Templates
Signifikansi Siklus Biogeokimia Karbon Laut Bagi Sistem Biosfer dan Pembangunan Ekonomi Biru Indonesia
Keywords:
Oseanografi, Biogeokimia Laut, Karbon Biru, Ekonomi BiruSynopsis
Biogeokimia adalah cabang ilmu yang mempelajari transfer material dari atmosfer, hidrosfer, litosfer, dan biosfer. Penelitian biogeokimia laut, terutama terkait dengan perubahan iklim, pengasaman laut, dan pemanasan global, meningkat sejak awal 1990-an. Di Asia Tenggara, penelitian ini lebih berfokus pada dampak aktivitas manusia. Perkembangan peralatan analisis modern telah mempercepat pemahaman tentang siklus karbon, memungkinkan kuantifikasi karbon dan identifikasi peran organisme dalam transfer karbon. Penelitian tentang dekomposisi material organik dan peran vegetasi laut dalam menyerap karbon dioksida telah berkembang dengan teori dan pemodelan terbaru. Perkembangan teknologi analitik dan komputasi juga telah mempermudah pengumpulan dan analisis data dalam penelitian biogeokimia karbon. Teknik pemetaan spasial menggunakan citra satelit dan sensor penginderaan jauh memungkinkan pemantauan perubahan lahan dan vegetasi laut secara akurat. Selain itu, kemajuan dalam pemodelan komputer memungkinkan simulasi interaksi kompleks antara faktor biologis, kimia, dan fisik yang mempengaruhi distribusi dan perubahan karbon.
Peningkatan karbon antropogenik di atmosfer sejak revolusi industri telah mengubah kondisi bumi dan biosfer, termasuk variabilitas karbon laut yang mempengaruhi produktivitas laut. Selain itu, variabilitas iklim di Indonesia, hasil dari dinamika laut dan atmosfer, mempengaruhi variabilitas biogeokimia karbon laut. Selama ini laut Indonesia berperan penting dalam siklus karbon laut global karena keanekaragaman ekosistem, pola sirkulasi laut, dan lokasi geografisnya yang strategis. Siklus biogeokimia karbon laut di Indonesia mencerminkan sifat dinamis dan berdampak global pada sistem biosfer.
Indonesia dengan karakteristik tropisnya memiliki berbagai jenis ekosistem yang menyediakan keragaman reservoar karbon, menghasilkan transfer karbon yang lebih kompleks dibanding wilayah subtropis. Informasi terkait siklus biogeokimia karbon laut Indonesia penting untuk kebijakan pembangunan nasional. Naskah orasi ini mengulas lima hal utama: siklus biogeokimia karbon laut, transfer biogeokimia karbon laut, variabilitas karbon laut Indonesia oleh sebab faktor eksogen, prakiraan deret waktu variabilitas karbon laut, dan relevansi riset terhadap pembangunan ekonomi biru. Bab-bab ini memberikan pemahaman mendalam tentang peran riset dalam pengelolaan lingkungan dan ekonomi berkelanjutan.
Downloads
Download data is not yet available.
References
Afdal, A., Prayitno, H. B., Wahyudi, A. J., & Lastrini, S. (2020). Variasi Fluks CO2 Udara-Laut di Perairan Pesisir Pulau Bintan. OLDI (Oseanologi Dan Limnologi Di Indonesia), 5(3), 145–160. https://doi.org/10.14203/OLDI.2020.V5I3.266
Afdal, Bengen, D. G., Wahyudi, A. J., Rastina, Prayitno, H. B., & Koropitan, A. F. (2023). Variation of CO2 fluxes, net ecosystem production, and calcification in tropical waters of seagrass and coral reef. Regional Studies in Marine Science, 68, 103290. https://doi.org/10.1016/j.rsma.2023.103290
Afdal, Bengen, D. G., Wahyudi, A. J., Rastina, Prayitno, H. B., Hamzah, F., & Koropitan, A. F. (2024). Spatial variability of aragonite saturation state in Indonesian coastal waters. Marine Environmental Research, 195, 106377. https://doi.org/10.1016/J.MARENVRES.2024.106377
Alongi, D. M., Murdiyarso, D., Fourqurean, J. W., Kauffman, J. B., Hutahaean, A., Crooks, S., Lovelock, C. E., Howard, J., Herr, D., Fortes, M., Pidgeon, E., & Wagey, T. (2016). Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetlands Ecology and Management, 24(1), 3–13. https://doi.org/10.1007/S11273-015-9446-Y/FIGURES/4
Angrelina, I., Sartimbul, A., & Wahyudi, A. J. (2019). The potential of seagrass beds on the coast of Putri Menjangan as a carbon sequestration ecosystem on Bali Island. IOP Conference Series: Earth and Environmental Science, 241(1), 012010. https://doi.org/10.1088/1755-1315/241/1/012010
ASEAN (2023). ASEAN Blue Carbon Framework. https://asean.org/asean-blue-economy-framework/ Diakses 4 April 2024
Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523–528. https://doi.org/10.1038/nclimate3326
Bank Dunia (2024). What is the Blue Conomy? https://www.worldbank.org/en/news/infographic/2017/06/06/blue-economy. Diakses 21 April 2024
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., & Tranvik, L. J. (2009). The boundless carbon cycle. Nature Geoscience, 2(9), 598–600. https://doi.org/10.1038/ngeo618
Baumgart, A., Jennerjahn, T., Mohtadi, M., & Hebbeln, D. (2010). Distribution and burial of organic carbon in sediments from the Indian Ocean upwelling region off Java and Sumatra, Indonesia. Deep-Sea Research Part I: Oceanographic Research Papers, 57(3), 458–467. https://doi.org/10.1016/j.dsr.2009.12.002
Birner, B., Rödenbeck, C., Dohner, J. L., Schwartzman, A., & Keeling, R. F. (2023). Surprising stability of recent global carbon cycling enables improved fossil fuel emission verification. Nature Climate Change, 13(9), 961–966. https://doi.org/10.1038/s41558-023-01761-x
Brewin, R. J. W., Sathyendranath, S., Kulk, G., Rio, M. H., Concha, J. A., Bell, T. G., Bracher, A., Fichot, C., Frölicher, T. L., Galí, M., Hansell, D. A., Kostadinov, T. S., Mitchell, C., Neeley, A. R., Organelli, E., Richardson, K., Rousseaux, C., Shen, F., Stramski, D., … Woolf, D. K. (2023). Ocean carbon from space: Current status and priorities for the next decade. Earth-Science Reviews, 240, 104386. https://doi.org/10.1016/J.EARSCIREV.2023.104386
Cai, L., Tang, R., Yan, X., Zhou, Y., Jiang, J., & Yu, M. (2022). The spatial-temporal consistency of chlorophyll-a and fishery resources in the water of the Zhoushan archipelago revealed by high resolution remote sensing. Frontiers in Marine Science, 9, 2053. https://doi.org/10.3389/FMARS.2022.1022375/BIBTEX
Chen, Y., & Tjandra, S. (2014). Daily Collision Prediction with SARIMAX and Generalized Linear Models on the Basis of Temporal and Weather Variables. Transportation Research Record, 2432, 26–36. https://doi.org/10.3141/2432-04
Choudhary, P., G, V. S., Khade, M., Savant, S., Musale, A., G, R. K. K., Chelliah, M. S., & Dasgupta, S. (2021). Empowering blue economy: From underrated ecosystem to sustainable industry. Journal of Environmental Management, 291, 112697. https://doi.org/10.1016/J.JENVMAN.2021.112697
Cisternas-Novoa, C., Lee, C., Tang, T., de Jesus, R., & Engel, A. (2019). Effects of higher CO2 and temperature on exopolymer particle content and physical properties of marine aggregates. Frontiers in Marine Science, 5(JAN). https://doi.org/10.3389/fmars.2018.00500
Close, H. G., & Henderson, L. C. (2020). Open-Ocean Minima in d13C Values of Particulate Organic Carbon in the Lower Euphotic Zone. Frontiers in Marine Science, 7, 739. https://doi.org/10.3389/FMARS.2020.540165/BIBTEX
Dai, M., Su, J., Zhao, Y., Hofmann, E. E., Cao, Z., Cai, W. J., Gan, J., Lacroix, F., Laruelle, G. G., Meng, F., Mu die ller, J. D., Regnier, P. A. G., Wang, G., & Wang, Z. (2022). Carbon Fluxes in the Coastal Ocean: Synthesis, Boundary Processes, and Future Trends, 50, 593–626. https://doi.org/10.1146/ANNUREV-EARTH-032320-090746
Davidson, K., Anderson, D. M., Mateus, M., Reguera, B., Silke, J., Sourisseau, M., & Maguire, J. (2016). Forecasting the Risk of Harmful Aalgal Blooms: Preface to the Asimuth Special Issue. Harmful Algae, 53, 1. https://doi.org/10.1016/J.HAL.2015.11.005
Diffenbaugh, N. S., & Barnes, E. A. (2023). Data-driven predictions of the time remaining until critical global warming thresholds are reached. Proceedings of the National Academy of Sciences of the United States of America, 120(6), e2207183120. https://doi.org/10.1073/PNAS.2207183120/SUPPL_FILE/PNAS.2207183120.SAPP.PDF
Engel, A. (2002). Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research, 24(1), 49–53. https://doi.org/10.1093/PLANKT/24.1.49
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B., Pedersen, T., Rosental, Y., Seitzinger, S., Smetacek, V., & Steffen, W. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 290(5490), 291–296. https://doi.org/10.1126/SCIENCE.290.5490.291
Fan, H., Wang, X., Zhang, H., & Yu, Z. (2018). Spatial and temporal variations of particulate organic carbon in the Yellow-Bohai Sea over 2002-2016. In Scientific Reports. https://doi.org/10.1038/s41598-018-26373-w
Friess, D. A., Howard, J., Huxham, M., Macreadie, P. I., & Ross, F. (2022). Capitalizing on the global financial interest in blue carbon. PLOS Climate, 1(8), e0000061. https://doi.org/10.1371/JOURNAL.PCLM.0000061
Gu, X., Zhao, H., Peng, C., Guo, X., Lin, Q., Yang, Q., & Chen, L. (2022). The mangrove blue carbon sink potential: Evidence from three net primary production assessment methods. Forest Ecology and Management, 504, 119848. https://doi.org/10.1016/J.FORECO.2021.119848
Gunawan, J. V., Parengkuan, M., Wahyudi, A. J., & Zulpikar, F. (2019). Estimasi Stok Karbon pada Biomassa Lamun di Pulau Semak Daun, Kepulauan Seribu. Oseanologi dan Limnologi di Indonesia, 4(2), 89. https://doi.org/10.14203/oldi.2019.v4i2.229
Howard, J. L., Creed, J. C., Aguiar, M. V. P., & Fouqurean, J. W. (2018). CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon” storage. Limnology and Oceanography, 63(1), 160–172. https://doi.org/10.1002/LNO.10621
Indriana, L. F., Wahyudi, A. J., & Kunzmann, A. (2018). Assimilation Dynamics of Different Diet Sources by the Sea Cucumber Holothuria scabra, with Evidence from Stable Isotope Signature. Annual Research & Review in Biology, 28(2), 1–10. https://doi.org/10.9734/arrb/2018/42591
Indriani, ., Wahyudi, A. J., & Yona, D. (2017). Cadangan Karbon di Area Padang Lamun Pesisir Pulau Bintan, Kepulauan Riau. Oseanologi dan Limnologi di Indonesia, 2(3), 1–11. https://doi.org/10.14203/OLDI.2017.V2I3.99
Izadi, M., Sultan, M., Kadiri, R. El, Ghannadi, A., & Abdelmohsen, K. (2021). A Remote Sensing and Machine Learning-Based Approach to Forecast the Onset of Harmful Algal Bloom. Remote Sensing 13(19), 3863. https://doi.org/10.3390/RS13193863
Kim, T., Shin, J. Y., Kim, H., Kim, S., & Heo, J. H. (2019). The Use of Large-Scale Climate Indices in Monthly Reservoir Inflow Forecasting and Its Application on Time Series and Artificial Intelligence Models. Water, 11(2), 374. https://doi.org/10.3390/W11020374
Lee, D., Son, S. H., Joo, H. T., Kim, K., Kim, M. J., Jang, H. K., Yun, M. S., Kang, C. K., & Lee, S. H. (2020). Estimation of the Particulate Organic Carbon to Chlorophyll-a Ratio Using MODIS-Aqua in the East/Japan Sea, South Korea. Remote Sensing, 12(5), 840. https://doi.org/10.3390/RS12050840
Lestari, L., Harmesa, H., Taufiqurrahman, E., Budiyanto, F., & Wahyudi, A. J. (2021). Assessment of potential variability of cadmium and copper trace metals using hindcast estimates. Environmental Monitoring and Assessment, 193(11), 1–22. https://doi.org/10.1007/S10661-021-09501-4
Lim, H.-G., Dunne, J. P., Stock, C. A., & Kwon, M. (2022). Attribution and predictability of climate-driven variability in global ocean color. Journal of Geophysical Research: Oceans, 127(10), e2022JC019121. https://doi.org/10.1029/2022JC019121
Ma, J., Song, J., Li, X., Wang, Q., Zhong, G., Yuan, H., Li, N., & Duan, L. (2021). The OMZ and Its Influence on POC in the Tropical Western Pacific Ocean: Based on the Survey in March 2018. Frontiers in Earth Science, 9, 492. https://doi.org/10.3389/FEART.2021.632229/BIBTEX
Martin, P., & Bianchi, T. S. (2023). Organic Carbon Cycling and Transformation. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-323-90798-9.00061-5
Murdiyarso, D., Krisnawati, H., Adinugroho, W. C., & Sasmito, S. D. (2023). Deriving emission factors for mangrove blue carbon ecosystem in Indonesia. Carbon Balance and Management, 18(1), 1–12. https://doi.org/10.1186/S13021-023-00233-1/FIGURES/4
Nowicki, M., DeVries, T., & Siegel, D. A. (2022). Quantifying the Carbon Export and Sequestration Pathways of the Ocean’s Biological Carbon Pump. Global Biogeochemical Cycles, 36(3), e2021GB007083. https://doi.org/10.1029/2021GB007083
Nuraya, T., Koropitan, A. F., & Wahyudi, A. J. (2019). Sediment Carbon Stock of West Kalimantan Mangrove Forests. Marine Research in Indonesia, 44(1), 27–35. https://doi.org/10.14203/mri.v44i1.545
Pavia, F. J., Anderson, R. F., Lam, P. J., Cael, B. B., Vivancos, S. M., Fleisher, M. Q., Lu, Y., Zhang, P., Cheng, H., & Lawrence Edwards, R. (2019). Shallow particulate organic carbon regeneration in the South Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 116(20), 9753–9758. https://doi.org/10.1073/PNAS.1901863116/-/DCSUPPLEMENTAL
Peixeiro, M. (2022). Time series forecasting in python. Manning, 1–456. https://www.manning.com/books/time-series-forecasting-in-python-book
Raman, R. K., Mohanty, S. K., Bhatta, K. S., Karna, S. K., Sahoo, A. K., Mohanty, B. P., & Das, B. K. (2018). Time series forecasting model for fisheries in Chilika lagoon (a Ramsar site, 1981), Odisha, India: a case study. Wetlands Ecology and Management, 26(4), 677–687. https://doi.org/https://doi.org/10.1007/s11273-018-9600-4
Siegel, D. A., Devries, T., Cetinic, I., & Bisson, K. M. (2023). Quantifying the Oceans Biological Pump and Its Carbon Cycle Impacts on Global Scales. 15, 329–356. https://doi.org/10.1146/ANNUREV-MARINE-040722-115226
Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Dwi Susanto, R., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A. J. A. J., Zhou, H., … Setiawan, A. (2019). Detecting Change in the Indonesian Seas. Frontiers in Marine Science, 6(JUN), 257. https://doi.org/10.3389/fmars.2019.00257
Taufiqurrahman, E., Wahyudi, A. J., & Masumoto, Y. (2020). The Indonesian Throughflow and its Impact on Biogeochemistry in the Indonesian Seas. ASEAN Journal on Science and Technology for Development, 37(1), 29–35. https://doi.org/10.29037/ajstd.596
Tresnawati, R., Wirasatriya, A., Wibowo, A., Susanto, R. D., Widiaratih, R., Setiawan, J. D., Maro, J. F., Dollu, E. A., Fitria, S., & Kurang, R. Y. (2024). Long term of sea surface temperature prediction for Indonesia seas using multi time-series satellite data for upwelling dynamics projection. Remote Sensing Applications: Society and Environment, 33, 101117. https://doi.org/10.1016/J.RSASE.2023.101117
Triana, K., Wahyudi, A. J., Murakami-Sugihara, N., & Ogawa, H. (2021). Spatial and temporal variations in particulate organic carbon in Indonesian waters over two decades. Marine and Freshwater Research, 72(12), 1782–1797. https://doi.org/10.1071/MF20264
Triana, K., Wahyudi, A. J., Surinati, D., & Kartikoputro, E. (2023). Investigating ocean deoxygenation and the oxygen minimum zone in the Central Indo Pacific region based on the hindcast datasets. Environmental Monitoring and Assessment, 195(1), 28. https://doi.org/10.1007/s10661-022-10615-6
Wahyudi, A. J. (2014). Trends and Future Projections for Marine Biogeochemistry Research in Indonesia (Tren dan Proyeksi Penelitian Biogeokimia Laut di Indonesia). In ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 19(3), 121–130. http://ejournal.undip.ac.id/index.php/ijms/article/view/8514
Wahyudi, A. J. (2021). Menakar Korelasi Perubahan Iklim dan Lingkungan terhadap Ekonomi Biru. https://www.kompas.com/sains/read/2021/09/15/160500823/menakar-korelasi-perubahan-iklim-dan-lingkungan-terhadap-ekonomi-biru?page=all. Diakses 5 April 2024
Wahyudi, A. J. (2024). Potential of Organic Carbon Pool in the Ocean: Approaches for Naturally and Artificially Capturing and Retaining Carbon. IOP Conference Series: Earth and Environmental Science, 1350(1), 012021. https://doi.org/10.1088/1755-1315/1350/1/012021
Wahyudi, A. J., Afdal, Abimanyu, H., Suratno, Syukri, A. F., Yuliana, C. I., Surinati, D., Meirinawati, H., Irawan, A., & Dharmawan, I. W. E. (2017). Menyerap Karbon: Layanan Ekosistem Pesisir untuk Mitigasi Perubahan Iklim. Gadjah Mada University Press.
Wahyudi, A. J., & Afdal. (2018). Climate change mitigation: From carbon cycle to policy. AIP Conference Proceedings, 2019(1), 040019. https://doi.org/10.1063/1.5061889
Wahyudi, A. J., & Afdal. (2019). The origin of the suspended particulate matter in the seagrass meadow of tropical waters, an evidence of the stable isotope signatures. Acta Oceanologica Sinica, 38(1), 136–143. https://doi.org/10.1007/s13131-019-1380-z
Wahyudi, A. J., & Febriani, F. (2021). Country-specific emission factor for developing a tier 3 system of Indonesia’s seagrass carbon inventory. IOP Conference Series: Earth and Environmental Science, 944(1), 012058. https://doi.org/10.1088/1755-1315/944/1/012058
Wahyudi, A. J., Afdal, A., & Meirinawati, H. (2019a). Stable Carbon Isotope Signature of Particulate Organic Matter in the Southwestern Sumatran Waters of the Eastern Indian Ocean. ASEAN Journal on Science and Technology for Development, 36(2), 35–43. https://doi.org/10.29037/ajstd.555
Wahyudi, A. J., Afdal, A., Adi, N. S. (2018a) Summary for policy maker: The potentials of carbon stock and sequestration of Indonesia’s mangrove and seagrass ecosystem. Indonesian Institute of Sciences. http://oseanografi.lipi.go.id/hasilpenelitian/lihatpdf/37 Accessed 20 Sep 2018
Wahyudi, A. J., Afdal, Prayudha, B., Dharmawan, I. W. E. E., Irawan, A., Abimanyu, H., Meirinawati, H., Surinati, D., Syukri, A. F., Yuliana, C. I., & Yuniati, P. I. (2018b). Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island. IOP Conference Series: Earth and Environmental Science, 118(1), 012050. https://doi.org/10.1088/1755-1315/118/1/012050
Wahyudi, A. J., Febriani, F., & Triana, K. (2023b). Multi-temporal variability forecast of particulate organic carbon in the Indonesian seas. Environmental Monitoring and Assessment, 195(3), 1–20. https://doi.org/10.1007/S10661-023-10981-9
Wahyudi, A. J., Hernawan, U. E., Alifatri, L. O., Prayudha, B., Sani, S. Y., Febriani, F., & Ulumuddin, Y. I. (2022a). Carbon-offset potential from tropical seagrass conservation in selected areas of Indonesia. Marine Pollution Bulletin, 178, 113605. https://doi.org/10.1016/J.MARPOLBUL.2022.113605
Wahyudi, A. J., Indriana, L. F., Firdaus, M., Prayitno, H. B., & Meirinawati, H. (2022b). Rate and Efficiency of Organic Carbon Assimilation by Aquacultured Juvenile Sandfish Holothuria scabra. Sains Malaysiana, 51(11), 3523–3537. https://doi.org/http://doi.org/10.17576/jsm-2022-5111-02
Wahyudi, A. J., Iskandar, M. R., Meirinawati, H., Afdal, ., Vimono, I. B., Afianti, N. F., Sianturi, O. R., Wirawati, I., Darmayati, Y., Helfinalis, ., & Sidabutar, T. (2017). Organic Matter and Nutrient Profile of the Two-Current-Regulated-Zone in the Southwestern Sumatran Waters (Ssw). Marine Research in Indonesia, 42(1), 19–35. https://doi.org/10.14203/mri.v42i1.124
Wahyudi, A. J., Meirinawati, H., Prayitno, H. B., Suratno, Surinati, D., & Hernawan, U. E. (2019b). The material origin of the particulate organic matter (POM) in the Eastern Indonesian waters. AIP Conference Proceedings, 2175(1), 020047. https://doi.org/10.1063/1.5134611
Wahyudi, A. J., Prayudha, B., Hafitz, M., Alifatri, L. O., Hernawan, U. E., Salatalohi, A., & Febriani, F. (2021a). Introducing a Method for Calculating Carbon Emission Reduction on the Seagrass Ecosystem for Indonesia’s Low Carbon Development Initiative. IOP Conference Series: Earth and Environmental Science, 789(1), 12014. https://doi.org/10.1088/1755-1315/789/1/012014
Wahyudi, A. J., Rahmawati, S., Irawan, A., Hadiyanto, H., Prayudha, B., Hafizt, M., Afdal, A., Adi, N. S., Rustam, A., Hernawan, U. E., Rahayu, Y. P., Iswari, M. Y., Supriyadi, I. H., Solihudin, T., Ati, R. N. A., Kepel, T. L., Kusumaningtyas, M. A., Daulat, A., Salim, H. L., … Kiswara, W. (2020). Assessing Carbon Stock and Sequestration of the Tropical Seagrass Meadows in Indonesia. Ocean Science Journal, 55(1), 85–97. https://doi.org/10.1007/s12601-020-0003-0
Wahyudi, A. J., Rahmawati, S., Prayudha, B., Iskandar, M. R. R., & Arfianti, T. (2016). Vertical carbon flux of marine snow in Enhalus acoroides-dominated seagrass meadows. Regional Studies in Marine Science, 5, 27–34. https://doi.org/10.1016/j.rsma.2016.01.003
Wahyudi, A. J., Suratno, Puspitasari, R., Arbi, U. Y., Oktaviyani, S., Purbonegoro, T., & Irawan, A. (2023c). Enrichment potential of carbon and metals through biogeochemical pools of particulate matter and organisms of the coastal and continental margin. Regional Studies in Marine Science, 67, 103215. https://doi.org/10.1016/J.RSMA.2023.103215
Wahyudi, A. J., Triana, K., Afdal, A., Prayitno, H. B., Taufiqurrahman, E., Meirinawati, H., Puspitasari, R., Lestari, L., & Lastrini, S. (2021b). The decomposition rate of the organic carbon content of suspended particulate matter in the tropical seagrass meadows. Acta Oceanologica Sinica, 40(8), 44–52. https://doi.org/10.1007/s13131-021-1802-6
Wahyudi, A. J., Triana, K., Masumoto, Y., Rachman, A., Firdaus, M. R., Iskandar, I., & Meirinawati, H. (2023a). Carbon and nutrient enrichment potential of South Java upwelling area as detected using hindcast biogeochemistry variables. Regional Studies in Marine Science, 59, 102802. https://doi.org/10.1016/J.RSMA.2022.102802
Wahyudi, A. J., Wada, S., Aoki, M., & Hama, T. (2013). Stable isotope signature and pigment biomarker evidence of the diet sources of Gaetice depressus (Crustacea: Eubrachyura: Varunidae) in a boulder shore ecosystem. Plankton and Benthos Research, 8(2), 55–67. https://doi.org/10.3800/pbr.8.55
Wahyudi, A. J., Wada, S., Aoki, M., & Hama, T. (2015). Gaetice depressus (Crustacea, Varunidae): Species profile and its role in organic carbon and nitrogen flow. Ocean Science Journal, 50(2). https://doi.org/10.1007/s12601-015-0036-y
Wicaksono, P., Maishella, A., Wahyudi, A. J., & Hafizt, M. (2022). Multitemporal seagrass carbon assimilation and aboveground carbon stock mapping using Sentinel-2 in Labuan Bajo 2019–2020. Remote Sensing Applications: Society and Environment, 27, 100803. https://doi.org/10.1016/J.RSASE.2022.100803
Downloads
Published
August 21, 2024
HOW TO CITE
Copyright (c) 2024 National Research and Innovation Agency
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Details about this monograph
ISBN-13 (15)
978-623-8372-89-8