Konsep Dasar Biologi Molekular Kanker: Pendalaman Hallmark of Cancer Edisi Ke-2

Authors

Sari Eka Pratiwi
Universitas Tanjungpura

Keywords:

kanker, biologi, biologi molekular, hallmark of cancer, genetik, tumor, imun, sistem imun

Synopsis

Sel manusia tidak luput dari serangan lingkungan baik itu oleh adanya infeksi oleh virus, kerusakan DNA akibat adanya berbagai proses seperti kegagalan perbaikan DNA yang rusak, mutagen, dan karsinogen termasuk sinar UV, racun, dan bahan kimia. Berbagai serangan ini dapat menyebabkan timbulnya kanker. Berbagai karsinogen maupun mutagen dapat menyebabkan aktivasi onkogen maupun inaktivasi gen penekan tumor. Mekanisme yang terlibat mulai dari genetik, epigenetik, hingga RNA regulator. Proses karsinogenesis yang terangkum dalam hallmark of cancer memperlihatkan kompleksitas patogenesis kanker. Buku edisi ke-2 ini menampilkan berbagai temuan terbaru, termasuk update berbagai mekanisme molekuler yang membentuk hallmark of cancer. Penelitian di bidang kedokteran molekuler yang cukup pesat, berdampak positif pada penelitian di bidang kanker. Banyak temuan dihasilkan, yang diharapkan dapat bermanfaat dalam memahami kanker, mencari teknologi penapisan yang akurat dan tidak invasif, hingga menemukan terapi yang berbasis personal. Tugas kitalah sebagai peneliti dan praktisi di bidang kesehatan dan kedokteran untuk terus menggali ilmu, sehingga dapat bermanfaat untuk kesehatan terutama di bidang kanker.

Downloads

Download data is not yet available.

Author Biography

Sari Eka Pratiwi, Universitas Tanjungpura

Ia menyelesaikan gelar Sarjana Kedokteran dan Profesi dokter di Fakultas Kedokteran Universitas Tanjungpura Pontianak dan mendapatkan gelar Master Ilmu Biomedik di FK-KMK Universitas Gadjah Mada Yogyakarta. Ia aktif sebagai dosen di Program Studi Kedokteran Fakultas Kedokteran Universitas Tanjungpura sejak tahun 2012 hingga saat ini. Bidang yang ditekuninya adalah kedokteran molekular yang mencakup biologi sel, genetika dan epigenetika, mikro-RNA, imunologi, imuno-onkologi, dan patobiologi, serta bioinformatika dan imuno-informatika di bidang penyakit degeneratif dan kanker. Buku referensi yang telah terbit sebelumnya adalah Kanker dan Perilaku Seksual Berisiko pada Remaja, Konsep Dasar Biologi Molekular Kanker Untuk Mahasiswa Kedokteran dan Kesehatan, Konsep Dasar Patobiologi Kanker Payudara, HPV A–Z, dan Immunoassay. Sebelumnya, ia juga telah menerbitkan buku ajar yang berjudul Membran Sel, Organela Sel, dan Inflamasi, Regenerasi, dan Repair Jaringan.

References

Desen W. Buku Ajar Onkologi Klinis. 2nd ed. Japaries W, editor. Jakarta: Fakultas Kedokteran Universitas Indonesia; 2011.

Mukherjee S. Kanker Biografi Suatu Penyakit. Edisi Baha. Primanda A, editor. Jakarta: Kepustakaan Populer Gramedia; 2020.

Pecorino L. Molecular Biology of Cancer. 3rd Editio. Oxford: Oxford University Press; 2012.

Kresno SB, Kadir A, Sutandoyo N, Harianto SH, Setiawan L. Imuno-Onkologi. Kresno SB, editor. Jakarta: Sagung Seto; 2018.

Informasi PD dan. Situasi Penyakit Kanker. Buletin Jendela Data dan Informasi Kesehatan. 2015;1.

Kumar V, Abbas AK, Aster JC. Robbins and Cotran Pathologic Basis of Disease. 9th ed. Philadelphia: Elsevier; 2015.

Wu S, Zhu W, Thompson P, Hannun YA. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun. 2018;9:1–12.

Haryono SJ, Anwar S lukman, Salim A. Dasar-Dasar Biologi Molekular Kanker bagi Praktisi Klinis. 1st ed. Haryana SM, editor. Yogyakarta: Gadjah Mada University Press; 2017.

Hall JE, Guyton AC. Guyton dan Hall Buku Ajar Fisiologi Kedokteran. Revisi Ber. Ilyas EII, Widjajakusumah MD, Tanzil A, editors. Singapore: Elsevier Inc; 2016.

Rajalakshmi TR, Aravindhababu N, Shanmugam KT, Masthan KMK. DNA adducts-chemical addons. Dental Science. 2015;7:197–200.

Ma B, Stepanov I, Hecht SS. Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke. Toxics. 2019;7(16):1–28.

Hall JE, Hall ME. Guyton and Hall Textbook of Medical Physiology. 14th Editi. Canada: Elsevier; 2021.

Araldi RP, Araujo T, Ana S, Módolo DG. The human papillomavirus (HPV)-related cancer biology: An overview. Biomedicine & Pharmacotherapy. 2018;106(April):1537–56.

Bordignon V, Gino E, Domenico D, Trento E, Agosto GD, Cavallo I, et al. How Human Papillomavirus Replication and Immune Evasion Strategies Take Advantage of the Host DNA Damage Repair Machinery. Viruses. 2017;9(390):1–14.

Molina AA, Valencia JFH, Lamoyi E, Paredes AC, Lizano M. Role of Innate Immunity against Human Papillomavirus (HPV) Infections and Effect of Adjuvants in Promoting Specific Immune Response. Viruses. 2013;5:2624–42.

Steinbach A, Riemer AB. Immune evasion mechanisms of human papillomavirus: An update. Int J Cancer. 2018;142:224–9.

Chang K chao, Chang Y, Wang LH ching, Tsai H wen, Huang W, Su I jen. ScienceDirect Pathogenesis of viruses-associated human cancers: Epstein-Barr virus and hepatitis B virus as two examples. Journal of the Formosan Medical Association. 2013;9(1):1–10.

Park NH, Song IH, Chung Y hwa. Molecular Pathogenesis of Hepatitis-B-virus-associated Hepatocellular Carcinoma. Gut Liver. 2007;1(2):101–17.

Kumar S, Mani K, Andrisani O. Hepatitis B Virus-Associated Hepatocellular Carcinoma and Hepatic Cancer Stem Cells. Genes (Basel). 2018;9(137):1–15.

Fernandes Q, Merhi M, Raza A, Inchakalody VP, Abdelouahab N, Gul ARZ, et al. Role of Epstein–Barr Virus in the Pathogenesis of Head and Neck Cancers and Its Potential as an Immunotherapeutic Target. Front Oncol. 2018;8(July):1–14.

El-Sharkawy A, Al-Zaida L, Malki A. Epstein–Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Front Oncol. 2018;8(265):1–13.

Ko Y hyeh. EBV and human cancer. Experimental & Molecular Medicine. 2015;47(1):e130-3.

Sunil M, Reid E, Lechowicz MJ. Update on HHV-8-Associated Malignancies. Curr Infect Dis Rep. 2010;12(March):147–54.

Yarchoan R, Uldrick TS. HIV-Associated Cancers and Related Diseases Robert. N Engl J Med. 2018;378(11):1029–41.

Foreman KE. Kaposi’s sarcoma: the role of HHV-8 and HIV-1 in pathogenesis. Exp Rev Mol Med. 2001;26(March):1–17.

Serdan TDA, Alfaia CM, Ali M, Almeida DM, Andrade I, Arashiki N. The Molecular Nutrition of Fats. Patel VB, editor. London: Elsevier Inc; 2019.

Ferreri C, Sansone A, Ferreri R, Amezaga J, Tueros I. Fatty Acids and Membrane Lipidomics in Oncology: A Cross-Road of Nutritional, Signaling and Metabolic Pathways. Metabolites. 2020;10(345):1–26.

Bojkov B, Winklewski PJ, Wszedybyl-Winklewska M. Dietary Fat and Cancer—Which Is Good, Which Is Bad, and the Body of Evidence. Int J Mol Sci. 2020;21(4114):1–47.

Cozzo AJ, Fuller AM, Makowski L. Contribution of Adipose Tissue to Development of Cancer. Compr Physiol. 2018;8(1):237–82.

Quail DF, Dannenberg AJ. The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol. 2019;15(3):139–54.

Ecker BL, Lee JY, Sterner CJ, Solomon AC, Pant DK, Shen F, et al. Impact of obesity on breast cancer recurrence and minimal residual disease. Breast Cancer Research. 2019;21(41):1–16.

Nussbaum RL, McInnes RR, Willard HF, Hamosh A. Thompson and Thompson Genetics in Medicine. 7th Editio. Philadelphia: Saunders Elsevier; 2007.

Bennett RL, Bele A, Small EC, Will CM, Nabet B, Oyer A, et al. A Mutation in Histone H2B Represents A New Class of Oncogenic Driver. Cancer Discov. 2019;9(10):1438–51.

Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Molecular Biology of The Cell. 6th ed. United States of America: Garland Science; 2015.

Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology. 9th Editio. Canada: Elsevier; 2013.

Bethune G, Bethune D, Ridgway N, Xu Z. Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. 2010.

Hecht BJL, Aster JC. Molecular Biology of Burkitt’s Lymphoma. Biology of Neoplasia. 2019;18(21):3707–21.

Lam LT, Kluin P, Boerma E jan, Greiner TC, Weisenburger DD, et al. Molecular Diagnosis of Burkitt’s Lymphoma. N Engl J Med. 2006;354(23):2431–42.

Shahbandi A, Nguyen HD, Jackson JG. TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends Cancer. 2020;6(2):98–110.

Olivier M, Hollstein M, Hainaut P. Origins, Consequences, and Clinical Use. Cold Spring Harb Perspect Biol. 2010;2(a001008):1–17.

Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011;2(4):466–74.

Anwar SL, Haryono SJ, Aryandono T, Haryana SM. Micro-RNA: Biogenesis, Fungsi, dan Perannya dalam Proses Karsinogenesis dan Penatalaksanaan Kanker. Yogyakarta: Gadjah Mada University Press; 2017.

Lin S, Gregory RI. MicroRNA biogenesis pathways. Nature Publishing Group. 2015;15(6):321–33.

Pratiwi SE, Wahyuningrum SN, Putri RGP, Danarto, Heriyanto DS, Arfian N, et al. MiR-141-3p Relative Expression Level from FFPE Samples as Biomarker of Prostate Adenocarcinoma Carcinogenesis in Yogyakarta, Indonesia. Indonesian Journal of Medical Laboratory Science and Technology. 2022 Apr 28;4(1).

Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA. 2019;25:1–16.

Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100:57–70.

Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011 Mar 4;144(5):646–74.

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022 Jan 1;12(1):31–46.

Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer. 2017;7(5):1016–36.

Rubin E, Reisner HM. Essentials of Rubin’s Pathology. Sixth Edit. Philadelphia: Lippincott Williams & Wilkins; 2014.

Yao Y, Dai W. Genomic Instability and Cancer Yixin. J Carcinog Mutagen. 2014;5:1–17.

Bondar T, Medzhitov R. The origins of tumor-promoting inflammation Tanya. Cancer Cell. 2013;24(2):143–4.

Kato Y, Maeda T, Suzuki A, Baba Y. Cancer metabolism: New insights into classic characteristics. Japanese Dental Science Review. 2017;(185):1–14.

Ward PS, Thompson CB. Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell. 2012;21(3):297–305.

Yoshida GJ. Metabolic reprogramming: The emerging concept and associated therapeutic strategies. Journal of Experimental & Clinical Cancer Research. 2015;34(111):1–10.

Messerschmidt JL, Prendergast GC. How Cancers Escape Immune Destruction and Mechanisms of Action for the New Significantly Active Immune Therapies: Helping Nonimmunologists Decipher Recent Advances. Oncologist. 2016;21:233–43.

Cordani M, Dando I, Ambrosini G, González-Menéndez P. Signaling, cancer cell plasticity, and intratumor heterogeneity. Vol. 22, Cell Communication and Signaling. BioMed Central Ltd; 2024.

Sher G, Salman NA, Khan AQ, Prabhu KS, Raza A, Kulinski M, et al. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Vol. 83, Seminars in Cancer Biology. Academic Press; 2022. p. 152–65.

Pratiwi SE, Wahyuningrum SN, Putri RP, Danarto D, Heriyanto DS, Arfian N, et al. ZEB1 is Negatively Correlated with E-Cadherin in Prostatic Anomaly Tissue. Molecular and Cellular Biomedical Sciences. 2022 Mar 1;6(1):28.

Subowo. Imunobiologi. 3rd ed. Subowo, editor. Jakarta: Sagung Seto; 2014.

Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J Immunol Res. 2016;1–13.

Murphy KP. Janeway’s Immunobiology. 8th ed. New York: Garland Science; 2012.

Oak R, Couric E. Cancer Immunology and Immunotherapy. Anticancer Res. 2016;36:5593–606.

Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 7th ed. Philadelphia: Elsevier; 2012.

Gou Q, Dong C, Xu H, Khan B, Jin J, Liu Q, et al. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 2020;11(955):1–7.

Palucka AK, Coussens LM. The Basis of Oncoimmunology. Cell. 2016;164(6):1233–47.

Greten FR, Grivennikov SI. Review Inflammation and Cancer: Immunity. 2019;51(1):27–41.

Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, et al. Mechanism of cancer immunoediting. Nature. 2012;482(7385):400–4.

Owen J, Punt J, Stranford SA, Jones PP. Kuby Immunology. Seventh ed. New York: W.H. Freeman and Company; 2013.

Langley RR, Fidler IJ. Interactions in metastasis to different organs. Int J Cancer. 2011;128(11):2527–35.

Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–73.

Baghban R, Roshangar L, Jahanban-esfahlan R, Seidi K, Ebrahimi-kalan A, Jayman M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling. 2020;18(59):1–19.

Lee H Yong, Hong IS. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci. 2017;108(10):1939–46.

Serakinci N, Tulay P, Kalkan R. Role of Mesenchymal Stem Cells in Cancer Development and Their Use in Cancer Therapy. Advs Exp Medicine Biology- Innovations in Cancer Research and Regenerative Medicine DOI. 2017;1–18.

Hmadcha A, Martin-Montalvo A, Gauthier BR. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front Bioeng Biotechnol. 2020;8(43):1–13.

Adjei IM, Blanka S. Modulation of the Tumor Microenvironment for Cancer Treatment: A Biomaterials Approach. J Funct Biomater. 2015;6:81–103.

Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel). 2015;7:2443–58.

Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, et al. Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. Journal of Hematology & Oncology. 2019;12(86):1–15.

Sun WEI, Fu S. Role of cancer-associated fibroblasts in tumor structure, composition, and the microenvironment in ovarian cancer (Review). Oncol Lett. 2019;18:2173–8.

Tao L, Huang G, Song H, Chen Y, Chen L. Cancer-associated fibroblasts: An essential role in the tumor microenvironment (Review). Oncol Lett. 2017;14:2611–20.

Liu Y, Guo J, Huang L. Theranostics Modulation of tumor microenvironment for immunotherapy: Focus on nanomaterial-based strategies. Theranostics. 2020;10(7):3099–117.

Arneth B. Tumor Microenvironment. Medicina (B Aires). 2020;56(15):1–21.

Sousa S, Määttä J. The role of tumour-associated macrophages in bone metastasis. J Bone Oncol. 2016;5:135–8.

Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12:1–4.

Nagl L, Horvath L, Pircher A, Wolf D. Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment – New Findings and Future Perspectives. Front Cell Dev Biol. 2020;8(766):1–18.

Schaaf MB, Houbaert D, Meçe O, Agostinis P. Autophagy in endothelial cells and tumor angiogenesis. 2019;665–79.

Mierke CT. Role of the Endothelium during Tumor Cell Metastasis: Is the Endothelium a Barrier or a Promoter for Cell Invasion and Metastasis? 2008;2008.

Ribeiro AL, Okamoto OK. Combined Effects of Pericytes in the Tumor Microenvironment. Stem Cells Int. 2015;2015:1–8.

Treviño ENG, González PD, Salgado CIV, Garza AM. Effects of pericytes and colon cancer stem cells in the tumor microenvironment. Cancer Cell Int. 2019;19(173):1–12.

Paiva AE, Lousado L, Guerra DAP, Azevedo PO, Sena IFG, Andreotti JP, et al. Pericytes in the Premetastatic Niche. Cancer Res. 2018; (29): 1–9.

Andrés L De, Oncol JH, Andrés JL De, Lisón CG, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment. J Hematol Oncol. 2020;13(136):1–22.

Sun H Ran, Wang S, Yan S Can, Zhang Y, Nelson PJ, Jia H Liang. Therapeutic Strategies Targeting Cancer Stem Cells and Their Microenvironment. Front Oncol. 2019;9(1104):1–14.

Ciardiello C, Leone A, Budillon A. Review Article The Crosstalk between Cancer Stem Cells and Microenvironment Is Critical for Solid Tumor Progression: The Significant Contribution of Extracellular Vesicles. Stem Cells Int. 2018;2018:1–12.

Aponte PM, Caicedo A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int. 2017;2017:1–17.

Nallanthighal S, Heiserman JP, Cheon D Joo. The Role of the Extracellular Matrix in Cancer Stemness. Front Cell Dev Biol. 2019;7(July):1–14.

Paolillo M, Schinelli S. Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci. 2019;20(4947):1–18.

Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406.

Lu P, Takai K, Weaver VM, Werb Z. Extracellular Matrix Degradation and Remodeling in Development and Disease. 2011;1–24.

Das V. The basics of epithelial–mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019;1–21.

Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell. 2016;27(21):3233–44.

Wong TS, Gao W, Chan JYW. Transcription regulation of E-cadherin by zinc finger E-box binding homeobox proteins in solid tumors. Biomed Res Int. 2014;2014.

Rosso M, Majem B, Devis L, Lapyckyj L, Besso MJ, Llauradó M, et al. E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination, and aggressiveness. PLoS One. 2017;12(9):1–25.

Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(6):727–35.

Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 2020; 5(28): 1–17.

Downloads

Published

October 21, 2024
HOW TO CITE

Details about this monograph

ISBN-13 (15)

978-623-8520-98-5