Templates
Aplikasi Teknologi Elektrokimia untuk Peningkatan Kualitas Pengolahan Air Limbah Industri
Keywords:
Elektrokimia, Pengolahan limbah, Limbah industriSynopsis
Orasi ini menyampaikan tentang teknologi elektrokimia dengan elektroda terlisis. Teknologi ini bermanfaat untuk mengolah air limbah industri berbasis logam serta pewarnaan dan elektroplating perhiasan. Selain itu, teknologi elektrokimia dengan elektroda stabil juga dapat digunakan untuk mengolah air limbah industri tekstil, batik dan farmasi dengan polutan persisten yang bersifat toksik seperti zat warna dan antibiotik. Pemanfaatan teknologi tersebut sudah dapat diaplikasikan pada skala laboratorium, prototipe, dan skala penuh.
Temuan-temuan tadi dapat memberikan pemahaman yang lebih baik mengenai teknologi pengolahan air limbah berbasis elektrokimia khususnya dalam hal mekanisme degradasi, desain reaktor, kondisi operasi dan sistem pengoperasiannya sehingga dapat bermanfaat bagi industri, wirausaha kecil dan menengah dan masyarakat dalam upaya mencegah pencemaran. Orasi ini diharapkan dapat mendukung implementasi kebijakan pemerintah berupa peraturan baku mutu dan standar pengolahan air limbah industri dalam upaya pelestarian lingkungan hidup.
Downloads
Download data is not yet available.
References
Al-Mamun, M. R., Kader, S., Islam, M. S., & Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248–103263. https://doi.org/10.1016/j.jece.2019.103248
Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160–1131176. https://doi.org/10.1016/j.ecoenv.2021.113160
Ambaye, T. G., & Hagos, K. (2020). Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnology for Environmental Engineering, 5(3), 28–38. https://doi.org/10.1007/s41204-020-00094-w
Ansari, H., Oladipo, A. A., & Gazi, M. (2023). Alginate-based porous polyHIPE for removal of single and multi-dye mixtures: Competitive isotherm and molecular docking studies. International Journal of Biological Macromolecules, 246, 125736–125751. https://doi.org/10.1016/j.ijbiomac.2023.125736
Arulmathi, P., Jeyaprabha, C., Sivasankar, P., & Rajkumar, V. (2019). Treatment of Textile Wastewater by Coagulation–Flocculation Process Using Gossypium herbaceum and Polyaniline Coagulants. Clean - Soil, Air, Water, 47(7), 1800464–1800473. https://doi.org/10.1002/clen.201800464
Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6, 100230–100242. https://doi.org/10.1016/j.cscee.2022.100230
Balasubramanyan, S. (2014). Ozonation of Textile Dyeing Wastewater-A Review Hydrocavitation for textile dye degradation View project AOP for Textile wastewater treatment View project Ozonation of Textile Dyeing Wastewater-A Review. Reseachgate 2014–15, 46–50. https://www.researchgate.net/publication/281776011
Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications (D. Harris, Ed.; second). John Wiley & Sons, Inc.
Bezerra Rocha, J. H., Barbosa Ferreira, M., Suely Fernandes, N., & Martínez-Huitle, C. A. (2012). Electrochemical Decolourization Process of Textile Dye in the Presence of NaCl at BDD and Ti/Pt Electrode. ECS Transactions, 43(1), 127–134. https://doi.org/10.1149/1.4704949
Bilinska, L., & Gmurek, M. (2021). Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions. Water Resources and Industry 26, 100160-100185. https://doi.org/10.1016/j.wri.2021.100160
Collivignarelli, M. C., Abba, A., Carnevale Miino, M., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727–745. https://doi.org/10.1016/j.jenvman.2018.11.094
Djayanti, S., Rame, Mukimin, A., Nilawati, & Pratista, D. R. (2023). Quick sterilization of Spirulina powder through dry ozonization for pharmaceutical preparations. IOP Conference Series: Earth and Environmental Science, 1201(1), 1–5. https://doi.org/10.1088/1755-1315/1201/1/012090
Dutta, D., Arya, S., & Kumar, S. (2021). Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere, 285, 131245-131258. https://doi.org/10.1016/j.chemosphere.2021.131245
Gamarra-Güere, C. D., Dionisio, D., Santos, G. O. S., Vasconcelos Lanza, M. R., & de Jesus Motheo, A. (2022). Application of Fenton, photo-Fenton and electro-Fenton processes for the methylparaben degradation: A comparative study. Journal of Environmental Chemical Engineering, 10(1). 106992-1107003. https://doi.org/10.1016/j.jece.2021.106992
Ghalwa, N. M. A., & Abdel-Latif, M. S. (2005). Iranian Chemical Society Electrochemical Degradation of Acid Green Dye in Aqueous Wastewater Dyestuff Solutions Using a Lead Oxide Coated Titanium Electrode. In Journal of the Iranian Chemical Society 2(3), 238-243. https://link.springer.com./article/10.1007/BF03245928
GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2017). Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, 191, 189–197. https://doi.org/10.1016/j.jenvman.2017.01.015
Gmurek, M., Gomes, J. F., Martins, R. C., & Quinta-Ferreira, R. M. (2019). Comparison of radical-driven technologies applied for paraben mixture degradation: mechanism, biodegradability, toxicity and cost assessment. Environmental Science and Pollution Research, 26(36), 37174–37192. https://doi.org/10.1007/s11356-019-06703-9
Harihastuti, N., Moenir, M., Juliasari, I. R., Marlena, B., & Mukimin, A. (2016). Prototipe Alat Produksi Biogas dari Limbah Industri CPO sebagai Sumber Energi Terbarukan Melalui Modifikasi Reaktor Model FDHRAR (Fixed Dome High Rate Anaerobic Reactor). Workshop Hasil Litbang Unggulan Kementerian Perindustrian, 74–84.
Holt, P. K., Barton, G. W., & Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59(3), 355–367. https://doi.org/10.1016/j.chemosphere.2004.10.023
Ismail, S. A., Ang, W. L., & Mohammad, A. W. (2021). Electro-Fenton technology for wastewater treatment: A bibliometric analysis of current research trends, future perspectives and energy consumption analysis. Journal of Water Process Engineering, 40, 101952-101974. https://doi.org/10.1016/j.jwpe.2021.101952
Juliasari, I. R., Moenir, M., & Mukimin, A. (2016). Peningkatan Produksi Biogas dari Limbah Kelapa Sawit sebagai Energi Terbarukan melalui Modifikasi Reaktor Anaerob. Ketahanan Energi Dan Peningkatan Kualitas Lingkungan, 1006–1015.
Karam, A., Bakhoum, E. S., & Zaher, K. (2021). Coagulation/flocculation process for textile mill effluent treatment: experimental and numerical perspectives. International Journal of Sustainable Engineering, 14(5), 983–995. https://doi.org/10.1080/19397038.2020.1842547
Khan, F., Waddadar, M., & Ahmed, T. (2020). Textile wastewater treatment by anaerobic sludge blanket reactor. Bangladesh Journal of Scientific and Industrial Research, 55(3), 165–172. https://doi.org/10.3329/bjsir.v55i3.49389
Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Chandra, R., & Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemical Engineering, 9(2), 105012–105029. https://doi.org/10.1016/j.jece.2020.105012
Lofrano, G., & Brown, J. (2010). Wastewater management through the ages: A history of mankind. In Science of the Total Environment 408(22), 5254–5264. https://doi.org/10.1016/j.scitotenv.2010.07.062
Magureanu, M., Piroi, D., Mandache, N. B., David, V., Medvedovici, A., Bradu, C., & Parvulescu, V. I. (2011). Degradation of antibiotics in water by non-thermal plasma treatment. Water Research, 45(11), 3407–3416. https://doi.org/10.1016/j.watres.2011.03.057
Malik, R. A., Vistanty, H., & Suhardi, S. H. (2022). Performance of anaerobic co-digestion with honey processing wastewater as co-substrate for treating synthetic wastewater containing commercial anthraquinone dye Remazol blue RSP: Effect of C:N ratio and HRT. Bioresource Technology Reports, 19, 101157-101169. https://doi.org/10.1016/j.biteb.2022.101157
Marlena, B., Mukimin, A., & Susan, E. (2012). Dekolorisasi Pewarna Reaktif pada Air Limbah Industri Tekstil secara Elektrokimia. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 2(2), 98–105.
Moertinah, S., Mukimin, A., & Saifuddin. (2009). Pengelolaan dan Teknologi Pengolahan Air Limbah Industri Kecil Menengah Tenun Pewarnaan dengan Proses Biologis Up Anaerobic Filter-Aerobik. Kimia Bervisi SETS: Science, Environment, Technology and Society, 285–294.
Mousset, E., Pechaud, Y., Oturan, N., & Oturan, M. A. (2019). Charge transfer/mass transport competition in advanced hybrid electrocatalytic wastewater treatment: Development of a new current efficiency relation. Applied Catalysis B: Environmental, 240, 102–111. https://doi.org/10.1016/j.apcatb.2018.08.055
Mudhoo, A., Ramasamy, D. L., Bhatnagar, A., Usman, M., & Sillanpää, M. (2020). An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. In Ecotoxicology and Environmental Safety 197, 110587-110614. https://doi.org/10.1016/j.ecoenv.2020.110587
Mukimin, A. (2006). The Wastewater Treatment of Metal Industry Using Electrocoagulation-Flotation Technology. Universitas Diponegoro. eprint.undip.ac.id/15382/1/Aris_Mukimin.pdf
Mukimin, A. (2008). Prediksi Model Penurunan COD Fungsi Arus pada Pengolahan Air Limbah Industri dengan Teknologi Elektrokoagulasi-Flotasi. Widyariset, 11(1), 215–220.
Mukimin, A. (2020a). Teknologi Elektrokatalitik. Dalam Simbolon, A.M., & Ristanto, E. (Ed.), ANDI Penerbit.
Mukimin, A. (2020b). The Energy Production and Efficiency Treatment of ML-MFC Using High Organic Content Wastewater. E3S Web of Conferences, 202. 10005–10014. https://doi.org/10.1051/e3sconf/202020210005
Mukimin, A. (2024). Teknologi Elektrokimia untuk Pengolahan Air dan Air Limbah Industri. ANDI Penerbit.
Mukimin, A., Djayanti, S., Setianingsih, N. I., & Ihsan, S. (2022). Electrocatalytic Reaction as Efficient Removal Method for Ammonia Pollutant in Textile Wastewater. Research Square-2022, 1–15. https://doi.org/10.21203/rs.3.rs-2244621/v1
Mukimin, A., Ihsan, S., & Whismanto, A. (2023). Sistem Pengolahan Polutan Amoniak Menggunakan Reaktor Elektro-Oksidasi Sirkulasi. Patent P00202306891. Direktorat Jenderal Kekayaan Intelektual.
Mukimin, A., Kurnia, A., Wijaya, K., & Kuncaka, A. (2009). Degradasi Warna pada Air Limbah Tekstil Pewarnaan dengan Teknologi Elektrokimia Guna Pemanfaatan Kembali sebagai Air Proses. Bulletin Penelitian Dan Pengembangan Industri, 3(1), 270–277.
Mukimin, A., & Purwanto, A. (2018). Removal Efficiency of Nitrite and Sulfide Pollutants by Electrochemical Process by Using Ti / RuIrO 2 Anode. Indonesian Journal of Chemistry, 18(2), 286–293. https://doi.org/10.22146/ijc.26609
Mukimin, A., Purwanto, A., Syahroni, C., Moenir, M., & Budiarto, A. (2017). Integrasi teknologi koagulasi-flokulasi dengan filter silika-karbon aktif up flow sebagai unit pengolahan air limbah industri karpet. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 8(1), 13–22. https://doi.org/doi.org/10.21771/jrtppi.2017.v8.no1.p13-22
Mukimin, A., & Vistanty, H. (2016). Influence of physico-chemical treatment of coconut shell-based carbon electrode on the inceneration of antraquinone dye. Journal of Chemical and Pharmaceutical Research, 8(3), 693–699.
Mukimin, A., & Vistanty, H. (2019). Hybrid advanced oxidation process (HAOP) as an effective pharmaceutical wastewater treatment. E2S Web of Conferences 125,3007-3011. https://doi.org/10.1051/e3sconf/201
Mukimin, A., & Vistanty, H. (2023). Low carbon development based on microbial fuel cells as electrical generation and wastewater treatment unit. Renewable Energy Focus, 44, 132–138. https://doi.org/10.1016/j.ref.2022.12.005
Mukimin, A., Vistanty, H., & Crisnaningtyas, F. (2015). Physico-Chemical Treatment Enhancing electroactivity Properties of Coconut shell-Based Carbon Electrode. International Journal of Applied Chemistry, 11(5), 553–565.
Mukimin, A., Vistanty, H., Harihastuti, N., Setianingsih, N. I., Djayanti, S., & Nilawati. (2023). Reaktor Tipe Hibrid Fenton-Elektrokimia sebagai Pengolahan Air Limbah pada Industri Tekstil. Patent P00202308274. Direktorat Jenderal Kekayaan Intelektual.
Mukimin, A., Vistanty, H., Harihastuti, N., Setianingsih, N. I., Djayanti, S., Nilawati, & Astuti, Y. (2024). Hybrid Fenton-electrochemical reactor and system as post-treatment of textile wastewater. Journal of Water Process Engineering, 59, 105028–105040. https://doi.org/10.1016/j.jwpe.2024.105028
Mukimin, A., Vistanty, H., Juliasari, I. R., Fatkhurrahman, J. A., & Budiarto, A. (2016). Aplikasi Limbah Padat Batu Alam sebagai Subtitusi Fine Agregat Paving Blok, Batako dan Bahan Baku Produksi Semen. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 7(1), 1–12. https://doi.org/doi.org/10.21771/jrtppi.2016.v7.no1.p1-12
Mukimin, A., Vistanty, H., Marlena, B., & Budiarto, A. (2014). Metode Elektrokimia sebagai Teknologi Alternatif Pengolahan Air Limbah yang Lebih Ramah Lingkungan. Litbangyasa Untuk Mendukung Realisasi Industri Hijau, 256–263.
Mukimin, A., Vistanty, H., & Zen, N. (2015). Oxidation of textile wastewater using cylinder Ti/B-PbO2 electrode in electrocatalytic tube reactor. Chemical Engineering Journal, 259, 430–437. https://doi.org/10.1016/j.cej.2014.08.020
Mukimin, A., Vistanty, H., & Zen, N. (2020). Hybrid advanced oxidation process (HAOP) as highly efficient and powerful treatment for complete demineralization of antibiotics. Separation and Purification Technology, 241, 116728–116733. https://doi.org/10.1016/j.seppur.2020.116728
Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., & Wicaksono, K. A. (2018). Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering, 21, 77–83. https://doi.org/10.1016/j.jwpe.2017.12.004
Mukimin, A., Wicaksono, K. A., Zen, N., Purwanto, A., & Vistanty, H. (2018). Implementation of electrocatalytic reactor as oxidation unit for residual reagent wastewater of testing laboratory. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 9(2), 11–20. https://doi.org/10.21771/jrtppi.2018.v9.no.2.p11-20
Mukimin, A., Wijaya, K., & Kuncaka, A. (2010). Electro-Degradation Of Reactive Blue Dyes Using Cylinder Modified Electrode: Ti/B-Pbo 2 As Dimensionally Stable Anode. Indonesian Journal of Chemistry, 10(3), 285-289. https://jurnal.ugm.ac.id/ijc/article//view/21431/14136.
Mukimin, A., Wijaya, K., & Kuncaka, A. (2011). Synthesis and characterization of modified Ti/[alpha]-Pb[O.sub.2] nanoporous electrode as an active material on positive electrode. International Journal of Applied Chemistry, 7(3), 245–258.
Mukimin, A., Wijaya, K., & Kuncaka, A. (2012). Oxidation of remazol brilliant blue r (RB.19) with in situ electro-generated active chlorine using Ti/PbO2 electrode. Separation and Purification Technology, 95, 1–9. https://doi.org/10.1016/j.seppur.2012.04.015
Mukimin, A., Wijaya, K., & Kuncaka, A. (2013). Electrodeposition of PbO2 on Ti substrate in alkaline solution: Influence of fluoride Ions Addition. Asian Journal of Chemistry, 25(7). 3961–3965.
Mukimin, A., Wijaya, K., & Yuliastuti, R. (2012). Reaktor Tabung Elektrokatalitik dan Sistem Pengolahan Air Limbah Industri Pewarnaan Yang menggunakan reaktor Tersebut. Patent IDP 000041503. Direktorat Jenderal Kekayaan Intelektual.
Mukimin, A., Yuliasni, R., Zen, N., Wicaksono, K. A., Fatkhurahman, J. A., Vistanty, H., & Malik, R. A. (2019). Synthesis of graphite porous electrode based on coconut shell as a potential cathode in bioelectrosyntesis cell. Indonesian Journal of Chemistry, 19(2), 413–421. https://doi.org/10.22146/ijc.37550
Mukimin, A., Zen, N., Purwanto, A., Wicaksono, K. A., Vistanty, H., & Alfauzi, A. S. (2017). Application of a full-scale electrocatalytic reactor as real batik printing wastewater treatment by indirect oxidation process. Journal of Environmental Chemical Engineering, 5, 5222–5232. https://doi.org/10.1016/j.jece.2017.09.053
Mukimin, A., Zen, N., & Vistanty, H. (2019). Teknologi Elektrokatalitik Hybrid Advanced Oxidation Process (HAOP) dan Sistem Pengolahan Air Limbah Farmasi dengan Teknologi tersebut. Patent P00201902428. Direktorat Jenderal Kekayaan Intelektual.
Mukimin, A., Zen, N., Vistanty, H., & Nilawati. (2021). Removal of bromide from raw water in drinking industry by electrochemical method with horizontal rotating anode reactor. Desalination and Water Treatment, 223, 200–207. https://doi.org/10.5004/dwt.2021.27131
Nilawati, Mukimin, A., & Djayanti, S. (2023). The Effect of Geomembrane Plastic Usage on Microplastic and Heavy Metal Contamination in Salt Field. IOP Conference Series: Earth and Environmental Science, 1201(1), 12054–12060. https://doi.org/10.1088/1755-1315/1201/1/012054
Okur, M. C., Akyol, A., Nayir, T. Y., Kara, S., Ozturk, D., & Civas, A. (2022). Performance of Ti/RuO2-IrO2 electrodes and comparison with BDD electrodes in the treatment of textile wastewater by electro-oxidation process. Chemical Engineering Research and Design, 183, 398–410. https://doi.org/10.1016/j.cherd.2022.05.016
Oladipo, A. A., & Mustafa, F. S. (2023). Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. In Beilstein Journal of Nanotechnology, 14, 291–321. https://doi.org/10.3762/BJNANO.14.26
Panizza, M., & Cerisola, G. (2007). Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Applied Catalysis B: Environmental, 75(1–2), 95–101. https://doi.org/10.1016/j.apcatb.2007.04.001
Prasetyo, H., Norrdin, M. N. A. M., Othman, M. H. D., Jaafar, J., Yoshioka, T., Li, Z., & Rahman, M. A. (2022). Technologies for treating wastewater from textile industry: A review. Materials Today: Proceedings, 65, 3066–3072. https://doi.org/10.1016/j.matpr.2022.04.214
Pratiwi, N. I., Mukimin, A., Zen, N., & Septarina, I. (2021). Integration of electrocoagulation, adsorption and wetland technology for jewelry industry wastewater treatment. Separation and Purification Technology, 279, 119690–119698. https://doi.org/10.1016/j.seppur.2021.119690
Purwanto, P., & Huda, S. (2005). Teknologi Industri Elektroplating. Badan Penerbit Universitas Diponegoro. https://www.researchgate.net/publication/362988571
Ramos, M. D. N., Santana, C. S., Velloso, C. C. V., Silva, A. H. M., Megalhaes, F., & Aguiar, A. (2021). A review on the treatment of textile industry effluent through Fenton process. Process Safety and Environmental Protection, 155, 366–386. https://doi.org/https://doi.org/10.1016/j.psep.2021.029
Rashid, T., Sher, F., Hazafa, A., Hashmi, R. Q., Zafar, A., Rasheed, T., & Hussain, S. (2021). Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. Journal of Environmental Chemical Engineering, 9(1). 104502–104507. https://doi.org/10.1016/j.jece.2020.104502
Said, N. (2017). Teknologi Pengolahan Air Limbah: Teori dan Aplikasi. Erlangga.
Samsami, S., Mohamadi, M., Sarrafzadeh, M. H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138–163. https://doi.org/10.1016/j.psep.2020.05.034
Setianingsih, N. I., Hadiyanto, Budihardjo, M. A., Yuliasni, R., Vistanty, H., Mukimin, A., & Sudarno. (2024). Characteristics and performance of aerobic granular sludge technology in the treatment of real batik textile wastewater. International Journal of Environmental Science and Technology 22(5), 2917–2930. https://doi.org/10.1007/s13762-024-05832-0
Sharma, M., Tyagi, V. V., Chopra, K., Kothari, R., Singh, H. M., & Pandey, A. K. (2023). Advancement in solar energy-based technologies for sustainable treatment of textile wastewater: Reuse, recovery and current perspectives. Journal of Water Process Engineering, 56, 104241–104261. https://doi.org/10.1016/j.jwpe.2023.104241
Soenardi, S. H., & Mukimin, A. (2014). Pengembangan Metode Analisis Parameter Minyak dan Lemak pada Contoh Uji Air. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 5(1), 1–6. https://doi.org/doi.op/10.21771/jrtppi.2014.v5.no1.p1-6
Vistanty, H., Mukimin, A., & Handayani, N. I. (2015). Pengolahan Air Limbah Industri Karton Box dengan Metode Integrasi Upflow Anaerobic Sludge Bed Reactor (UASB) dan Elektrokoagulasi-flotasi. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 6(1), 1–8.
Wang, J., & Wang, S. (2020). Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. In Chemical Engineering Journal, 401, 126158–126177. https://doi.org/10.1016/j.cej.2020.126158
Yang, X., López-Grimau, V., Vilaseca, M., Crespi, M., Ribera-Pi, J., Calderer, M., & Martínez-Lladó, X. (2021). Reuse of textile wastewater treated by moving bed biofilm reactor coupled with membrane bioreactor. Coloration Technology, 137(5), 484–492. https://doi.org/10.1111/cote.12543
Yanti, I. F., Wibawa, P. J., & Mukimin, A. (2024). Fabrication of Coconut Shell-Derived Graphitic Activated Carbon for Carbon-based Electrode Materials. Jurnal Kimia Sains Dan Aplikasi, 27(9), 456–463. https://doi.org/10.14710/jksa.27.9.456–463
Zhao, R., Zhang, X., Chen, F., Man, X., & Jiang, W. (2019). Study on electrochemical degradation of nicosulfuron by IrO 2 -based DSA electrodes: Performance, kinetics, and degradation mechanism. International Journal of Environmental Research and Public Health, 16(3). 343–359. https://doi.org/10.3390/ijerph16030343
Downloads
Published
July 16, 2025
Categories
HOW TO CITE
Copyright (c) 2025 Badan Riset dan Inovasi Nasional
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












