TEKNOLOGI SEL SURYA GENERASI KETIGA SEBAGAI ENERGI ALTERNATIF MASA DEPAN

Authors

Natalita Maulani Nursam
Badan Riset dan Inovasi Nasional (BRIN)

Keywords:

Sel surya , Fotovoltaik, Energi

Synopsis

Pada orasi ini akan disampaikan state-of-the art perkembangan teknologi sel surya generasi ketiga yang berbasis material pewarna tersensitasi (dye-sensitized) dan perovskite. Kedua jenis sel surya generasi ketiga tersebut memiliki keunggulan berupa harga material yang rendah, proses fabrikasi yang sederhana, serta mampu bekerja secara efisien pada berbagai kondisi cahaya. Sel surya generasi ketiga ini juga memiliki potensi pemanfaatan pada berbagai aplikasi elektronik yang selama ini belum mampu dipenuhi oleh sel surya berbasis silikon dengan keterbatasan karakteristiknya.

Orasi ini memaparkan serangkaian hasil riset dan inovasi yang telah dilakukan dalam mengoptimasi performa sel surya generasi ketiga tersebut, termasuk upaya scale-up yang menjadi suatu urgensi untuk mendorong pemanfaatan dan komersialisasinya di masa depan. Dengan demikian, hasil riset dan inovasi yang telah dihasilkan memiliki prospek yang sangat baik untuk dimanfaatkan sebagai sumber energi masa depan dan diharapkan dapat berkontribusi dalam mendukung akselerasi kemandirian energi bangsa Indonesia menuju net zero emission.

Downloads

Download data is not yet available.

Author Biography

Natalita Maulani Nursam, Badan Riset dan Inovasi Nasional (BRIN)

Natalita Maulani Nursam lahir di Lamongan, Jawa Timur, 27 Desember 1982, adalah putri pertama dari dua bersaudara, dari Bapak Sam Roekajat (alm.) dan Ibu Hj. Nur Fadhilah. Menikah dengan Dedi Cahyadi, S.Hut, M.Hum., dan dikaruniai dua orang anak, yaitu Muhammad Habibi Kasyf Al Mulk dan Amarasuli Maulana Al Mulk.

Berdasarkan Keputusan Presiden Republik Indonesia Nomor 2/M Tahun 2023 tanggal 9 Januari 2023 yang bersangkutan diangkat sebagai Peneliti Ahli Utama terhitung mulai tanggal 1 Februari 2023.
Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional Nomor 179/I/HK/2024 tanggal 12 Juli 2024 tentang Pembentukan Majelis Pengukuhan Profesor Riset (MPPR), yang bersangkutan dapat melakukan pidato Pengukuhan Profesor Riset.

Menamatkan Sekolah Dasar Negeri Tumenggungan 1 Lamongan, tahun 1994, Sekolah Menengah Pertama Negeri 1 Lamongan, tahun 1997, dan Sekolah Menengah Atas Negeri 2 Lamongan, tahun 2000. Memperoleh gelar Sarjana Teknik dari Universitas Indonesia tahun 1994, gelar Magister Master of Philosophy in Engineering dari The Australian National University tahun 2011, dan gelar Doktor bidang Chemistry dari The University of Melbourne tahun 2016.

Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain: Pelatihan ISO 9001:2005 di PT. Sharp Semikonduktor Indonesia Karawang (2005), Diklat Fungsional Peneliti Tingkat Pertama di Cibinong (2007), Pelatihan Pre-Departure Training Course for Australian Development Scholarship Postgraduate Awardees di Jakarta (2008), Pelatihan Introductory Academic Skills di Canberra (2008), Tailor Made Course on the Fabrication of Solar Module Based on Dye-Sensitized Solar Cells di Swedia (tahun 2016), Diklat Peneliti Tingkat Lanjut di Cibinong (2017), Pelatihan Penyamaan Persepsi Asesor Akreditasi Jurnal Nasional ARJUNA Kemristekdikti (2018 dan 2020).

Jabatan fungsional peneliti diawali sebagai Peneliti Ahli Muda golongan III/c tahun 2011, Peneliti Ahli Muda golongan III/d tahun 2016, Peneliti Ahli Madya golongan IV/a tahun 2018, Peneliti Ahli Madya golongan IV/c tahun 2021, dan memperoleh jabatan Peneliti Ahli Utama golongan IV/d bidang Teknologi Sel Surya tahun 2023.

Menghasilkan 9 hak kekayaan intelektual berupa paten dan 85 karya tulis ilmiah (KTI) dalam bentuk jurnal dan prosiding yang ditulis bersama penulis lain. Sebanyak 77 KTI ditulis dalam bahasa Inggris dan 8 KTI dalam bahasa Indonesia.

Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai Ketua Kelompok Riset Advanced Photovoltaic and Functional Electronic Devices di Pusat Riset Elektronika BRIN, pembimbing skripsi (S1) di Institut Teknologi Bandung, Telkom University, Universitas Surya, Swiss-German University, Universitas Hasanuddin, pembimbing tesis (S2) di Institut Teknologi Bandung (ITB), serta pembimbing disertasi (S3) di Institut Teknologi Bandung (ITB), Universitas Gadjah Mada (UGM), dan Universiti Teknologi Malaysia (UTM).

Aktif dalam kegiatan ilmiah, antara lain sebagai Editorin-Chief Jurnal Elektronika dan Telekomunikasi, anggota Majelis Asesor Peneliti Pusat (MAPP) BRIN, ketua tim penilai peneliti unit (TP2U) PR Elektronika BRIN, asesor ARJUNA, dan menjadi ketua panitia International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) 2017. Menjadi mitra bestari di beberapa jurnal internasional dari penerbit Elsevier (Applied Surface Science, Thin Solid Films), Springer (Ionics, Journal of Sol-Gel Science and Technology), Taylor & Francis (International Journal of Ambient Energy), Journal of Nano Research, dan Open Physics Journal, serta jurnal nasional yaitu Jurnal Elektronika dan Telekomunikasi dan Journal of Mechatronics, Electrical Power, and Vehicular Technology.

Aktif dalam organisasi profesi ilmiah, yaitu sebagai anggota Australian Nanotechnology Network (2012–2016), anggota Royal Australian Chemical Institute (2012–2016), anggota Materials Research Society of Indonesia MRS-Id (2016–sekarang), anggota Masyarakat Energi Terbarukan Indonesia METI (2016–sekarang), anggota Institute of Electrical and Electronics Engineers IEEE (2018–2019), anggota Council of Asian Science Editor CASE (2020–sekarang), anggota Himpunan Peneliti Indonesia HIMPENINDO (2019–2021), dan anggota Perhimpunan Periset Indonesia PPI (2022–sekarang).

Menerima tanda penghargaan berupa International Community Activity Center Undergraduate Scholarship (tahun 2003), Australian Development Postgraduate Scholarship Award dari AusAID (tahun 2008), Melbourne International Research Scholarship (tahun 2012), CSIRO-Melbourne Materials Institute Top-up Scholarship for PhD in Materials Science (tahun 2012), David Hay Thesis Writing Award dari University of Melbourne (2016), Satyalancana Karya Satya 10 Tahun dari Presiden RI (tahun 2016), Riset-PRO Non-Degree Travel Award dari Kemenristekdikti (tahun 2016), Selected Participant pada 7th American-Indonesian Kavli Frontiers of Science Meeting (tahun 2017), Peneliti Terbaik di Pusat Penelitian Elektronika dan Telekomunikasi LIPI (tahun 2017 & 2018), dan APEC–Australia Women in Research Award (tahun 2019).

References

Anggraini, P. N., Muliani, L., Nursam, N. M., & Hidayat, J. (2018). Performance of 7-cells dye sensitized solar module in Z-type series interconnection. IOP Conference Series: Materials Science and Engineering, 299, 012088. https://doi.org/10.1088/1757-899X/299/1/012088

Anggraini, P. N., Nursam, N. M., Putra, R. A., Shobih, & Retnaningsih, L. (2019). Study on the effect of PVDF and TiO2 composition on quasi-solid state DSSC. Journal of Physics: Conference Series, 1245, 012069. https://doi.org/10.1088/1742-6596/1245/1/012068

Anggraini, P. N., Rosa, E. S., Nursam, N. M., Sinaga, R. F., & Shobih. (2021). Modifications of liquid electrolyte for monolithic dye-sensitized solar cells. Jurnal Elektronika Dan Telekomunikasi, 21(1), 35–40. https://doi.org/http://dx.doi.org/10.14203/jet.v21.35-40

Arif, F., Nursam, N. M., Prastomo, N., & Shobih, S. (2019). The influence of carbon counter electrode composition on the performance of monolithic dye-sensitized solar cells. Journal of Physics: Conference Series, 1191, 012021. https://doi.org/10.1088/1742-6596/1191/1/012021

Bosio, A., Pasini, S., & Romeo, N. (2020). The history of photovoltaics with emphasis on CdTe solar cells and modules. Coatings, 10(4), 344. https://doi.org/10.3390/coatings10040344

Deng, R., Zhuo, Y., & Shen, Y. (2022). Recent progress in silicon photovoltaic module recycling processes. Resources, Conservation and Recycling, 187, 106612. https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106612

Dewan Energi Nasional. (2022). Outlook Energi Indonesia 2022. Sekretariat Jenderal Dewan Energi Nasional.

Ehrler, B., Alarcón-Lladó, E., Tabernig, S. W., Veeken, T., Garnett, E. C., & Polman, A. (2020). Photovoltaics reaching for the Shockley–Queisser limit. ACS Energy Letters, 5(9), 3029–3033. https://doi.org/10.1021/acsenergylett.0c01790

Fagiolari, L. & Bella, F. (2019). Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy & Environmental Science, 12, 3437–3472. https://doi.org/10.1039/C9EE02115A

Foo, S., Thambidurai, M., Senthil Kumar, P., Yuvakkumar, R., Huang, Y., & Dang, C. (2022). Recent review on electron transport layers in perovskite solar cells. International Journal of Energy Research, 46(15), 21441–21451. https://doi.org/https://doi.org/10.1002/er.7958

Green, M. A. (2023). Silicon solar cells step up. Nature Energy, 8(8), 783–784. https://doi.org/10.1038/s41560-023-01296-7

Hidayat, J., Muliani, L., Nursam, N. M., Anggraini, P. N., Rosa, E. S., Retnaningsih, L., & Shobih. (2017). Metode Pengisian Elektrolit Cair Pada Modul Surya Berbasis Pewarna (Nomor Pendaftaran Paten P00201706642).

Hidayat, J., Shobih, Nursam, N. M., Rosa, E. S., Retnaningsih, L., Anggraini, P. N., & Muliani, L. (2018). Metode Enkapsulasi Modul Surya Berbasis Pewarna dengan Struktur Monolitik Menggunakan Teknik Printing (Nomor Pendaftaran Paten P00201805622).

Hidayat, R., Nurunnizar, A. A., Fariz, A., Herman, Rosa, E. S., Shobih, Oizumi, T., Fujii, A., & Ozaki, M. (2020). Revealing the charge carrier kinetics in perovskite solar cells affected by mesoscopic structures and defect states from simple transient photovoltage measurements. Scientific Reports, 10(1), 19197. https://doi.org/10.1038/s41598-020-74603-x

Jaeger-Waldau, A. (2019). PV Status Report 2019. Publications Office of the European Union. https://doi.org/10.2760/326629

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r

Li, B., Wang, L., Kang, B., Wang, P., & Qiu, Y. (2006). Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 90(5), 549–573. https://doi.org/10.1016/J.SOLMAT.2005.04.039

Li, F., Peng, X., Wang, Z., Zhou, Y., Wu, Y., Jiang, M., & Xu, M. (2019). Machine learning (ML)-assisted design and fabrication for solar cells. Energy & Environmental Materials, 2(4), 280–291. https://doi.org/https://doi.org/10.1002/eem2.12049

Mubarak, Z., Nursam, N. M., Shobih, Hidayat, J., & Tahir, D. (2018). A comparison of the utilization of carbon nanopowder and activated carbon as counter electrode for monolithic dye-sensitized solar cells (DSSC). Jurnal Elektronika Dan Telekomunikasi, 18(1), 15–20. https://doi.org/http://dx.doi.org/10.14203/jet.v18.15-20

Muliani, L., Hidayat, J., Shobih, Nursam, N. M., Rosa, E. S., Anggraini, P. N., & Retnaningsih, L. (2021). Transparent dye-sensitized module for solar windows. International Journal of Electrochemical Science, 16(3), 210329. https://doi.org/10.20964/2021.03.61

Novianti, R. M., Nursam, N. M., Shobih, Hidayat, J., & Soepriyanto, S. (2023). The addition of C, Zn-C, and Sn-C on anatase titanium dioxide (TiO2) for dye-sensitized solar cells application. Metalurgi, 38(1), 1–8. https://doi.org/http://dx.doi.org/10.55981/metalurgi.2023.686

Nursam, N. M., Anggraini, P. N., Shobih, S., & Hidayat, J. (2017). Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate. IEEE Proceedings of The 2017 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), 164–168. https://doi.org/10.1109/ICRAMET.2017.8253168

Nursam, N. M., Hidayat, J., Istiqomah, A., Anggraini, P. N., Shobih, Rosa, E. S., Retnaningsih, L., & Muliani, L. (2017). Sel Surya Berbasis Pewarna dengan Struktur Monolitik berserta Proses Pembuatannya (Nomor Pemberian Paten IDP000075315).

Nursam, N. M., Hidayat, J., Muliani, L., Anggraeni, P. N., Retnaningsih, L., & Idayanti, N. (2017). From cell to module: Fabrication and long-term stability of dye-sensitized solar cells. IOP Conference Series: Materials Science and Engineering, 214, 012007. https://doi.org/10.1088/1757-899X/214/1/012007

Nursam, N. M., Hidayat, J., Pranoto, L. M., & Wijayanti, S. (2017). Electrical properties of dye-sensitized solar module with integrated parallel connections. IEEE Proceedings of The 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, 133–136. https://doi.org/10.1109/QIR.2017.8168468

Nursam, N. M., Hidayat, J., Shobih, Rosa, E. S., & Pranoto, L. M. (2018). A comparative study between titania and zirconia as material for scattering layer in dye-sensitized solar cells. Journal of Physics: Conference Series, 1011, 012003. https://doi.org/10.1088/1742-6596/1011/1/012003

Nursam, N. M., Hidayat, J., Shobih, Rosa, E. S., Retnaningsih, L., Anggraini, P. N., & Muliani, L. (2018). Counter Electrode Berbasis Komposit Karbon untuk Sel Surya Monolitik Tersensitasi Pewarna (Nomor Pemberian Paten IDP000090513).

Nursam, N. M., Hidayat, J., Shobih, S., & Anggraini, P. N. (2020). Photovoltaic performance and upccaling of monolithic dye-sensitized solar module. IEEE Proceedings of the 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 276–280. https://doi.org/10.1109/ICRAMET51080.2020.9298663

Nursam, N. M., Istiqomah, A., Hidayat, J., Anggraini, P. N., & Shobih. (2017). Analysis of catalytic material effect on the photovoltaic properties of monolithic dye-sensitized solar cells. Jurnal Elektronika Dan Telekomunikasi, 17(2), 30–35. https://doi.org/http://dx.doi.org/10.14203/jet.v17.30-35

Nursam, N. M., Muliani, L., & Hidayat, J. (2011). Sel surya dye-sensitized TiO2: Fabrikasi dan analisa material elektrolit. Jurnal Elektronika Dan Telekomunikasi, 11(1), 72–77.

Nursam, N. M., Ren, Y., & Weber, K. J. (2010). PECVD silicon nitride passivation on boron emitter: The analysis of electrostatic charge on the interface properties. Advances in OptoElectronics, 2010, 487406. https://doi.org/10.1155/2010/487406

Nursam, N. M., Shobih, Hidayat, J., & Ilman, M. A. (2018). Correlating the photoelectrode thickness with the performance and stability of dye-sensitized solar cells. IEEE Proceedings of the 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar, EECCIS 2018, 114–118. https://doi.org/10.1109/EECCIS.2018.8692868

Nursam, N. M., Shobih, Hidayat, J., Rosa, E. S., Muliani, L., Anggraini, P. N., Retnaningsih, L., Aminudin, A. W., & Djuhara, D. (2020). Lapisan Anti-Refleksi Berbahan SiO2 untuk Sel Surya Berbasis Pewarna Tersensitasi dan Pembuatannya (Nomor Pendaftaran Paten P00202008338).

Nursam, N. M., Shobih, S., Pandanga, P., & Wang, X. (2020). Titanium dioxide nanorods as an effective blocking layer in solar cells. International Journal on Advanced Science, Engineering and Information Technology, 10(5), 1992–1997. https://doi.org/10.18517/ijaseit.10.5.11142

Nursam, N. M., Wang, X., & Caruso, R. A. (2015). Macro-/mesoporous titania thin films: Analysing the effect of pore architecture on photocatalytic activity using high-throughput screening. Journal of Materials Chemistry A, 3(48), 24557–24567. https://doi.org/10.1039/c5ta08959j

Nursam, N. M., Wang, X., Tan, J. Z. Y., & Caruso, R. A. (2016). Probing the effects of templating on the UV and visible light photocatalytic activity of porous nitrogen-modified titania monoliths for dye removal. ACS Applied Materials and Interfaces, 8(27), 17194–17204. https://doi.org/10.1021/acsami.6b03158

Nursam, N. M., Weber, K. J., Jin, H., Ren, Y., & Smith, P. (2010). Investigation of interface properties in oxide passivated boron diffused silicon. Current Applied Physics, 10, S361–S364. https://doi.org/10.1016/j.cap.2010.02.053

Nursam, N. M., Weber, K. J., & Ren, Y. (2010). Characterization of boron surface doping effects on PECVD silicon nitride passivation. Proceedings of the 35th IEEE Photovoltaic Specialist Conference, 3214–3219. https://doi.org/10.1109/PVSC.2010.5616740

Nursam, N. M., Widianto, E., & Firdaus, Y. (2021). Numerical simulations of MAPbI3-based perovskite solar cells with carbon back contact and various hole transport materials. IEEE Proceedings of the 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 80–83. https://doi.org/10.1109/ICRAMET53537.2021.9650480

Nurunnizar, A. A., Yandri, V. R., Himat, A. M., Bahar, H., Nursam, N. M., Fujii, A., Ozaki, M., & Hidayat, R. (2023). The role of organofluorine based passivation molecules on the characteristics and stability of perovskite solar cells. Solar Energy Materials & Solar Cells (under review).

O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. https://doi.org/10.1038/353737a0

Oktaviani, E., & Nursam, N. M. (2019). Pengaruh material counter electrode pada dye-sensitized solar cell. Metalurgi, 34(3), 109–130. https://doi.org/http://dx.doi.org/10.14203/metalurgi.v34i3.489

Oktaviani, E., Nursam, N. M., Prastomo, N., & Shobih. (2020). Effect of counter electrode materials on the performance of dye-sensitized solar cell. AIP Conference Proceedings, 2232, 050001. https://doi.org/10.1063/5.0001601

Oktaviani, E., Nursam, N. M., Shobih, Hidayat, J., Pranoto, L. M., Rosa, E. S., Prastomo, N., & Timuda, G. E. (2021). Electrical and electrochemical properties of sandwich- and monolithic-structured dye-sensitized solar cells with various counter electrode materials. International Journal of Electrochemical Science, 16(9), 210922. https://doi.org/10.20964/2021.09.16

Pandanga, J. J., Nursam, N. M., Shobih, S., & Prastomo, N. (2019). Synthesis and application of TiO2 nanorods as photo-anode in dye-sensitized solar cells. Journal of Physics: Conference Series, 1191, 012023. https://doi.org/10.1088/1742-6596/1191/1/012023

Park, J., Kim, J., Yun, H.-S., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., & Seok, S. Il. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616(7958), 724–730. https://doi.org/10.1038/s41586-023-05825-y

Poespawati, N. R., & Nursam, N. M. (2006). Optimization and analysis of Al0.85Ga0.15As/GaAs heteroface homojunction thin-film solar cell. Jurnal Teknologi FTUI, 2, 51–55.

Pranoto, L. M., Hidayat, J., Nursam, N. M., Shobih, & Rosa, E. S. (2021). Fabrication and electrical performance of monolithic dye-sensitized solar module with low-temperature carbon-based counter electrode. IEEE Proceedings of the 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 55–59. https://doi.org/10.1109/ICRAMET53537.2021.9650345

Rajagopal, K. Y. & Jen, A. K. Y. (2018). Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering. Advanced Materials, 30(32), 1800455. https://doi.org/10.1002/adma.201800455

Ren, Y., Zhang, D., Suo, J., Cao, Y., Eickemeyer, F. T., Vlachopoulos, N., Zakeeruddin, S. M., Hagfeldt, A., & Grätzel, M. (2023). Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature, 613(7942), 60–65. https://doi.org/10.1038/s41586-022-05460-z

Rosa, E. S., Nursam, N. M., Shobih, Hidayat, J., Muliani, L., Anggraini, P. N., Retnaningsih, L., Aminudin, A. W., & Djuhara, D. (2021). Pasta Konduktif Berbasis Karbon Nanotube Temperatur Rendah (Nomor Pemberian Paten IDP000092253).

Rosa, E. S., Nursam, N. M., Shobih, S., & Abdillah, R. (2018). Improving the efficiency of perovskite solar cell through the addition of compact layer under TiO2 electron transfer material. In Materials Science Forum: Vol. 929 MSF. https://doi.org/10.4028/www.scientific.net/MSF.929.218

Rosa, E. S., Septina, W., Shobih, Megananda, P. C., Hardian, A., & Nursam, N. M. (2024). Improved efficiency and stability of dye-sensitized solar cells by using iodide-based electrolyte with high viscosity solvent. Materials Letters, 358, 135847. https://doi.org/https://doi.org/10.1016/j.matlet.2023.135847

Saeed, M. A., Yoo, K., Kang, H. C., Shim, J. W., & Lee, J.-J. (2021). Recent developments in dye-sensitized photovoltaic cells under ambient illumination. Dyes and Pigments, 194, 109626. https://doi.org/https://doi.org/10.1016/j.dyepig.2021.109626

Shen, W., Dong, Y., Huang, F., Cheng, Y.-B., & Zhong, J. (2021). Interface passivation engineering for hybrid perovskite solar cells. Materials Reports: Energy, 1(4), 100060. https://doi.org/https://doi.org/10.1016/j.matre.2021.100060

Shobih, Rosa, E. S., Nursam, N. M., Hidayat, J., Anggraini, P. N., Muliani, L., & Retnaningsih, L. (2019). Interlayer Counter Electrode Karbon untuk Sel Surya Berbasis Pewarna Tersensitasi dengan Konfigurasi Monolitik dan Proses Pembuatannya (Nomor Pendaftaran Paten P00201910606).

Sova, R. R., Budiawan, W., Shobih, Yuliantini, L., Almuqoddas, E., Rijal, M. S., Milana, P., Suendo, V., Yuliarto, B., & Nursam, N. M. (2024). Defect passivation of organometal halide perovskite solar cells using low-cost green crystalline nanocellulose. Materials Letters, (under review).

Sova, R. R., Shobih, Budiawan, W., Pranoto, L. M., Almuqoddas, E., Yuliarto, B., & Nursam, N. M. (2022). Free-standing carbon electrode modified by polyvinyl alcohol for efficient HTM-free perovskite solar cells. IEEE Proceedings of the 2022 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 234–238. https://doi.org/10.1109/ICRAMET56917.2022.9991203

Sova, R. R., Shobih, Budiawan, W., Septina, W., Yuliantini, L., Firdaus, Y., Almuqoddas, E., Yuliarto, B., & Nursam, N. M. (2024). Enhanced performance of HTM-free perovskite solar cells with free-standing carbon electrode via surface treatment and conductive support. Synthetic Metals, 306, 117646. https://doi.org/10.1016/j.synthmet.2024.117646

Syed, T. H., & Wei, W. (2022). Technoeconomic analysis of dye sensitized solar cells (DSSCs) with WS2/carbon composite as counter electrode material. Inorganics, 10(11), 191. https://doi.org/10.3390/inorganics10110191

Wang, A., He, M., Green, M. A., Sun, K., & Hao, X. (2023). A critical review on the progress of kesterite solar cells: Current strategies and insights. Advanced Energy Materials, 13(2), 2203046. https://doi.org/10.1002/aenm.202203046

Widianto, E., Driyo, C., Sudarsono, S., Shobih, S., Nursam, N. M., Hanna, M. Y., Absor, M. A. U., Triyana, K., & Santoso, I. (2024). Unraveling the performance of all-inorganic lead-free CsSnI3-based perovskite photovoltaic with graphene oxide hole transport layer. Advanced Theory and Simulations, 7(3), 2300610. https://doi.org/https://doi.org/10.1002/adts.202300610

Widianto, E., Shobih, Nursam, N. M., Hanna, M. Y., Triyana, K., Rusydi, A., & Santoso, I. (2023). Electronic correlations enhance optical absorption in graphene oxide-modified methylammonium lead iodide perovskite. Journal of Alloys and Compounds, 947, 169634. https://doi.org/10.1016/j.jallcom.2023.169634

Widianto, E., Shobih, Rosa, E. S., Triyana, K., Nursam, N. M., & Santoso, I. (2021a). Graphene oxide as an effective hole transport material for low-cost carbon-based mesoscopic perovskite solar cells. Advances in Natural Sciences: Nanoscience and Nanotechnology, 12(3), 035001. https://doi.org/10.1088/2043-6262/ac204a

Widianto, E., Shobih, Rosa, E. S., Triyana, K., Nursam, N. M., & Santoso, I. (2021b). Performance analysis of carbon-based perovskite solar cells by graphene oxide as hole transport layer: Experimental and numerical simulation. Optical Materials, 121, 100–200. https://doi.org/10.1016/j.optmat.2021.111584

Widianto, E., Subama, E., Nursam, N. M., Triyana, K., & Santoso, I. (2022). Design and simulation of perovskite solar cell using graphene oxide as hole transport material. AIP Conference Proceedings, 2391, 090011. https://doi.org/10.1063/5.0073007

Wijayanti, S. (2020). Analisis Parameter Dye Sensitized Solar Cell (DSSC) dengan Photoanode TiO2 Hasil Proses Fusi Kaustik Konsentrat Ilmenit (Thesis S2). Institut Teknologi Bandung.

Wijayanti, S., Nursam, N. M., Soepriyanto, S., & Suhendar, D. (2022). Fabrication of DSSC photoanode based on TiO2 produced by caustic fusion of local ilmenite. IOP Conference Series: Earth and Environmental Science, 1031, 012030. https://doi.org/10.1088/1755-1315/1031/1/012030

Yandri, V. R., Nurunnizar, A. A., Debora, R., Wulandari, P., Nursam, N. M., Hidayat, R., Indari, E. D., & Yamashita, Y. (2023). Crystal structures and photoluminescence characteristics of cesium lead bromide perovskite nanoplatelets depending on the antisolvent and ligand used in their syntheses. Heliyon, e23276. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e23276

Yuliantini, L., Nursam, N. M., Pranoto, L. M., Shobih, Hidayat, J., Sova, R. R., Isnaeni, Rahayu, E. S., Djamal, M., Yasaka, P., Boonin, K., & Kaewkhao, J. (2023). Photon up-conversion in Er3+ ion-doped ZnO-Al2O3-BaO-B2O3 glass for enhancing the performance of dye-sensitized solar cells. Journal of Alloys and Compounds, 954, 170163. https://doi.org/10.1016/j.jallcom.2023.170163

Yuliantini, L., Paramudita, I., Pranoto, L. M., Shobih, S., Hidayat, J., & Nursam, N. M. (2022). Application of down-conversion materials based on trivalent europium ion-doped fluoroborotellurite glass for transparent dye-sensitized solar cell. IEEE Proceedings of the 2022 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 114–118. https://doi.org/10.1109/ICRAMET56917.2022.9991239

Yustiani, E. B., Shobih, Widianto, E., Anggraini, P. N., Soepriyanto, S., Santoso, I., & Nursam, N. M. (2023). Colloidal TiO2-modified mesoporous electron transport layer in perovskite solar cells. Jurnal Elektronika Dan Telekomunikasi, 23(2), 115–121.

cover depan Orasi Tek Sel Surya

Downloads

Published

August 16, 2024
HOW TO CITE

Details about this monograph

ISBN-13 (15)

978-602-6303-24-0