Serat Nano (Nanofiber) Multifungsi untuk Mendukung Kelestarian Lingkungan

Authors

Muhamad Nasir
Badan Riset dan Inovasi Nasional

Keywords:

nanomaterial, electrospinning, kelestarian lingkungan, Serat nano (nanofiber) multifungsi

Synopsis

Nanofiber merupakan serat berdiameter di bawah satu mikrometer yang diproduksi dengan electrospinning. Pengembangan riset serat nano dapat menggantikan teknologi dan produk konvensional tidak ramah lingkungan. Dengan kombinasi dan komposisi yang tepat, komposit serat nano fungsional dapat diciptakan dan diaplikasikan di berbagai bidang. Eksplorasi polimer sintetik dan alami dari biodiversitas Indonesia (chitin, chitosan, gelatin, levan, catechin, zeolit, dan dragon blood), polimer daur ulang, dan fungsionalisasi serat nano dengan nanopartikel, logam oksida, metal organic framework, graphene, serta carbon quantum dan carbon polymer dot menjadi inovasi dalam menciptakan serat nano komposit multifungsi. Berbagai sistem komposit serat nano diciptakan, dikembangkan, dipublikasikan, dan dipatenkan. Di bidang energi, temuan nanoseparator baterai berbasis serat nano komposit SiO2, ZrO2, ZrSiO4, chitin, dan PVDF kopolimer (cPVDF) mampu meningkatkan performa separator dibandingkan separator komersial PE/PP. Di bidang kesehatan, serat nano berkontribusi melalui serat nano komposit CuO/CB/cPVDF sebagai bahan masker yang mampu menyaring udara dari PM, virus dan bakteri, serta komposit catechin/selulosa asetat, gelatin/selulosa asetat, Ag/selulosa asetat, dan carbon quantum dot/PVA sebagai material penyembuh luka. Di bidang lingkungan, komposit serat nano diciptakan untuk pengolahan air, seperti PMMA/PVDF, graphene/TiO2/cPVDF, CB/cPVDF, zeolit/PMMA, dan MgO/cPVDF. Limbah daur ulang polimer juga menjadi solusi melalui konversi limbah nilon dari jaring nelayan (r-nilon)/TiO2 sebagai material fotokatalis pengolahan air. Serat nano multifungsi adalah solusi pengembangan teknologi ramah lingkungan guna meningkatkan kualitas hidup manusia. Di masa depan, riset dan inovasi serat nano diperkirakan terus berkembang melalui pemanfaatan biodiversitas Indonesia dan dipercepat melalui penggunaan Internet of Things (IoT) dan Artificial Intelligence (AI).

Downloads

Download data is not yet available.

Author Biography

Muhamad Nasir, Badan Riset dan Inovasi Nasional

Muhamad Nasir lahir di Bukittinggi, pada tanggal  30 Desember 1971 tahun adalah anak kelima dari enam bersaudara dari Bapak Darakutni (alm) dan Ibu Fatimah (alm). Menikah dengan Reni Halida, S.S. dan dikaruniai empat orang anak, yaitu Muhammad Ariby Abdul Aziz, Muhammad Ikram Shalahuddin, Sarah Hilma Rumaisha, dan Muhammad Faqih Asyarief.

Berdasarkan Keputusan Presiden Republik Indonesia Nomor 67/M Tahun 2020 tanggal 10 November 2020 yang bersangkutan diangkat sebagai Peneliti Ahli Utama di Lembaga Ilmu Pengetahuan Indonesia (LIPI) terhitung mulai 10 November 2020 dan Keppres No 3/M Tahun 2022, tanggal 19 Januari 2022, TMT 01 Oktober 2021 di Badan Riset dan Inovasi Nasional (BRIN).

Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional Nomor 246/I/HK/2024, tanggal 8 November 2024 yang bersangkutan melakukan orasi pengukuhan Profesor Riset.

Menamatkan Sekolah Dasar Negeri 1 Candung, tahun 1985, Sekolah Menengah Pertama Negeri Simpang Candung, tahun 1988, dan Sekolah Menengah Atas Negeri 1 Bukittinggi, tahun 1991. Memperoleh gelar Sarjana Kimia dari Universitas Andalas tahun 1995, gelar Magister Kimia dari Institut Teknologi Bandung tahun 2000, dan gelar Doktor bidang nanomaterial dan nanoteknologi dari Tokyo Institute of Technology tahun 2007 serta Postdoktoral dibidang nanomaterial di Kyoto Institute of Technology tahun 2009.

Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain: Diklat Fungsional Peneliti Tingkat Lanjut di Pusbindiklat LIPI (tahun 2015) dan Pelatihan Reviewer di BRIN (tahun 2022).

Mulai bekerja di Lembaga Ilmu Pengetahuan Indonesia (LIPI) sejak tahun 1998-2022. Tahun 2022 bekerja di BRIN setelah penggabungan LIPI dengan BRIN.

 Jabatan fungsional peneliti diawali sebagai Peneliti Pertama golongan III/b tahun 2005, Peneliti Muda golongan IIIb tahun 2005, Peneliti Madya golongan IIId tahun 2014, dan memperoleh jabatan Peneliti Utama golongan IV/d bidang nanomaterial tahun 2020.

Menghasilkan publikasi sebanyak 88 karya tulis ilmiah (KTI), baik yang ditulis sendiri maupun bersama penulis lain dalam bentuk buku, jurnal, dan prosiding. Sebanyak 77 KTI ditulis dalam bahasa Inggris dan 11 KTI dalam bahasa asing lainnya serta menghasilkan 23 paten.

Ikut serta dalam pembinaan kader ilmiah, di antaranya sebagai pembimbing skripsi (S1) pada Universitas Andalas, Universitas Padjadjaran, Universitas Jenderal Achmad Yani, Universitas Garut, Universitas Airlangga, dan Universitas Islam Negeri Sunan Gunung Djati Bandung; pembimbing tesis (S2) pada Universitas Andalas, Universitas Padjadjaran, dan Institut Teknologi Bandung; pembimbing disertasi (S3) pada Institut Pertanian Bogor, Institut Teknologi Bandung, dan Universitas Indonesia; serta penguji disertasi (S3) pada Institut Teknologi Bandung.

Aktif dalam organisasi profesi ilmiah, yaitu sebagai Anggota Fiber Society (2008–2009), Himpunan Polimer Indonesia (2013–2014), Himpunan Kimiawan Indonesia (1997–2000), Himpunan Peniliti  Indonesia (2019–2021), dan Himpunan Periset Indonesia ( 2021-sekarang).

Menerima berbagai tanda penghargaan, baik tingkat nasional maupun internasional, antara lain: JICA scholarship (tahun 2003), Monbusho Scholarship (tahun 2004),  Satyalancana Karya Satya 20 Tahun (tahun 2018), dan Satyalancana Wira Karya Tahun (tahun 2021) dari Presiden RI.

References

Abdillah, B. F., Nasir, M., Mozef, T., & Hertadi, R. (2023). Fabrication of physically crosslink Levan-lsbl-bk1/PVA electrospun nanofiber. European Polymer Journal, 195, 112237. https://doi.org/10.1016/J.EURPOLYMJ.2023.112237

Adam, D. H., Suyani, H., Nasir, M., Safni, S., & Nugraha, W. C. (2013). Adsorpsi Cu2+ Menggunakan Nanofiber Polisulfon-FeOOH Yang Disintesis Dengan Metode Elektrospinning. Jurnal Litbang Industri, 3(2), 101–108.

Ahmadi Majd, S., Rabbani Khorasgani, M., Moshtaghian, S. J., Talebi, A., & Khezri, M. (2016). Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules, 92, 1162–1168. https://doi.org/10.1016/j.ijbiomac.2016.06.035

Al-Kattan, A., Wichser, A., Zuin, S., Arroyo, Y., Golanski, L., Ulrich, A., & Nowack, B. (2014). Behavior of TiO2 Released from Nano-TiO2-Containing Paint and Comparison to Pristine Nano-TiO2. Environmental Science & Technology, 48(12), 6710–6718. https://doi.org/10.1021/es5006219

Alves Da Silva, M. L., Martins, A., Costa-Pinto, A. R., Costa, P., Faria, S., Gomes, M., Reis, R. L., & Neves, N. M. (2010). Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules, 11(12), 3228–3236. https://doi.org/10.1021/BM100476R/ASSET/IMAGES/MEDIUM/BM-2010-00476R_0009.GIF

An, Y., Kajiwara, T., Padermshoke, A., Van Nguyen, T., Feng, S., Mokudai, H., Masaki, T., Takigawa, M., Van Nguyen, T., Masunaga, H., Sasaki, S., & Takahara, A. (2023). Environmental Degradation of Nylon, Poly(ethylene terephthalate) (PET), and Poly(vinylidene fluoride) (PVDF) Fishing Line Fibers. ACS Applied Polymer Materials, 5(6), 4427–4436. https://doi.org/10.1021/acsapm.3c00552

Andrian, T., Delcanale, P., Pujals, S., & Albertazzi, L. (2021). Correlating Super-Resolution Microscopy and Transmission Electron Microscopy Reveals Multiparametric Heterogeneity in Nanoparticles. Nano Letters, 21(12), 5360–5368. https://doi.org/10.1021/acs.nanolett.1c01666

Arniati Labbani, Syukri Arief, & Muhamad Nasir. (2023). Research progress and prospect of copper oxide nanoparticles with controllable nanostructure, morphology, and function via green synthesis. Materials Today Sustainability, 24, 100526.

Arora, P., & (John) Zhang, Z. (2004). Battery Separators. Chemical Reviews, 104(10), 4419–4462. https://doi.org/10.1021/cr020738u

Aziz, A., Tiwale, N., Hodge, S. A., Attwood, S. J., Divitini, G., & Welland, M. E. (2018). Core-Shell Electrospun Polycrystalline ZnO Nanofibers for Ultra-Sensitive NO2 Gas Sensing. ACS Applied Materials and Interfaces, 10(50), 43817–43823. https://doi.org/10.1021/ACSAMI.8B17149/SUPPL_FILE/AM8B17149_SI_001.PDF

Chen, G., Li, Y., Bick, M., & Chen, J. (2020). Smart Textiles for Electricity Generation. Chemical Reviews, 120(8), 3668–3720. https://doi.org/10.1021/acs.chemrev.9b00821

Chen, Q., Zuo, X., Liang, H., Zhu, T., Zhong, Y., Liu, J., & Nan, J. (2019). A Heat-Resistant Poly(oxyphenylene benzimidazole)/Ethyl Cellulose Blended Polymer Membrane for Highly Safe Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 12(1), 637–645. https://doi.org/10.1021/acsami.9b17374

Collias, D. I., James, M. I., & Layman, J. M. (2021). Introduction - Circular Economy of Polymers and Recycling Technologies. In ACS Symposium Series (Vol. 1391, pp. 1–21). American Chemical Society. https://doi.org/10.1021/bk-2021-1391.ch001

Csefalvay, E., & T. Horvath, I. (2018). Sustainability Assessment of Renewable Energy in the United States, Canada, the European Union, China, and the Russian Federation. ACS Sustainable Chemistry & Engineering, 6(7), 8868–8874. https://doi.org/10.1021/acssuschemeng.8b01213

Danno, T., Matsumoto, H., Nasir, M., Minagawa, M., Horibe, H., & Tanioka, A. (2009). PVDF/PMMA composite nanofiber fabricated by electrospray deposition: Crystallization of PVDF induced by solvent extraction of PMMA component. Journal of Applied Polymer Science, 112(4). https://doi.org/10.1002/app.29644

Danno, T., Matsumoto, H., Nasir, M., Shimizu, S., Minagawa, M., Kawaguchi, J., Horibe, H., & Tanioka, A. (2008a). Fine structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science, Part B: Polymer Physics, 46(6). https://doi.org/10.1002/polb.21391

Danno, T., Matsumoto, H., Nasir, M., Shimizu, S., Minagawa, M., Kawaguchi, J., Horibe, H., & Tanioka, A. (2008b). Fine structure of PVDF nanofiber fabricated by electrospray deposition Part B Polymer physics.

Deng, W., Yang, T., Jin, L., Yan, C., Huang, H., Chu, X., Wang, Z., Xiong, D., Tian, G., Gao, Y., Zhang, H., & Yang, W. (2019). Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 55, 516–525. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.10.049

E.T. Suryandari R.R. Mukti and M. Nasir, M. A. Z. (2019). Preparation and Characterization of Poly(Methyl Methacrylate) (PMMA) Fibers by Electrospinning. In Key Engineering Materials (Vol. 811).

EUROPEAN COMMISSION. (2015). Definition - Nanomaterials - Environment - European Commission. European Commission. http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm

Ganguly, S., & Sengupta, J. (2024). Graphene-based nanotechnology in the Internet of Things: a mini review. In Discover Nano (Vol. 19, Issue 1). Springer. https://doi.org/10.1186/s11671-024-04054-0

Giam, X. (2017). Global biodiversity loss from tropical deforestation. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5775–5777. https://doi.org/10.1073/pnas.1706264114

Guo, Y., Wang, X., Shen, Y., Dong, K., Shen, L., & Alzalab, A. A. A. (2022a). Research progress, models and simulation of electrospinning technology: a review. Journal of Materials Science, 57(1), 58–104. https://doi.org/10.1007/S10853-021-06575-W/FIGURES/20

Guo, Y., Wang, X., Shen, Y., Dong, K., Shen, L., & Alzalab, A. A. A. (2022b). Research progress, models and simulation of electrospinning technology: a review. Journal of Materials Science, 57(1), 58–104. https://doi.org/10.1007/S10853-021-06575-W/FIGURES/20

Handayani, N., Setiadi, Y., Sativa, S. O., Pinandita, A., Serunting, M. A., Triadhi, U., Nasir, M., & Zulfikar, M. A. (2023). Tailored nanofibrous molecularly imprinted polymers for selective removal of di(2-ethylhexyl) phthalate: A computer-aided design and synthesis approach. Journal of Water Process Engineering, 55, 104112. https://doi.org/10.1016/J.JWPE.2023.104112

Hao, X., Zhu, J., Jiang, X., Wu, H., Qiao, J., Sun, W., Wang, Z., & Sun, K. (2016). Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. Nano Letters, 16(5), 2981–2987. https://doi.org/10.1021/acs.nanolett.5b05133

Hartweg, B. (2017). Global Implementation of Renewable Energy. In ACS Symposium Series. https://doi.org/10.1021/bk-2017-1254.ch007

He, M., Zhang, X., Jiang, K., Wang, J., & Wang, Y. (2015). Pure Inorganic Separator for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 7(1), 738–742. https://doi.org/10.1021/am507145h

How to Integrate Nanotechnology with the Internet of Things (IoT)? (2024). https://www.appliedtechnologyreview.com/news/how-to-integrate-nanotechnology-with-the-internet-of-things-iot-nwid-1381.html

Indriyati, Dara, F., Primadona, I., Nasir, M. (2019). Metode Pembuatan Nanofiber Antibakteri Berbasis Polisulfon dan Produk yang dihasilkannya (Patent P00201910794).

Indriyati, Munir, M. M., Nasir, M., & Iskandar, F. (2022). Effect of post-treatment drying processes on the optical and photothermal properties of carbon nanodots derived via microwave-assisted method. IOP Conference Series: Earth and Environmental Science, 1017(1), 012009. https://doi.org/10.1088/1755-1315/1017/1/012009

Indriyati, Primadona, I., Permatasari, F. A., Irham, M. A., Nasir, M., & Iskandar, F. (2021). Recent advances and rational design strategies of carbon dots towards highly efficient solar evaporation. Nanoscale, 13(16), 7523–7532. https://doi.org/10.1039/D1NR00023C

Indriyati, Ramadhani, D. F. S., Permatasari, F. A., Munir, M. M., Nasir, M., & Iskandar, F. (2024). Flexible Photothermal Membrane Based on PVA/Carbon Dot Hydrogel Films for High-Performance Interfacial Solar Evaporation. ACS Applied Polymer Materials, 6(11), 6726–6736. https://doi.org/10.1021/acsapm.4c00996

Jin, X., Li, Y., Li, W., Zheng, Y., Fan, Z., Han, X., Wang, W., Lin, T., & Zhu, Z. (2019). Nanomaterial Design for Efficient Solar-Driven Steam Generation. ACS Applied Energy Materials, 2(9), 6112–6126. https://doi.org/10.1021/ACSAEM.9B00934/ASSET/IMAGES/MEDIUM/AE9B00934_0011.GIF

Judkins, R. R., Fulkerson, W., & Sanghvi, M. K. (1993). The Dilemma of Fossil Fuel Use and Global Climate Change. Energy and Fuels, 7(1), 14–22. https://doi.org/10.1021/EF00037A004/ASSET/EF00037A004.FP.PNG_V03

Kagan, C. R., Fernandez, L. E., Gogotsi, Y., Hammond, P. T., Hersam, M. C., Nel, A. E., Penner, R. M., Willson, C. G., & Weiss, P. S. (2016). Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. ACS Nano, 10(10), 9093–9103. https://doi.org/10.1021/acsnano.6b06655

Kamble, P., Sadarani, B., Majumdar, A., & Bhullar, S. (2017). Nanofiber based drug delivery systems for skin: A promising therapeutic approach. Journal of Drug Delivery Science and Technology, 41, 124–133. https://doi.org/10.1016/J.JDDST.2017.07.003

Khairunissa, M. (2016). Sintesis dan Karakterisasi Komposit Nanofiber Selulosa Asetat–Nanopartikel Perak Sebagai Aplikasi Wound Dressing. Universitas Airlangga.

Khayan, K., Anwar, T., Wardoyo, S., & Lakshmi Puspita, W. (2019). Active Carbon Respiratory Masks as the Adsorbent of Toxic Gases in Ambient Air. Journal of Toxicology, 2019. https://doi.org/10.1155/2019/5283971

Kim, M., Kim, S., Seong, Y. C., Yang, K. H., & Choi, H. (2021). Multiwalled Carbon Nanotube Buckypaper/Polyacrylonitrile Nanofiber Composite Membranes for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 4(1), 729–738. https://doi.org/10.1021/ACSANM.0C03040/SUPPL_FILE/AN0C03040_SI_001.PDF

Lampitt, R. S., Fletcher, S., Cole, M., Kloker, A., Krause, S., O'Hara, F., Ryde, P., Saha, M., Voronkova, A., & Whyle, A. (2023). Stakeholder alliances are essential to reduce the scourge of plastic pollution. In Nature Communications (Vol. 14, Issue 1). Nature Research. https://doi.org/10.1038/s41467-023-38613-3

LEMBARAN NEGARA REPUBLIK INDONESIA PERATURAN PRESIDEN REPUBLIK INDONESIA. (2018). www.peraturan.go.id

Li, Y., Zhu, J., Cheng, H., Li, G., Cho, H., Jiang, M., Gao, Q., & Zhang, X. (2021a). Developments of Advanced Electrospinning Techniques: A Critical Review. Advanced Materials Technologies, 6(11), 1–29. https://doi.org/10.1002/admt.202100410

Li, Y., Zhu, J., Cheng, H., Li, G., Cho, H., Jiang, M., Gao, Q., & Zhang, X. (2021b). Developments of Advanced Electrospinning Techniques: A Critical Review. Advanced Materials Technologies, 6(11), 1–29. https://doi.org/10.1002/admt.202100410

Lou, L., Osemwegie, O., & S. Ramkumar, S. (2020). Functional Nanofibers and Their Applications. Industrial & Engineering Chemistry Research, 59(13), 5439–5455. https://doi.org/10.1021/acs.iecr.9b07066

Lu, T., Cui, J., Qu, Q., Wang, Y., Zhang, J., Xiong, R., Ma, W., & Huang, C. (2021). Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Applied Materials and Interfaces, 13(20), 23293–23313. https://doi.org/10.1021/ACSAMI.1C06520/ASSET/IMAGES/MEDIUM/AM1C06520_0019.GIF

M. Erickson, E., Ghanty, C., & Aurbach, D. (2014). New Horizons for Conventional Lithium Ion Battery Technology. The Journal of Physical Chemistry Letters, 5(19), 3313–3324. https://doi.org/10.1021/jz501387m

Mai, L., Xu, L., Han, C., Xu, X., Luo, Y., Zhao, S., & Zhao, Y. (2010). Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries. Nano Letters, 10(11), 4750–4755. https://doi.org/10.1021/nl103343w

Manthiram, A. (2017). An Outlook on Lithium Ion Battery Technology. ACS Central Science, 3(10), 1063–1069. https://doi.org/10.1021/acscentsci.7b00288

Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., & Zamora, F. (2011a). 2D materials: To graphene and beyond. Nanoscale, 3(1), 20–30. https://doi.org/10.1039/c0nr00323a

Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., & Zamora, F. (2011b). 2D materials: To graphene and beyond. Nanoscale, 3(1), 20–30. https://doi.org/10.1039/c0nr00323a

Mauter, M. S., & Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environmental Science and Technology, 42(16), 5843–5859. https://doi.org/10.1021/es8006904

Mehdi Hashemi, M., Nikfarjam, A., Hajghassem, H., & Salehifar, N. (2019). Hierarchical Dense Array of ZnO Nanowires Spatially Grown on ZnO/TiO2 Nanofibers and Their Ultraviolet Activated Gas Sensing Properties. The Journal of Physical Chemistry C, 124(1), 322–335. https://doi.org/10.1021/acs.jpcc.9b07207

Muhamad Nasir Muhammad Ali Zulfikar, D. I. (2019). Kinetics of Humic Acids Photodegradation in Aqueous Solution Using TiO2/ ZnO/Co Composite Photocatalyst. Materials Science Forum, 962.

Muhamad Nasir, & Annisa Tri Rahmawati. (2023). Nanofiber sebagai penyerap volatile organic compound (VOC) diudara dan metodenya (patent, submitted).

Muhamad Nasir, Nurrahmi handayani, & Evyka Setya Aji. (2024). Komposit nanofiber co-poliviniliden fluoride mengandung carbon black untuk membran filtrasi air (submitted).

Muhamad Nasir (PI), Budi Saksono, Yulia Hayatul Aini, Fitri Dara, Chandra Risdian, Mona Rozana, Herliansyah Eriska, Sasa Sofyan Munawar, Rahmat Satoto, Rana Ida Sugatri, & Rihlatul Adni. (2020). Pembuatan nanomasker untuk proteksi udara tercemar (Report).

Muhamad Nasir, Tjandrawati, Arniati Labbani, & Rihlatul Adni. (2023). Metode pembuatan nanofiber komposit polikaprolakton dragons blood dan produk yang dihasilkan (patents, submitted).

Muhamad Nasir, & Trianisa Rahmawati. (2023). Nanofiber sebagai passive sampling partikulat diudara dan metodenya (Patent, submitted).

Muhammad Hikam, Putri P.P Asri, Faiq H. Hamid, Muhamad Nasir, Afriayati Sumboja, & Lia A.T.W. Asri. (2024). Electrospun polyvinyl alcohol/chitin nanofiber membrane as a sustainable lithium ion battery separator. ACS Sustainabble Chemistry and Engineering (Submitted).

Nagar, A., & Pradeep, T. (2020). Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS Nano, 14(6), 6420–6435. https://doi.org/10.1021/acsnano.9b01730

Naghdi, T., Golmohammadi, H., Yousefi, H., Hosseinifard, M., Kostiv, U., Horak, D., & Merkoci, A. (2020). Chitin Nanofiber Paper toward Optical (Bio)sensing Applications. ACS Applied Materials and Interfaces, 12(13), 15538–15552. https://doi.org/10.1021/ACSAMI.9B23487/SUPPL_FILE/AM9B23487_SI_001.PDF

Nasir, R. I., Indriyati, Chaldun, E. R. M. S. (2019). Metode Pembuatan Nanofiber PVA/ZnO/Grafena Komposit dan Produk Yang Dihasilkan.

Nasir, R., Chaldun, E. R., Dara, F., Syampurwadi, A. M. A. (2019). Nanoviber Komposit Polivinil Alkohol-Carbon Black-Fe2O3-CuO-Kitin.

Nasir, S., Ardeniswan, Dara, F., Rahmawati, T., Primadona, I., Chaldun, E. R. M. P. (2018). Metode Pembuatan Nanofiber PVDF-HFP Komposit.

Nasir, M., & Apriani, D. (2017a). Synthesis and property of Ag (NP)/catechin/gelatin nanofiber. IOP Conference Series: Materials Science and Engineering, 293(1), 12004.

Nasir, M., & Apriani, D. (2017b). Synthesis of Catechin-Gelatin Nanofiber by Electrospinning. Materials Science Forum, 887, 96–99. https://doi.org/10.4028/www.scientific.net/MSF.887.96

Nasir, M., & Apriani, D. (2017c). Synthesis of catechin-gelatin nanofiber by electrospinning. In Materials Science Forum: Vol. 887 MSF. https://doi.org/10.4028/www.scientific.net/MSF.887.96

Nasir, M., & Apriani, D. (2018). Synthesis and Property of Ag(NP)/catechin/Gelatin Nanofiber. IOP Conference Series: Materials Science and Engineering, 293(1). https://doi.org/10.1088/1757-899X/293/1/012004

Nasir, M., Asri, P. P. P., & Sugatri, R. I. (2020). Electrospun SiO2/PVDF copolymer composite nanofiber: effect of SiO2 content on nanostructure, morphology, and thermal property. IOP Conference Series: Earth and Environmental Science, 426(1), 012060. https://doi.org/10.1088/1755-1315/426/1/012060

Nasir, M., & Ida Sugatri, R. (2020). Preparation and Structures of Carbon-Copper Oxide Nanofibers from Electrospun Polyacrylonitrile Composite. IOP Conference Series: Materials Science and Engineering, 924(1). https://doi.org/10.1088/1757-899X/924/1/012019

Nasir, M., Juliandri, & Prihandoko, B. (2015a). Fabrication of SiO2-TiO2/PVDF Copolymer Nanofiber Composite by Electrospinning Process. Procedia Chemistry, 16, 184–189. https://doi.org/10.1016/j.proche.2015.12.034

Nasir, M., Juliandri, & Prihandoko, B. (2015b). Fabrication of SiO2-TiO2/PVDF Copolymer Nanofiber Composite by Electrospinning Process. Procedia Chemistry, 16, 184–189. https://doi.org/10.1016/J.PROCHE.2015.12.034

Nasir, M., & Kotaki, M. (2009). Fabrication of aligned piezoelectric nanofiber by electrospinning. International Journal of Nanoscience, 8(3). https://doi.org/10.1142/S0219581X09006092

Nasir, M., & Kotaki, M. (2011). Fabrication of aligned piezoelectric nanofiber by electrospinning. Https://Doi.Org/10.1142/S0219581X09006092, 8(3), 231–235. https://doi.org/10.1142/S0219581X09006092

Nasir, M., Matsumoto, H., Danno, T., Minagawa, M., Irisawa, T., Shioya, M., & Tanioka, A. (2006a). Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science Part B: Polymer Physics, 44(5), 779–786. https://doi.org/10.1002/POLB.20737

Nasir, M., Matsumoto, H., Danno, T., Minagawa, M., Irisawa, T., Shioya, M., & Tanioka, A. (2006b). Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science Part B: Polymer Physics, 44(5), 779–786. https://doi.org/10.1002/POLB.20737

Nasir, M., Matsumoto, H., Danno, T., Minagawa, M., Irisawa, T., Shioya, M., & Tanioka, A. (2006c). Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science Part B: Polymer Physics, 44(5), 779–786. https://doi.org/10.1002/polb.20737

Nasir, M., Matsumoto, H., Minagawa, M., Tanioka, A., & Danno, T. (2005). Control of diameter, morphology and structure of PVDF nanofiber fabricated by Electrospray deposition (ESD). Polymer Preprints, Japan, 54(2).

Nasir, M., Matsumoto, H., Minagawa, M., Tanioka, A., Danno, T., & Horibe, H. (2007). Preparation of porous PVDF nanofiber from PVDF/PVP blend by electrospray deposition. Polymer Journal, 39(10). https://doi.org/10.1295/polymj.PJ2007037

Nasir, M., Matsumoto, H., Minagawa, M., Tanioka, A., Danno, T., & Horibe, H. (2009a). Preparation of PVDF/PMMA blend nanofibers by electrospray deposition: effects of blending ratio and humidity. Polymer Journal, 41(5), 402–406.

Nasir, M., Matsumoto, H., Minagawa, M., Tanioka, A., Danno, T., & Horibe, H. (2009b). Preparation of PVDF/PMMA Blend Nanofibers by Electrospray Deposition: Effects of Blending Ratio and Humidity. Polymer Journal, 41(5), 402–406. https://doi.org/10.1295/polymj.PJ2008171

Nasir, M., Puspa Asri, P. P., & Sugatri, R. I. (2020). Electrospun SiO2/PVDF copolymer composite nanofiber: Effect of SiO2 content on nanostructure, morphology, and thermal property. IOP Conference Series: Earth and Environmental Science, 426(1). https://doi.org/10.1088/1755-1315/426/1/012060

Nasir, M., Rinovian, A., Chaldun, E. R., & Rozana, M. (2023a). Metode Pembuatan Nanofiber Nilon/TiO2 untuk Fotodegradasi Senyawa Organik dan Produk yang Dihasilkannya (p. P00202309789).

Nasir, M., Rinovian, A., Chaldun, E. R., & Rozana, M. (2023b). Metode Pembuatan Nanofiber Nilon/TiO2 untuk Fotodegradasi Senyawa Organik dan Produk yang Dihasilkannya (p. P00202309789).

Nasir, M., Subhan, A., Prihandoko, B., & Lestariningsih, T. (2017). Nanostructure and Property of Electrospun SiO2-Cellulose Acetate Nanofiber Composite by Electrospinning. Energy Procedia, 107. https://doi.org/10.1016/j.egypro.2016.12.133

Nasir, M., Sugatri, R. I., & Agustini, D. M. (2019). Surface Modification of PVDF Copolymer Nanofiber by Chitosan/Ag (NP)/Nanosilica Composite. International Conference on Nanotechnologies and Biomedical Engineering, 225–230.

Nasir, M., Sugatri, R. I., Asri, P. P. P., Dara, F., & Ardeniswan. (2018). Nanostructure and Surface Characteristic of Electrospun Carbon Black/PVDF Copolymer Nanocomposite. Epitoanyag - Journal of Silicate Based and Composite Materials, 70(6), 209–213. https://doi.org/10.14382/epitoanyag-jsbcm.2018.36

Nasir, M., Sugatri, R. I., Asri, P., Putih, P., & Dara, F. (2018). Nanostructure and Surface Characteristic of Electrospun Carbon Black/PVDF Copolymer Nanocomposite. Epitoanyag-Journal of Silicate Based & Composite Materials, 70(6).

Nasir, M., Adni, R., Chaldun, E. R., Dara, F., & Syampurwadi, A. (2019). Nanoviber Komposit Polivinil Alkohol-Carbon Black-Fe2O3-CuO-Kitin (Patent P00201910957).

Nasir, M., Adni, R., & Primadona, I. D. (2019). Metode Pembuatan Nanofiber Komposit Polivinil Alkohol-Kuantum Karbon Dot dan Produk Yang Dihasilkannya (Patent P00201906447).

Nasir, M., Asri, P. P. P., Prihandoko, B., Subhan, A., & Sugatri, R. I. (2019). Metode Pembuatan Nanofiber Kopolimer Tiga Lapis dan Karakteristik Produk yang dihasilkannya untuk Aplikasi Separator Baterai (Patent P00201910959).

Nasir, M., Rahmawati, T., Ardeniswan, Dara, F., & Andayani, D. G. S. (2019a). Metode Pembuatan Nanofiber Kopolimer PVDF/Rgo/SnO2 Secara Langsung dan Perlapisan Serta Produk yang Dihasilkan (Patent P00201906449).

Nasir, M., Rahmawati, T., Ardeniswan, Dara, F., & Andayani, D. G. S. (2019b). Metode Pembuatan Nanofiber Kopolimer PVDF/Rgo/SnO2 Secara Langsung dan Perlapisan Serta Produk yang Dihasilkan (Patent P00201906449).

Nasir, M., Rahmawati, T., Pudjiraharti, S., Ardeniswan, Dara, F., Primadona, I., & Chaldun, E. R. (2019). Metode pembuatan nanofiber kopolimer PVDF/RGO dalam n,n-dimetilasetamida dan produk yang dihasilkan.

Nasir, M., Shofyani, A., Sugatri, R. I., & Ratnasari, P. (2019). Pembuatan komposit nanokaolin/Fe2O3, menggunakan radiasi gelombang mikro dan produk yang dihasilkannya (P00201905992 (IDP000078892)). Art. P00201905992 (IDP000078892).

Nasir, M., Sugatri, R. I., A. I. (2019a). Komposisi dan Metode Pembuatan Membran Filter Berbasis Karbon Aktif Komposit Termodifikasi Elektrospun Nanofiber (Patent P00201910958).

Nasir, M., Sugatri, R. I., A. I. (2019b). Komposisi dan Metode Pembuatan Membran Filter Berbasis Karbon Aktif Komposit Termodifikasi Elektrospun Nanofiber.

Nasir, M., Sugatri, R. I., A. I. (2019c). Komposisi dan Metode Pembuatan Membran Filter Berbasis Karbon Aktif Komposit Termodifikasi Elektrospun Nanofiber (Patent P00201910958).

Nasir, M., Sugatri, R. I., A. I. (2019d). Komposisi dan Metode Pembuatan Membran Filter Berbasis Karbon Aktif Komposit Termodifikasi Elektrospun Nanofiber (Patent P00201910958).

Nasir, M., Sugatri, R. I., Indriyati, & Chaldun, E. R. (2019a). Metode Pembuatan Nanofiber PVA/ZnO/Grafena Komposit dan Produk Yang Dihasilkan (Patent P00201906825).

Nasir, M., Sugatri, R. I., Indriyati, & Chaldun, E. R. (2019b). Metode Pembuatan Nanofiber PVA/ZnO/Grafena Komposit dan Produk Yang Dihasilkan (Patent P00201906825).

Nasir, M., Pudjiraharti, S., Ardeniswan, Dara, F., Rahmawati, T., Primadona, I., & Chaldun, E. R. (2018). Metode Pembuatan Nanofiber PVDF-HFP Komposit.

New Developments In Fibers, Yarns & Fabrics | Textile World. (n.d.). Retrieved 28 March 2024, from https://www.textileworld.com/textile-world/features/2020/05/new-developments-in-fibers-yarns-fabrics/

Park, S.-H., Lee, H. B., Yeon, S. M., Park, J., & Lee, N. K. (2016). Flexible and Stretchable Piezoelectric Sensor with Thickness-Tunable Configuration of Electrospun Nanofiber Mat and Elastomeric Substrates. ACS Applied Materials & Interfaces, 8(37), 24773–24781. https://doi.org/10.1021/acsami.6b07833

Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. In International Journal of Environmental Research and Public Health (Vol. 15, Issue 1). https://doi.org/10.3390/ijerph15010016

Pokrajac, L., Abbas, A., Chrzanowski, W., Dias, G. M., Eggleton, B. J., Maguire, S., Maine, E., Malloy, T., Nathwani, J., Nazar, L., Sips, A., Sone, J., Van Den Berg, A., Weiss, P. S., & Mitra, S. (2021). Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano, 15(12), 18608–18623. https://doi.org/10.1021/acsnano.1c10919

Rana Ida Sugatri. (2022). Synthesis and Characterization of Nanofiber Composite Fe-CuBTC/PVDF Copolymer and Its Potensial as CO2 Gas Adsorbent. ITB.

Rassya Tania Islamy, & Muhamad Nasir (Pembimbing). (2023). Sintesis carbonized polymer dots dari limbah jaring ikan dengan metode hydrothermal treatment (Report).

Richman, E. K., & Hutchison, J. E. (2009). Bottleneck. 3(9), 2441–2446.

Rinovian Asnan; Nasir, M. P. S. D. fitri; A. M. Z. M. A. N. R. Moch. S. (2022). METODE PEMBUATAN NANOFIBER KOMPOSIT PVDF-HFP/MgO DAN PRODUK YANG DIHASILKANNYA SERTA APLIKASINYA SEBAGAI ADSORBEN ARSENIK.

Risdian, C., Nasir, M., Rahma, A., & Rachmawati, H. (2015). The influence of formula and process on physical properties and the release profile of PVA/BSA nanofibers formed by electrospinning technique. Journal of Nano Research, 31, 103–116.

Sativa, S. O., Zulfikar, M. A., Suryandari, E. T., & Nasir, M. (2020). The Activity of PVDF-TiO2/ZnO/CoO Nanofiber Photocatalyst for Degradation of Humic Acid Solution.

Satriawan, N. E., Khotib, J., Nasir, M., & Zaidan, A. H. (2022). Fabrication and Characterization of Ibuprofen and Ceftriaxone loaded Electrospun Cellulose Acetate Nanofiber Layers as a Model of Targeted Drug Delivery System. ALCHEMY:Journal of Chemistry, 10(2), 84–91. https://doi.org/10.18860/AL.V10I2.15502

Satriawan, N. E., Nasir, M., & Ilhami, F. B. (2022). Synthesis and Characterization of Cellulose–Curcumin Nanofiber as a Biomaterial Mask. Walisongo Journal of Chemistry, 5(1), 67–74.

Schaming, D., & Remita, H. (2015). Nanotechnology: from the ancient time to nowadays. Foundations of Chemistry, 17(3), 187–205. https://doi.org/10.1007/s10698-015-9235-y

Sugatri, R. I., Wirasadewa, Y. C., Saputro, K. E., Muslih, E. Y., Ikono, R., & Nasir, M. (2018). Recycled carbon black from waste of tire industry: thermal study. Microsystem Technologies, 24(1). https://doi.org/10.1007/s00542-017-3397-6

Talebian, S., Rodrigues, T., Das Neves, J., Sarmento, B., Langer, R., & Conde, J. (2021). Facts and Figures on Materials Science and Nanotechnology Progress and Investment. ACS Nano, 15(10), 15940–15952. https://doi.org/10.1021/ACSNANO.1C03992/ASSET/IMAGES/MEDIUM/NN1C03992_0009.GIF

von Rintelen, K., Arida, E., & Hauser, C. (2017). A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Research Ideas and Outcomes, 3. https://doi.org/10.3897/rio.3.e20860

Wang, Q. (2023). Reexamining the impact of foreign direct investment on carbon emissions: does per capita GDP matter? 2023, 1–18. https://doi.org/10.1057/s41599-023-01895-5

Wang, X., Li, Z., Shi, J., & Yu, Y. (2014). One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chemical Reviews, 114(19), 9346–9384. https://doi.org/10.1021/cr400633s

Wang, Z., Guo, F., Chen, C., Shi, L., Yuan, S., Sun, L., & Zhu, J. (2015). Self-Assembly of PEI/SiO2 on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability.

Wang, Z., Li, Z., Jiang, T., Xu, X., & Wang, C. (2013). Ultrasensitive Hydrogen Sensor Based on Pd0-Loaded SnO2 Electrospun Nanofibers at Room Temperature. ACS Applied Materials & Interfaces, 5(6), 2013–2021. https://doi.org/10.1021/am3028553

Wardhani, R. A. K., Asri, L., Nasir, M., & Purwasasmita, B. S. (2019). Preparation of chitosan-polyethylene oxide-Colocasia esculenta flour nanofibers using electrospinning method. Journal of Mechanical Engineering Science and Technology (JMEST), 3(1), 1–7.

WHO links 7 million deaths to particulate pollution. (n.d.). Retrieved 28 March 2024, from https://airqualitynews.com/health/who-links-7-million-deaths-to-particulate-pollution/

Wicaksono, R., Syamsu, K., Yuliasih, I., & Nasir, M. (2013). Cellulose Nanofibers from Cassava Bagasse: Characterization and Application on Tapioca-Film. www.iiste.org

Wound Dressing Market Size, Share & Trends Report, 2030. (n.d.). Retrieved 26 February 2024, from https://www.grandviewresearch.com/industry-analysis/wound-dressing-market

Xiao, M., Chery, J., & W. Frey, M. (2018). Functionalization of Electrospun Poly(vinyl alcohol) (PVA) Nanofiber Membranes for Selective Chemical Capture. ACS Applied Nano Materials, 1(2), 722–729. https://doi.org/10.1021/acsanm.7b00180

Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019a). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298–5415. https://doi.org/10.1021/ACS.CHEMREV.8B00593/ASSET/IMAGES/MEDIUM/CR-2018-00593P_0068.GIF

Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019b). Electrospinning and electrospun nanofibers: Methods, materials, and applications [Review-article]. Chemical Reviews, 119(8), 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019c). Electrospinning and electrospun nanofibers: Methods, materials, and applications [Review-article]. Chemical Reviews, 119(8), 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019d). Electrospinning and electrospun nanofibers: Methods, materials, and applications. In Chemical Reviews (Vol. 119, Issue 8, pp. 5298–5415). American Chemical Society. https://doi.org/10.1021/acs.chemrev.8b00593

Yang, A., Cai, L., Zhang, R., Wang, J., Hsu, P.-C., Wang, H., Zhou, G., Xu, J., & Cui, Y. (2017). Thermal Management in Nanofiber-Based Face Mask. Nano Letters, 17(6), 3506–3510. https://doi.org/10.1021/acs.nanolett.7b00579

Zhang, J., Liu, Z., Kong, Q., Zhang, C., Pang, S., Yue, L., Wang, X., Yao, J., & Cui, G. (2012). Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator. ACS Applied Materials & Interfaces, 5(1), 128–134. https://doi.org/10.1021/am302290n

Zhuang, X., Cheng, B., Kang, W., & Xu, X. (2010). Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydrate Polymers, 82(2), 524–527. https://doi.org/10.1016/j.carbpol.2010.04.085

Zulfi, A., Hartati, S., Nur’aini, S., Noviyanto, A., & Nasir, M. (2023). Electrospun Nanofibers from Waste Polyvinyl Chloride Loaded Silver and Titanium Dioxide for Water Treatment Applications. ACS Omega, 8(26), 23622–23632. https://doi.org/10.1021/acsomega.3c01632

Zulfikar, M. A., Afrianingsih, I., Bahri, A., Nasir, M., Alni, A., & Setiyanto, H. (2018). Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study. Journal of Physics: Conference Series, 1013(1), 12202.

Zulfikar, M. A., Afrianingsih, I., & Nasir, M. (2017). Kinetics Adsorption of Humic Acid from Water onto PVDF Nanofiber. International Journal of Chemical Engineering and Applications, 8(3), 175–178.

Zulfikar, M. A., Afrianingsih, I., Nasir, M., & Alni, A. (2018). Effect of processing parameters on the morphology of PVDF electrospun nanofiber. Journal of Physics: Conference Series, 987(1), 12011.

Zulfikar, M. A., Afrianingsih, I., Nasir, M., & Handayani, N. (2017). Fabrication of a nanofiber membrane functionalized with molecularly imprinted polymers for humic acid removal from peat water. Desalination and Water Treatment, 97, 203–212.

Zulfikar, M. A., Bahri, A., & Nasir, M. (2018.-a). STUDI KESETIMBANGAN ADSORPSI ASAM HUMIK PADA DUAL NANOFIBER PMMA/PVDF.

Zulfikar, M. A., Bahri, A., & Nasir, M. (2018.-b). Study of Humic Acid Adsorption Equilibrium on Dual Nanofiber PMMA/PVDF. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 3(1), 13–18.

Zulfikar, M. A., Bahri, A., & Nasir, M. (2017). Adsorption of Humic Acid from Aqueous Solution onto PMMA Nanofiber: Kinetics Study.

Zulfikar, M. A., Bahri, A., Setiyanto, H., & Nasir, M. (2017). Adsorption of methyl orange from aqueous solution onto PMMA nanofiber: Kinetics study. AIP Conference Proceedings, 1858. https://doi.org/10.1063/1.4989945

Zulfikar, M. A., Maulina, D., Nasir, M., Handayani, N., & Handajani, M. (2020). Removal of methylene blue from aqueous solution using poly (acrylic acid)/SiO2 and functionalized poly (acrylic acid)/SiO2 composite nanofibers. Environmental Nanotechnology, Monitoring & Management, 14, 100381.

Published

November 13, 2024