/5.0114099
Purwandana, A., Atmadipoera, A. S., Nugroho, D., Wirasatriya, A., Kusmanto, E., & Iskandar, M. R. (2021). Monitoring oseanografi di kawasan segitiga terumbu karang dunia: Perairan Bunaken, Teluk Manado, Sulawesi Utara. Jakarta.
Purwandana, A., & Cuypers, Y. (2023). Characteristics of internal solitary waves in the Maluku Sea, Indonesia. Oceanologia, 65, 333–342. doi: 10.1016/j.oceano.2022.07.008
Purwandana, A., & Cuypers, Y. (2024). OTHORPE 1.1: Estimasi percampuran turbulen vertikal massa air dari data CTD (Nomor Sertifikat Hak Cipta: 000572539 , 1 Januari 2024). Indonesia: DJKI.
Purwandana, A., Cuypers, Y., Bourgault, D., Bouruet-Aubertot, P., & Santoso, P. D. (2022). Fate of internal solitary wave and enhanced mixing in Manado Bay, North Sulawesi, Indonesia. Continental Shelf Research, 245(104801). doi: https://doi.org/10.1016/j.csr.2022.104801
Purwandana, A., Cuypers, Y., & Bouruet-Aubertot, P. (2021). Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia. Continental Shelf Research, 216. doi: https://doi.org/10.1016/j.csr.2021.104358
Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., & Atmadipoera, A. S. (2020a). Historical CTD dataset and associated processed dissipation rate using an improved Thorpe method in the Indonesian seas. Data in Brief, 30(April). https://doi.org/10.1016/j.dib.2020.105519
Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., & Atmadipoera, A. S. (2020b). Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian seas. Progress in Oceanography, 184(May), 102312. https://doi.org/10.1016/j.pocean.2020.102312
Purwandana, A., Cuypers, Y., Kusmanto, E., Bouruet-Aubertot, P., Zheng, W., & Rachman, A. (2023). Observed internal solitary waves in the southwestern Halmahera Sea, Indonesia. AIP Conference Proceedings, 2604(1), 0400021–0400028. https://doi.org/10.1063/5.0114098
Purwandana, A., Cuypers, Y., Surinati, D., Iskandar, M. R., & Bouruet-Aubertot, P. (2023). Observed internal solitary waves in the northern Bali waters, Indonesia. Regional Studies in Marine Science, 57, 102764. https://doi.org/10.1016/j.rsma.2022.102764
Purwandana, A., Edikusmanto, Adia, P., Lestiana, H., Fajar, O., & Wulan, Q. (2023). Characteristics of internal solitary waves near its generation site in the Lombok Strait, Indonesia. POSITRON, 13(2), 95–103. doi: 10.26418/positron.v13i2.61621
Purwandana, A., Edikusmanto, D., Ismail, M. F. A., Surinati, D., Bayhaqi, A., Iskandar, M. R., Corvianawatie, C., Muhadjirin, D., & Irianto, D. (2021). Current structure and preliminary indication of Mentawaian-Jet in the Southeastern Mentawai waters, Indonesia. IOP Conference Series: Earth and Environmental Science, 789(1). doi: 10.1088/1755-1315/789/1/012002
Purwandana, A., & Iskandar, M. R. (2020). Turbulent mixing inferred from CTD datasets in the western tropical Pacific Ocean. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 25(4), 148–156. doi: 10.14710/IK.IJMS.25.4.148-156
Purwandana, A., Iskandar, M. R., Edikusmanto, Zheng, W., Fadli, M., Dwi Santoso, P., Corvianawatie, C., Muhadjirin, & Wattimena, M. C. (2021). Percampuran vertikal di Perairan Laut Maluku dan Talaud pada bulan Februari 2021. Oseanologi Dan Limnologi Di Indonesia, 6(2), 97–106. doi: 10.14203/oldi.2021.v6i2.363
Purwandana, A., Ismail, M. F. A., Nugroho, D., Atmadipoera, A. S., & Kampono, I. (2023). Hydrography and turbulent mixing in the Banda Sea inferred from Argo profiles. IOP Conference Series: Earth and Environmental Science, 1251(1), 12007. doi: 10.1088/1755-1315/1251/1/012007
Purwandana, A., Purba, M., & Atmadipoera, A. S. (2014). Distribusi percampuran turbulen di Perairan Selat Alor. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 19(1), 43–54. doi: 10.14710/ik.ijms.19.1.43-54
Purwandana, A., & Purwangka, F. (2013). Profil densitas akustik perikanan di Perairan Lamalera, Nusa Tenggara Timur pada bulan Juli 2011. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 18(2), 97–104. doi: 10.14710/ik.ijms.18.2.97-104
Purwandana, A., Purwangka, F., & Fahmi. (2013). Mapping of fish distribution and abundance in South Kalimantan waters using acoustic technology. Buletin PSP, 21(August 2013), 229–236.
Purwandana, A., Putra, I. W. S. E., & Cuypers, Y. (2024). SOLITON 2.0: Karakterisasi Gelombang Internal Soliter dari Citra SAR (Nomor Sertifikat Hak Cipta: 000572523, 1 Januari 2024). Indonesia: DJKI.
Purwandana, A., Surinati, D., Bayhaqi, A., Azis Ismail, M. F., Corvianawatie, C., Budiman, A. S., Edikusmanto, E., Irianto, D., Muhadjirin, M., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., Atmadipoera, A. S., Iskandar, M. R., Corvianawatie, C., Budiman, A. S., Edikusmanto, E., Irianto, D., & Muhadjirin, M. (2020). The spatial current structure in the Indonesian Seas in November 2014, during The Expedition of Widya Nusantara (EWIN). Oseanologi Dan Limnologi Di Indonesia, 5(3), 161–170. doi: 10.14203/oldi.2020.v5i3.330
Putra, D. R., Natih, N. M. N., & Purwandana, A. (2023). Seasonal variation of mixed layer depth and thermocline thickness from the ctd argo float data in the Southern Makassar Strait. IOP Conference Series: Earth and Environmental Science, 1137(1). doi: 10.1088/1755-1315/1137/1/012010
Rachman, A., & Purwandana, A. (2020). Plankton community structure of the Komodo Island Archipelago, Indonesia. Pertemuan Ilmiah Nasional Tahunan XVI ISOI 2019, April.
Robertson, R., & Ffield, A. (2005). M2 baroclinic tides in the Indonesian Seas. Oceanography, 18(4), 62–73. doi: 10.5670/oceanog.2005.06
Ross, O. N., & Sharples, J. (2007). Phytoplankton motility and the competition for nutrients in the thermocline. Marine Ecology Progress Series, 347, 21–38. Retrieved from http://www.jstor.org/stable/24871550
Safaie, A., Silbiger, N. J., McClanahan, T. R., Pawlak, G., Barshis, D. J., Hench, J. L., Rogers, J. S., Williams, G. J., & Davis, K. A. (2018). High frequency temperature variability reduces the risk of coral bleaching. Nature Communications, 9(1), 1–12. 10.1038/s41467-018-04074-2
Sani, I. Y., Atmadipoera, A. S., Purwandana, A., & Syamsudin, F. (2021). Transformation and mixing of North Pacific water mass in Sangihe-Talaud in August 2019. IOP Conference Series: Earth and Environmental Science, 944(1). https://doi.org/10.1088/1755-1315/944/1/012053
Susanto, R. D., Mitnik, L., & Zheng, Q. (2005). Ocean internal waves observed in the Lombok Strait. Oceanography, 18(4), 80–87. https://doi.org/10.5670/oceanog.2005.08
Suteja, Y., Purba, M., & Atmadipoera, A. S. (2015). Percampuran Turbulen di Selat Ombai. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 7(1), 71–82.
Syamsudin, F., Taniguchi, N., Zhang, C., Hanifa, A. D., Li, G., Chen, M., Mutsuda, H., Zhu, Z. N., Zhu, X. H., Nagai, T., & Kaneko, A. (2019). Observing internal solitary waves in the Lombok Strait by Coastal Acoustic Tomography. Geophysical Research Letters, 46(17–18), 10475–10483. https://doi.org/10.1029/2019GL084595
Thorpe, S. A. (1977). Turbulence and Mixing in a Scottish Loch. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 286(1334), 125–181. doi: 10.1098/rsta.1977.0112
Thorpe, S. A. (2005). The Turbulent Ocean. Cambridge: Cambridge University Press. doi: DOI: 10.1017/CBO9780511819933
Wang, T., Huang, X., Zhao, W., Zheng, S., Yang, Y., & Tian, J. (2022). Internal solitary wave activities near the Indonesian Submarine wreck site inferred from satellite images. Journal of Marine Science and Engineering, 10(197). https://doi.org/10.3390/jmse10020197
Wang, Z., Yin, X., Li, X., Li, Y., Li, R., Yang, Y., Mamuaja, J. M., Pangalila, F., Kalangi, P., Gerung, G., Purwandana, A., Wardana, A. K., Surinati, D., Ismail, M. F. A., Dirhamsyah, D., Arifin, Z., & Yuan, D. (2023). Water mass variations in the Maluku Channel of the Indonesian seas during the winter of 2018–2019. Journal of Geophysical Research: Oceans, 128(3), e2022JC018731. https://doi.org/10.1029/2022JC018731
Wyrtki, K. (1987). Indonesian through flow and the associated pressure gradient. Journal of Geophysical Research, 92(C12), 12941. doi: 10.1029/JC092iC12p12941
Yang, Y., Huang, X., Zhao, W., Zhou, C., Huang, S., Zhang, Z., & Tian, J. (2021). Internal solitary waves in the Andaman Sea revealed by long-term mooring observations. Journal of Physical Oceanography, 51(12), 3609–3627. doi: 10.1175/JPO-D-20-0310.1
Yuan, D., Li, X., Wang, Z., Li, Y., Wang, J., Yang, Y., Hu, X., Tan, S., Zhou, H., Wardana, A. K. A. K., Surinati, D., Purwandana, A., Azis Ismail, M. F., Avianto, P., Dirhamsyah, D., Arifin, Z., Storch, J.-S. von, Ismail, M. F. A., Avianto, P., … Von Storch, J.-S. (2018). Observed transport variations in the Maluku Channel of the Indonesian Seas associated with western boundary current changes. Journal of Physical Oceanography, 48(8), 1803–1813. doi: 10.1175/JPO-D-17-0120.1
Yuan, D., Yin, X., Li, X., Corvianawatie, C., Wang, Z., Li, Y., Yang, Y., Hu, X., Wang, J., Tan, S., Surinati, D., Purwandana, A., Wardana, A. K., Furqon, M., Ismail, A., Budiman, A. S., Bayhaqi, A., Avianto, P., Santoso, P. D., … Pratt, L. J. (2022). A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian through flow. Nature Communications, 13(2093), 1–8. https://doi.org/10.1038/s41467-022-29617-6
Zhang, Y., Du, Y., Feng, M., & Hobday, A. J. (2023). Vertical structures of marine heatwaves. Nature Communications, 14(1), 6483. doi: 10.1038/s41467-023-42219-0
Zheng, Q., Yuan, Y., Klemas, V., & Yan, X. H. (2001). Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. Journal of Geophysical Research: Oceans, 106(C12), 31415–31423. https://doi.org/10.1029/2000jc000726
Downloads
Published
June 25, 2024
Copyright (c) 2024 National Research and Innovation Agency
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.