Templates
Perangkat Microwave dan Fotonika untuk Mendukung Teknologi Nirkabel Pita Lebar
Keywords:
Gelombang Mikro (Microwave) , Fotonika, Nirkabel, Pita lebar, Antena, Modular Optik, Telekomunikasi, PenginderaanSynopsis
Pada orasi ini, akan disampaikan state of the art tentang perkembangan dan tantangan riset perangkat gelombang mikro (microwave) dan fotonika untuk mendukung teknologi nirkabel pita lebar yang dapat diaplikasikan pada bidang telekomunikasi dan penginderaan serta menjanjikan untuk pengukuran. Inovasi dari perangkat ini memberikan solusi sebagai antar muka teknologi microwave dan fotonika yang mempunyai fleksibilitas yang tinggi, tanpa menggunakan catu daya eksternal (passive devices), dan tanpa rugi daya yang timbul (zero loss).
Orasi ini diharapkan dapat memberikan pemahaman tentang perkembangan perangkat microwave dan fotonika serta peluang pemanfaatnya untuk menghadapi tantangan masa depan. Untul hal itu diperlukan langkah strategis membangun ekosistem riset bersama pemangku kepentingan (stakeholder) dari hulu sampai hilir. Sehingga teknologi microwave dan fotonika dapat berperan optimal dalam menyambut Indonesia emas 2045.
Downloads
Download data is not yet available.
References
Adji, R. P. H., Taufiqqurrachman, Rahim, M. K. A., Samsuri, N. A. B., Yaziz, N. S. M., Daud, P., Santiko, A. B., Kurniawan, E. D., Kurniadi, D. P., Fathnan, A. A., Mahmudin, D., & Wijayanto, Y. N. (2023). Simulation of circular patch unit cell as a reflector on F4BMX220 substrate. Dalam 2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (168–171). ICRAMET. https://doi.org/10.1109/ICRAMET60171.2023.10366758
Agrawal, G. P. (2016). Optical communication: Its history and recent progress. Dalam M. D. Al-Amri, M. El-Gomati, M. S. Zubairy, Optics in our time (177–199). Springer. https://doi.org/10.1007/978-3-319-31903-2_8
Amrullah, Y. S., Wijayanto, Y. N., Setiawan, A., & Wahyu, Y. (2017). Enhancement of quasi yagi antenna design for Ka-band application. Proceeding-2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (142–144). ICRAMET. https://doi.org/10.1109/ICRAMET.2017.8253163
Arisesa, H., Idrus, S. M., Iqbal, F., Wijayanto, Y. N., & Adhi, P. (2023). Blocking object effect in propagation channel of millimeter wave wireless communication. Dalam 2023 IEEE International Conference on Communication, Networks and Satellite (525–529). COMNETSAT. https://doi.org/10.1109/COMNETSAT59769.2023.10420572
Arisesa, H., Wijayanto, Y. N., Adhi, P., Iqbal, F., & Idrus, S. M. (2024). Fast prediction of a high directivity antenna characterization for future wireless communication based on terahertz photonics. Journal of Physics: Conference Series, 2696(1): Article 012012. https://doi.org/10.1088/1742-6596/2696/1/012012
Aya, H., Inoue, T., Murata, H., Okamura, Y., Wijayanto, Y. N., Kanno, A., & Kawanishi, T. (2017). Wireless millimeter-wave-lightwave signal converter using stacked patch-antennas embedded with a micrometer-gap and electro-optic crystal. Dalam 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications ICRAMET (77–80). IEEE. https://doi.org/10.1109/ICRAMET.2016.7849586
Aya, H., Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., & Okamura, Y. (2016). Electro-optic modulator using millimeter-wave gap-embedded patch antenna with stacked structure. Dalam OptoElectronics and Communications Conference, (OECC 2016) Held Jointly with 2016 International Conference on Photonics in Switching, PS 2016.
Bardin, J. C., Slichter, D. H., & Reilly, D. J. (2021). Microwaves in quantum computing. IEEE Journal of Microwaves, 1(1), 403–427. https://doi.org/10.1109/JMW.2020.3034071
Chen, L. R. (2021). Integrated microwave photonics. Dalam 2021 International Topical Meeting on Microwave Photonics, MWP (1–4). IEEE. https://doi.org/10.1109/MWP53341.2021.9639375
Chitraningrum, N., Wijayanto, Y. N., Arisesa, H., Sakti, I., Mahmudin, D., Prawara, B., Kurniadi, D. P., & Daud, P. (2022). The optical characteristics of 20 watt Far-UVC light and its application for disinfection chamber. Jurnal Elektronika dan Telekomunikasi, 22(2), 57. https://doi.org/10.55981/jet.502Chowdhury, M. Z., Hasan, M. K., Shahjalal, M., Hossan, M. T., & Jang, Y. M. (2020). Optical wireless hybrid networks: Trends, opportunities, challenges, and research directions. IEEE Communications Surveys and Tutorials, 22(2), 930–966. https://doi.org/10.1109/COMST.2020.2966855
Darwis, F., Wijayanto, Y. N., Setiawan, A., Mahmudin, D., Rahman, A. N., & Daud, P. (2018). 10 GHz Standing-Wave Coplanar stripline on LiNbO3 Crystal for radio to optical-wave conversion. Journal of Physics: Conference Series, 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012050
Daud, P., Kurniadi, D. P., Mahmudin, D., Wijayanto, Y. N., Putranto, P., Pristianto, E. J., Nurrahman, A., Andriana, Zulkarnaen, & Vertus, O. (2019). 10 Ghz optical modulator using CPS structure for communication and sensing. IOP Conference Series: Materials Science and Engineering, 622(1): Article 012018. https://doi.org/10.1088/1757-899X/622/1/012018
Daud, P., Mahmudin, D., Fathnan, A. A., Syamsu, I., Estu, T. T., & Wijayanto, Y. N. (2016). Inset-fed U-slotted patch antenna array for 10GHz radio-over-fiber applications. Dalam 2016 International Conference on Semiconductor Electronics (ICSE) (117–120). IEEE. https://doi.org/10.1109/SMELEC.2016.7573605
Daud, P., Wijayanto, Y. N., Mahmudin, D., Kurniadi, D. P., & Putranto, P. (2021). Modulator optik coplanar stripline frekuensi 10 GHz untuk radio-over-fiber (Nomor Paten IDP000077433). Direktorat Jenderal Kekayaan Intelektual. https://pdki-indonesia.dgip.go.id/detail/38695eeb1a0202f91c998af099f2e0fc30888711f51432b8dbe555211b924bfd?nomor=P00201904350&type=patent&keyword=Modulator%20Optik%20Coplanar%20Stripline%20Frekuensi%2010%20GHz%20untuk%20Radio-Over-Fiber
Desvasari, W., Darwis, F., Sulistyaningsih, Susanti, N. D., Sukma, I., Chitraningrum, N., Danufane, F. H., Kurniadi, D. P., & Wijayanto, Y. N. (2023). A filtenna design for Ku-Band satellite mobile terminal. Dalam 2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (269–272). ICRAMET. https://doi.org/10.1109/icramet60171.2023.10366708
Ermawati, F. U., Taryana, Y., Sulaeman, Y., Wijayanto, Y. N., Sudrajat, N., & Adi, W. A. (2023). Fabrication and characterization of (Mg0.8Zn0.2)(Ti0.99Sn0.01)O3 ceramics as a 4.0 GHz resonator in dielectric resonator oscillator module. Journal of Materials Science: Materials in Electronics, 34(20), 1–18. https://doi.org/10.1007/s10854-023-10890-0
Fathnan, A. A., Hossain, T. M., Mahmudin, D., Wijayanto, Y. N., & Powell, D. A. (2022). Characterization of broadband focusing microwave metasurfaces at oblique incidence. IEEE Transactions on Antennas and Propagation, 70(3), 2023–2032 . https://doi.org/10.1109/TAP.2021.3118848
Fathnan, A. A., & Wijayanto, Y. N. (2018). Passive sensing through near-field coupling interaction of loaded transmission line. Dalam Proceedings 2018 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2018 (59–62). IEEE. https://doi.org/10.1109/ICRAMET.2018.8683914
Fathnan, A. A., Wijayanto, Y. N., Daud, P., Mahmudin, D., Kanno, A., & Kawanishi, T. (2016). Millimeter-wave antenna using metamaterial ELC resonators on electro-optics substrate. 2015 11th Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2015, 4, 1–2. https://doi.org/10.1109/CLEOPR.2015.7376308
Jiang, W., Zhao, X., Huang, F., Huang, X., Jin, T., Lin, H., Zhang, J., & Qiu, K. (2023). End-to-end learning of constellation shaping for optical fiber communication systems. IEEE Photonics Journal, 15(6): Article 7202507 https://doi.org/10.1109/JPHOT.2023.3321736
Kanno, A. (2023). Seamless convergence between terahertz radios and optical fiber communication toward 7G systems. IEEE Journal of Selected Topics in Quantum Electronics, 29(5): Article 8600509. https://doi.org/10.1109/JSTQE.2023.3311793
Kanno, A., Umezawa, T., Kuri, T., Yamamoto, N., Wijayanto, Y. N., & Kawanishi, T. (2017). Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network. Proceeding - 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2016. https://doi.org/10.1109/ICRAMET.2016.7849571
Lee, K. F., & Luk, K. M. (2011). Microstrip patch antennas. Imperial College Press.
Lim, C., & Nirmalathas, A. (2021). Radio-Over-Fiber technology: Present and future. Journal of Lightwave Technology, 39(4), 881–888. https://doi.org/10.1109/JLT.2020.3024916Lim, C., Tian, Y., Ranaweera, C., Nirmalathas, T. A., Wong, E., & Lee, K. L. (2019). Evolution of radio-over-fiber technology. Journal of Lightwave Technology, 37(6), 1647–1656. https://doi.org/10.1109/JLT.2018.2876722
Mahmudin, D., -, S., Daud, P., & Wijayanto, Y. N. (2017). Fabrication of Polyimide Optical Waveguide on Silicon Dioxide Layer Stacked Silicon Substrate. Jurnal Elektronika Dan Telekomunikasi, 17(2). https://doi.org/10.14203/jet.v17.36-41
Mahmudin, D., Kurniadi, D. P., Daud, P., Putranto, P., Wijayanto, Y. N., & Hardiati, S. (2017). Antena mikrostrip array inset-fed patch rektangular (Nomor Paten P00201705501). Direktorat Jenderal Kekayaan Intelektual. https://pdki-indonesia.dgip.go.id/detail/679e278f67db05eaa532b5e313acffc14fb3583f69acd0515f3312322626239f?nomor=P00201705501&type=patent&keyword=P00201705501
Mahmudin, D., & Wijayanto, Y. N. (2016). Pemandu gelombang optik polimer pada substrat silikon dioksida untuk panjang gelombang 1,55 µm. Jurnal Elektronika dan Telekomunikasi, 14(2), 56–60. https://doi.org/10.14203/jet.v14.56-60
Murata, H., Aya, H., Inoue, T., Sanada, A., Wijayanto, Y. N., Kanno, A., & Kawanishi, T. (2017). Millimeter-wave electro-optic modulator using stacked patch-antennas embedded with micrometer-gap for radio-over-fiber system. Dalam 2017 47th European Microwave Conference (EuMC) (628–631). IEEE. https://doi.org/10.23919/EuMC.2017.8230926
Murata, H., Kohmu Naohiro, Wijayanto, Y. N., & Okamura, Y. (2014). Integration of patch antenna on optical modulators. IEEE Photonics Society News, 28(2), 1–4. https://doi.org/10.23919/EuMC.2017.8230926
Murata, H., Nakamori, S., Otagaki, Y., Sato, M., Onizawa, M., & Kurokawa, S. (2023). 5G-Band antenna-coupled electrode electro-optic modulator for discriminating two orthogonal polarization components of wireless signal. Dalam 2023 IEEE Conference on Antenna Measurements and Applications (CAMA) (601–603). IEEE. https://doi.org/10.1109/cama57522.2023.10352792
Nagatsuma, T., Ohtake, H., Kato, K., Yumoto, J., & Ito, H. (2023). Photonics-empowered terahertz Wireless communications. Dalam 24th International Conference on Applied Electromagnetics and Communications (1–3). ICECOM. https://doi.org/10.1109/icecom58258.2023.10367950
Oktafiani, F., Wahyu, Y., & Wijayanto, Y. N. (2015). Broadband octagonal patch antenna for cognitive radio applications. Dalam 2015 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob) (251–254). IEEE. https://doi.org/10.1109/APWiMob.2015.7374931
Oktafiani, F., Wahyu, Y., & Wijayanto, Y. N. (2016). Measurement and evaluation of Tx/ Rx Antennas for X-Band radar system. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(2), 555–562. https://doi.org/10.12928/telkomnika.v14i2.3291
Pramudya, T., Yudistira, R. P., Trisnawan, M. A., Setianingrum, L., Wijayanto, Y. N., Hamidah, M., Dewi, M. F., Firdaus, M. Y., Rasuanta, M. P., Rahmadiansyah, M., & Rahardjo, S. (2023). Transmitter and receiver design for visible light communication system with off-the-shelf LED towards its implementation possibility for Vehicle to Vehicle/Infrastructure (V2V/V2I) communication. Dalam 2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (258–263). ICRAMET. https://doi.org/10.1109/icramet60171.2023.10366558Satyawan, A. S., Kurniawan, D., Armi, N., & Wijayanto, Y. N. (2019). Room map estimation from two-dimensional lidar’s point cloud data. Dalam Proceedings 2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (152–155). ICRAMET. https://doi.org/10.1109/ICRAMET47453.2019.8980374
Satyawan, A. S., Prini, S. U., Abu-Bakar, S. A. R., & Wijayanto, Y. N. (2022). An elastic frame rate up-conversion for sequential omnidirectional images. International Journal on Advanced Science, Engineering and Information Technology, 12(1), 158–164. https://doi.org/10.18517/ijaseit.12.1.12963
Wahyu, Y., Wijayanto, Y. N., & Lestari, A. A. (2019). Performance of antenna using linear resistive loading for ground penetrating radar. Dalam Proceedings of CAMA 2019: IEEE International Conference on Antenna Measurements and Applications (323¬¬¬–324). IEEE. https://doi.org/10.1109/CAMA47423.2019.8959723
Wahyu, Y., Wijayanto, Y. N., Oktafiani, F., & Maulana, Y. Y. (2020). Antena radar bawah tanah berbentuk dasi kupu-kupu (Nomor Paten P00200800142). Direktorat Jenderal Kekayaan Intelektual. https://pdki-indonesia.dgip.go.id/detail/df34abe1781bce5428b1ca560146345ae43190aac9730a55002b5501485e5317?nomor=P00200800142&type=patent&keyword=P00200800142
Widodo, S., Daud, P., & Wijayanto, Y. N. (2017). Teknologi sensor dan miniaturisasi. Informatika.
Wijayanto, Y. N., Amrullah, Y. S., Darwis, F., Kanno, A., Kawanishi, T., & Adhi, P. (2019). Microstrip yagi antenna stacked with optical modulator for 28GHz communication. Dalam IEEE International Conference on Antenna Measurements and Applications (1–3). IEEE. https://doi.org/10.1109/CAMA47423.2019.8959771
Wijayanto, Y. N., Arisesa, H., Mahmudin, D., Daud, P., Adhi, P., Murata, H., Kanno, A., & Kawanishi, T. (2017). Optical fiber and microwave wireless up-links using EO modulator with planar stripline feed to gap-embedded patch-antennas. Dalam 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET (75–78). IEEE. https://doi.org/10.1109/ICRAMET.2017.8253149
Wijayanto, Y. N., Fathnan, A. A., Kanno, A., Mahmudin, D., & Daud, P. (2019). Metamaterial antenna on electro-optic modulator for wireless terra-hertz detection through Radio-Over-Fibre technology. Dalam IOP Conference Series: Materials Science and Engineering, 622(1): Artikel 012004. https://doi.org/10.1088/1757-899X/622/1/012004
Wijayanto, Y. N., Kanno, A., & Kawanishi, T. (2015a). Broadband millimeter-wave electro-optic modulator using multi-patch antennas for pico-cell radar networks. International Seminar on Photonics, Optics, and Its Applications (ISPhOA 2014): Artikel 9444. https://doi.org/10.1117/12.2075142
Wijayanto, Y. N., Kanno, A., & Kawanishi, T. (2015b). Metamaterial electric-LC resonators on electro-optic modulator for wireless THz-lightwave signal conversion. Dalam Conference on Lasers and Electro-Optics Europe - Technical Digest (1–2). IEEE. https://doi.org/10.1364/CLEO_AT.2015.JTh2A.37
Wijayanto, Y. N., Kanno, A., & Kawanishi, T. (2015c). Metamaterial electric-LC resonators on electro-optic modulator for wireless THz-lightwave signal conversion. Dalam 2015 Conference on Lasers and Electro-Optics (CLEO) (1–2). IEEE. https://doi.org/10.1364/CLEO_AT.2015.JTh2A.37
Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., & Okamura, Y. (2014a). Wireless millimeter-wave to lightwave signal converters using simple planar antennas on LiNbO3 optical crystal. Dalam Progress in Electromagnetics Research Symposium, PIERS 2014 (310–314). Electromagnetics Academy.
Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., & Okamura, Y. (2014b). Z-cut LiNbO3 optical modulator using patch-antenna with orthogonal-gaps for millimeter-wave radar applications. Dalam Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP) 2014 International Topical Meeting On (192–195). IEEE. https://doi.org/10.1109/MWP.2014.6994528
Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., & Okamura, Y. (2015a). Microstrip patch antennas feed to optical waveguides in electro-optic modulator for millimeter-wave radar system. Dalam 2015 IEEE MTT-S International Microwave Symposium (1–4). IEEE. https://doi.org/10.1109/MWSYM.2015.7166877
Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., & Okamura, Y. (2015b). Millimeter-wave LiNbO3 modulator with orthogonal-gap-embedded patch-antenna for fiber-wireless link. Dalam 2015 IEEE International Broadband and Photonics Conference (IBP) (23–26). IEEE. https://doi.org/10.1109/IBP.2015.7230759
Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., & Okamura, Y. (2015c). Millimeter-wave wireless beam-steering using patch-antennas with meandering-gaps on electro-optical modulator. Dalam 2015 European Microwave Conference (EuMC) (1140–1143). IEEE. https://doi.org/10.1109/EuMC.2015.7345969
Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., & Okamura, Y. (2015d). Wireless millimetre-wave-lightwave signal conversion using patch-antennas on LiNbO3 optical modulator. Dalam 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference (paper CI_5_6). Optica Publishing Group. https://opg.optica.org/abstract.cfm?URI=CLEO_Europe-2015-CI_5_6
Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., Umezawa, T., Yamamoto, N., & Okamura, Y. (2016). Multi-layered stacked patch-antennas on electro-optic material for optical modulation. Dalam European Microwave Week 2016: “Microwaves Everywhere”, EuMW 2016-Conference Proceedings; 46th European Microwave Conference, EuMC 2016 (945–948). IEEE. https://doi.org/10.1109/EUMC.2016.7824501
Wijayanto, Y. N., Kanno, A., Kawanishi, T., Murata, H., Yamamoto, N., & Okamura, Y. (2016). Performance of 90GHz electro-optic modulator with patch-antennas in high-power wireless irradiation. Dalam 2016 Conference on Lasers and Electro-Optics, CLEO 2016 (paper JW2A.128). Optica Publishing Group. https://doi.org/10.1364/cleo_at.2016.jw2a.128
Wijayanto, Y. N., Kanno, A., Murata, H., Kawanishi, T., & Adhi, P. (2018). W-band millimeter-wave patch antennas on optical modulator for runway security systems. Dalam 2017 IEEE Conference on Antenna Measurements and Applications, CAMA 2017 (79–82). IEEE. https://doi.org/10.1109/CAMA.2017.8273483
Wijayanto, Y. N., Kanno, A., Murata, H., Kawanishi, T., Yamamoto, N., & Okamura, Y. (2016a). Array of patch-antennas with meandering-gaps on optical modulator for wireless millimeter-wave beam-steering. International Journal of Microwave and Wireless Technologies, 8(4–5), 759–765. https://doi.org/10.1017/S1759078716000210
Wijayanto, Y. N., Kanno, A., Murata, H., Kawanishi, T., Yamamoto, N., & Okamura, Y. (2016b). Free-space millimeter-wave electro-optic modulators using quasi-phase-matching gap-embedded-patch-antennas on low dielectric constant substrate. Dalam P. Ribeiro & M. Raposo (Eds.), Photoptics 2015 (83–103). Springer International Publishing.
Wijayanto, Y. N., Murata, H., & Hermida, I. D. P. (2016). Microwave and optical electric field interaction in microwave polarization detector based on photonic technology for EMC measurement. Jurnal Elektronika dan Telekomunikasi, 16(1), 7. https://doi.org/10.14203/jet.v16.7-10
Wijayanto, Y. N., Murata, H., Kawanishi, T., & Okamura, Y. (2012). X-cut LiNbO 3 optical modulators using gap-embedded patch-antennas for wireless-over-fiber systems. Dalam Advances in Optical Technologies. https://doi.org/10.1155/2012/383212
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2011a). Novel electro-optic microwave-lightwave converters utilizing a patch antenna embedded with a narrow gap. IEICE Electronics Express, 8(7), 491–497. https://doi.org/10.1587/elex.8.491
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2011b). Passive electromagnetic field sensors using electro-optic crystal with metal planar antennas and narrow gaps. ECO-MATES 2011, 213–214.
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2012a). Discrimination of wireless electromagnetic signals by electro-optic modulators using an array of patch antennas embedded with orthogonal gaps. Journal of Physics: Conference Series, 379: Artikel 012017. https://doi.org/10.1088/1742-6596/379/1/012017
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2012b). Electro-optic microwave-lightwave converters utilising quasi-phase-matching array of patch antennas with gap. Electronics Letters, 48(1), 36. https://doi.org/10.1049/el.2011.3548
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2012c). Electro-optic microwave-lightwave converters utilizing patch antennas with orthogonal gaps. journal of nonlinear optical physics & materials, 21(01): Artikel 1250001. https://doi.org/10.1142/S0218863512500014
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2012d). Electro-optic wireless millimeter-wave-lightwave signal converters using planar yagi-uda array antennas coupled to resonant electrodes. Opto-Electronic Communications Conference, 5E1-2.
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2012e). Novel wireless millimeter-wave to lightwave signal converters by electro-optic crystals suspended to narrow-gap-embedded patch-antennas on low-k dielectric substrates. Dalam Photonic Global Conference (1–4). IEEE. https://doi.org/10.1109/PGC.2012.6458097
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2013a). Electro-optic beam forming device using a two-dimensional array of patch-antennas embedded with orthogonal-gaps for millimeter-wave signals. Dalam 2013 IEEE Photonics Conference, IPC 2013 (414–415). IEEE. https://doi.org/10.1109/IPCon.2013.6656613
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2013c). Electrooptic millimeter-wave-lightwave signal converters suspended to gap-embedded patch antennas on low-k dielectric materials. Dalam IEEE Journal on Selected Topics in Quantum Electronics, 19(6), 33–41. https://doi.org/10.1109/JSTQE.2013.2265192
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2013d). Wireless microwave-optical signal conversion in using gap-embedded patch-antennas. IEICE Transactions on Electronics, E96-C(2), 212–219.
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2013e). 60GHz electro-optic modulator suspended to patch-antennas embedded with a gap on low-k dielectric material. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest (1–2). IEEE. https://doi.org/10.1109/CLEOPR.2013.6600376
Wijayanto, Y. N., Murata, H., & Okamura, Y. (2016). Optical modulator using channel optical waveguides and planar patch-antennas with gaps. Jurnal Elektronika dan Telekomunikasi, 15(2), 50–54. https://doi.org/10.14203/jet.v15.50-54
Wijayanto, Y. N., Murata, H., Shiomi, H., & Okamura, Y. (2010). A new electro-optic microwave-lightwave converter using a square patch antenna embedded with a narrow gap. Dalam 2nd Global COE Student Conference on Innovative Electronic Topics (SCIENT).
Wijayanto, Y. N., Murata, H., Shiomi, H., & Okamura, Y. (2011). Electro-optic microwave-lightwave converter using patch antenna embedded with a narrow gap for optical modulation. Conference on Lasers and Electro-Optics, 2011: Artikel JWA122.
Wijayanto, Y. N., Pristianto, E. J., Mahmudin, D., & Daud, P. (2019). Short range visible light communication for high-speed data transfer using low-cost optoelectronic components. IOP Conference Series: Materials Science and Engineering, 620(1): Artikel 012089. https://doi.org/10.1088/1757-899X/620/1/012089
Yao, J. (2022). Microwave photonic systems. Journal of Lightwave Technology 40(20), 6595–6607. https://doi.org/10.1109/JLT.2022.3201776

Downloads
Published
August 6, 2024
HOW TO CITE
Copyright (c) 2024 National Research and Innovation Agency
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Details about this monograph
ISBN-13 (15)
978-602-6303-22-6