Templates
Smart Monitoring Berbasis Teknologi Satelit Penginderaan Jauh untuk Pengelolaan Kebakaran Hutan dan Lahan di Indonesia
Keywords:
Satelit Penginderaan Jauh, Kebakaran Hutan dan Lahan, Mitigasi Bencana, Smart MonitoringSynopsis
Indonesia telah berkomitmen dalam Perjanjian Paris 2015 untuk menurunkan emisi gas rumah kaca sebesar 31,89% secara mandiri pada tahun 2030. Komitmen ini menjadi sangat penting mengingat kebakaran hutan dan lahan (karhutla) masih menjadi salah satu penyumbang utama emisi gas rumah kaca nasional, di samping dampak kerusakan lingkungan, kerugian ekonomi, dan gangguan kesehatan masyarakat akibat asap.
Orasi ini menyampaikan model pemantauan karhutla berbasis teknologi satelit penginderaan jauh. Model ini diterapkan pada seluruh tahapan manajemen bencana, mulai dari pra-bencana, tanggap darurat, hingga pasca-bencana.
Secara keseluruhan, pengembangan model berbasis satelit ini mengatasi keterbatasan pengamatan langsung, mendukung pengurangan emisi gas rumah kaca, serta menyediakan dasar kebijakan berbasis data untuk mitigasi dan respons karhutla yang lebih efektif. Ke depan, model ini dapat diperkuat dengan integrasi kecerdasan buatan dan sensor satelit generasi terbaru guna mendukung pengelolaan karhutla yang lebih berkelanjutan dan efisien.
Selanjutnya, dengan menjalin kolaborasi dan komunikasi dengan pemerintah, akademika, sektor swasta, dan masyarakat serta komunitas lokal, teknologi penginderaan jauh dapat menjadi alat mitigasi yang lebih efektif sekaligus fondasi bagi perlindungan lingkungan dan pengurangan emisi gas rumah kaca. Sinergi berbagai pihak akan memperkuat ketahanan ekosistem hutan dan mendukung pembangunan berkelanjutan di Indonesia dan global.
Downloads
Download data is not yet available.
References
Adiningsih, E. S., Parwati, & Suharsono, H. (2004). Pengujian model prediksi anomali out-going longwave radiation dan hubungannya dengan curah hujan di Indonesia. Majalah LAPAN, 52–70. https://karya.brin.go.id/id/eprint/22802/
Adiningsih, E. S., Sofan, P., & Prasasti, I. (2016). Pemanfaatan teknologi penginderaan jauh untuk monitoring kejadian iklim ekstrem di Indonesia. Jurnal Sumberdaya Lahan, 10(2), 67–78.
Atwood, E. C., Englhart, S., Lorenz, E., Halle, W., Wiedemann, W., & Siegert, F. (2016). Detection and characterization of low temperature peat fires during the 2015 fire catastrophe in Indonesia using a new high-sensitivity fire monitoring satellite sensor (FireBird). PLoS ONE, 11(8), 1–24. https://doi.org/10.1371/journal.pone.0159410
Baum, B. A., & Trepte, Q. (1999). A grouped threshold approach for scene identification in AVHRR Imagery. Journal of Atmospheric and Oceanic Technology, 16(6), 793–800.https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2
Boer, R., Dewi, R., Ardiansyah, M., & Siagian, U. (2018). Indonesia second biennial update report, under the united nations framework convention on climate change. Jakarta, Indonesia. https://unfccc.int/documents/192165
Chulafak, G. A., Pambudi, A. I., & Sofan, P. (2022). Aerosol index and machine learning for fire smoke mapping using the second-generation global imager (SGLI) data over tropical peatland environments. 2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), 1–7. https://doi.org/10.1109/ICARES56907.2022.9993492
Collin, A., Bernardin, D., & Séro-Guillaume, O. (2011). A physical-based cellular automaton model for forest-fire propagation. Combustion Science and Technology, 183(4), 347–369. https://doi.org/10.1080/00102202.2010.508476
Darmawan, Y., & Sofan, P. (2012). Comparison of the vegetation indices to detect the tropical rain forest changes using breaks for additive seasonal and trend (BFAST) model. International Journal of Remote Sensing and Earth Sciences, 91. (June), 21–34. https://jurnal.lapan.go.id/index.php/ijreses/article/view/1823
Dimyati, M., Rustanto, A., Ash Shidiq, I. P., Indratmoko, S., Siswanto, Dimyati, R. D., Auni, R. (2024). Spatiotemporal relation of satellite-based meteorological to agricultural drought in the downstream Citarum watershed, Indonesia. Environmental and Sustainability Indicators, 22, 100339. https://doi.org/ 10.1016/j.indic.2024.100339
Dozier, J. (1981). A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11, 221–229. https://doi.org/10.1016/00344257(81)90021-3
Elvidge, C. D., Zhizhin, M., Hsu, F. C., Baugh, K., Khomarudin, M. R., Vetrita, Y., Sofan, P., Suwarsono, Hilman, D. (2015). Long-wave infrared identification of smoldering peat fires in Indonesia with nighttime Landsat data. Environmental Research Letters, 10(6). https://doi.org/10.1088/1748-9326/10/6/065002
Enhanced Nationally Determined Contribution Republic of Indonesia. (2022). https://unfccc.int/sites/default/files/NDC/2022-09/ENDC%20Indonesia.pdf
Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (normalized burn ratio) and NDVI (normalized difference vegetation index) derived from Landsat TM/ETM images. International Journal of Remote Sensing, 29(4), 1053–1073. https://doi.org/10.1080/01431160701281072
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harisson, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66
Giglio, L., Kendall, J. D., & Justice, C. O. (1999). Evaluation of global fire detection algorithms using simulated AVHRR infrared data. International Journal of Remote Sensing, 20(10), 1947–1985. https://doi.org/10.1080/014311699212290
Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87(2–3), 273–282. https://doi.org/10.1016/S0034-4257(03)00184-6
Giglio, L., Csiszar, I., Restás, Á., Morisette, J. T., Schroeder, W., Morton, D., & Justice, C. O. (2008). Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 112(6), 3055–3063. https://doi.org/10.1016/j.rse.2008.03.003
Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. https://doi.org/10.1016/j.rse.2016.02.054
Groot, W. J. de, Field, R. D., Brady, M. A., Roswintiarti, O., & Mohamad, M. (2007). Development of the Indonesian and Malaysian fire danger rating systems. Mitigation and Adaptation Strategies for Global Change, 12(1), 165–180. https://doi.org/10.1007/s11027-006-9043-8
Hayasaka, H., Usup, A., & Naito, D. (2020). New approach evaluating peatland fires in Indonesian factors. Remote Sensing, Vol. 12. https://doi.org/10.3390/rs12122055
Heo, S., Park, S., & Lee, D. K. (2023). Multi-hazard exposure mapping under climate crisis using random forest algorithm for the Kalimantan Islands, Indonesia. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-023-40106-8
Hope, E. S., McKenney, D. W., Johnston, L. M., Johnston, J. M., & Leitner, S. (2024). A cost-benefit analysis of WildFireSat, a wildfire monitoring satellite mission for Canada. PloS One, 19(5), e0302699–e0302699. https://doi.org/10.1371/journal.pone.0302699
Huffman, G., McCarty, W., Cosner, C., & Reed, J. (2024, 29 Februari). The global precipitation measurement mission: GPM 10 Year Anniversary. NASA website: https://gpm.nasa.gov/
Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., Decloitres, J., Alleaume, S., Petitcolin, F., & Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1–2), 244–262. https://doi.org/10.1016/S0034-4257(02)00076-7
Keetch, J. J., & Byram, G. M. (1968). A Drought Index for Forest Fire Control. USDA. https://www.srs.fs.usda.gov/pubs/rp/rp_se038.pdf
Key, C. H., & Benson, N. C. (2006). Landscape Assessment (LA) sampling and analysis methods. In USDA Forest Service - General Technical Report RMRS-GTR.
Khomarudin, M.R., Prasasti, I., Parwati, Zubaidah, A., Suwarsono, Vetrita, Y., Sulma, S., Fitriana, H.L., & Chulafak, G.A. (2020). Metode untuk mendeteksi daerah terbakar menggunakan data satelit penginderaan jauh. Direktorat jenderal Kekayaan Intelektual. Nomor Patent: IDP000069130, tanggal 16 Juni 2020. https://pdki-indonesia.dgip.go.id/detail/e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Khomarudin, M. R., & Parwati. (2000). Pendugaan curah hujan bulanan wilayah dengan data OLR untuk menunjang pemanfaatan iklim. Prosiding Seminar Kebijakan Nasional Dan Pemanfaatan Cuaca Dan Iklim Di Indonesia. LAPAN. https://karya.brin.go.id/id/eprint/14321/1/Prosiding_Rokhis_IPB_2000.pdf
Khomarudin, M.R., & Parwati. (2006). Crop Water Stress Index (CWSI) Estimation Using MODIS Data. International Journal Remote Sensing and Earth Sciences (IReSES). Vol.3. ISSN:0216-6739.http://jurnal.lapan.go.id/index.php/ijreses/article/view/1203
Khomarudin, M. R., Sariwulan, B., Parwati, & Dalimunthe, W. (2000). Model prediksi banjir dan kekeringan berdasarkan data OLR. Majalah LAPAN Edisi Penginderaan Jauh, Vol 02 No.01. ISNN 0126-0480.
Khomarudin, M.R., Parwati, & Dalimunthe, W. (2001). Analisis pola hujan bulanan dengan data outgoing longwave radiation (OLR) untuk menentukan kandungan air lahan pertanian. Warta LAPAN Vol.3 No.2, Juni. LAPAN. ISSN 0126-9754.
Khomarudin, M. R., Parwati, Prasasti, I., Febrianti, N., & Suwarsono, S. (2014a). Penyederhanaan sistem “the canadian forest fire danger rating system” di wilayah indonesia dan implementasinya berbasis data penginderaan jauh. Prosiding Seminar Sains Atmosfer; LAPAN Bandung.
Khomarudin, M. R., Vetrita, Y., & Parwati. (2014b). Hotspot hanyalah indikator bukan kejadian kebakaran hutan dan lahan. Majalah Inderaja Vol. V. No.8. LAPAN. ISSN 2087-8141.
Khomarudin, M. R., Wiweka, W., & Sofan, P. (2014c). Pemanfaatan Penginderaan Jauh untuk Mitigasi Bencana di Indonesia. Bogor: Crespent Press. Retrieved from https://karya.brin.go.id/id/eprint/10846/
Khomarudin, M. R., Trisakti, B., Budhiman, S., Parwati, Winanto, Noersyamsu, & Priyatna, M. (2015). Sistem Pemantauan Bumi Nasional. Buku Pusat Pemanfaatan Penginderaan Jauh. Jakarta: LAPAN, Jakarta. Retrieved from https://karya.brin.go.id/id/eprint/11129/
Khomarudin, M., Roswintiarti, O., Prasasti, I., Kartika, T., Nugroho, U. C., Aziz, K., & Seran, V. R. (2024). Enhancement of fire danger rating system for a better land/forest fire warning in South Sumatra Province, Indonesia. Proc.SPIE, 12977, 129771T. https://doi.org/10.1117/12.3009541
KLHK. (2023). Jangan biarkan hutan kita terbakar, lindungi dengan tindakan nyata. Direktorat Pengendalian Kebakaran Hutan dan Lahan. https://sipongi.menlhk.go.id/
KLHK. (2024). Pengendalian Deforestasi dan Karhutla di Indonesia. PPID KLHK. https://ppid.menlhk.go.id/berita/siaran-pers/7594/pengendalian-deforestasi-dan-karhutla-di-indonesia
Kogan, F. N. (2002). World droughts in the new millennium from AVHRR-based vegetation health indices. Eos Trans. Am. Geophy. Union, 83(48), 562–563.
Kumar, S. S., & Roy, D. P. (2018). Global operational land imager Landsat-8 reflectance-based active fire detection algorithm. International Journal of Digital Earth, 11(2), 154–178. https://doi.org/10.1080/17538947.2017.1391341
Li, Z., Khananian, A., Fraser, R. H., & Cihlar, J. (2001). Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(9), 1859–1870. https://doi.org/ 10.1109/36.951076
McKee, T. B., Doesken, N. J., & Kliest, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 179–184. Boston MA, USA: American Meteorological Society.
Mukai, S., Sano, I., & Nakata, M. (2019). Algorithms for the classification and characterization of aerosols: utility verification of near-UV satellite observations. Journal of Applied Remote Sensing, 13(01), 1. https://doi.org/10.1117/1.jrs.13.014527
Murdiyarso, D., Lilleskov, E., & Kolka, R. (2019). Tropical peatlands under siege: the need for evidence-based policies and strategies. Mitigation and Adaptation Strategies for Global Change, 24(4), 493–505. https://doi.org/10.1007/s11027-019-9844-1
Murphy, S.W.; de Souza Filho, C.R.;Wright, R.; Sabatino, G.; Correa Pabon, R. Hotmap: Global hot target detection at moderate spatial resolution. Remote Sens. Environ. 2016, 177, 78–88. https://doi.org/10.1016/j.rse.2016.02.027
Parwati & Suwarsono. (2008). Model indeks TVDI (temperature vegetation dryness index) untuk mendeteksi kekeringan lahan berdasarkan data Modis-Terra. Jurnal Penginderaan Jauh, 5, 35–44. http://jurnal.lapan.go.id/index.php/jurnal_inderaja/article/viewFile/1167/1045
Parwati, Suwarsono, S., Ayu, K. D., & Kartasamita, M. (2009). Penentuan hubungan antara suhu kecerahan data mtsat dengan curah hujan data QMORPH. Jurnal Penginderaan Jauh, 6, 32–42.
Parwati, Suwarsono, S., & Suprapto, T. (2010a). Analisis peran enso terhadap distribusi hotspot dan curah hujan di pulau Sumatra dan kalimantan. Prosiding Seminar Nasional Sains Atmosfer, 391–406. LAPAN.
Parwati, Zubaidah, A., & Roswintiarti, O. (2010b). Model prediksi curah hujan di wilayah Indonesia dari data satelit TRMM berdasarkan anomali suhu permukaan laut pasifik tropik. In LAPAN (Ed.), Prosiding Seminar Nasional Sains Atmosfer (pp. 11–25).
Parwati, Khomarudin, M. R., & Priyatna, M. (2011a). Pemanfaatan data penginderaan jauh untuk mendukung terbentuknya crisis room kebencanaan. Prosiding Seminar Nasional Pemanfaatan Data Penginderaan Jauh Untuk Mendukung Pembangunan Nasional, 53–66. LAPAN. https://karya.brin.go.id/id/eprint/10673/
Parwati, M. Priyatna, Kusumaning Ayu D.S, & Khomarudin, M. R. (2011b). Dinamika kondisi potensi bahaya kebakaran hutan/lahan di Sumatra dan kalimantan tahun 2009 – 2011 berdasarkan fire weather index (FWI) dari data satelit penginderaan jauh. Prosiding Seminar Nasional Pemanfaatan Data Penginderaan Jauh Untuk Mendukung Pembangunan Nasional, pp. 83–90.
Parwati, Suwarsono, S., Hidayat, H., Zubaidah, A., & Anggraini, N. (2011c). Peringatan dini bahaya kekeringan di Indonesia berdasarkan indeks kekeringan agronomis dari data MODIS. Prosiding Seminar Nasional Geospasial Dalam Pembangunan Wilayah Dan Kota, PIT MAPIN XVIII, 123–133. Semarang. http://eprints.undip.ac.id/75952/1/C6_PROSIDING_MAPIN_2011.pdf
Parwati, Zubaidah, A., & Kusumaning Ayu D.S. (2011d). Indeks kekeringan meteorologis SPI (Standardized Precipitation Index) sebagai peringatan dini bahaya kebakaran hutan di Indonesia berdasarkan data satelit TRMM. Proceeding of The International Seminar on GeoSARNasForum. Bogor, 12 September 2011. ISBN: 978-979-25-7259-9., 257–274.
Parwati, Zubaidah, A., Priyatna, M., Vetrita, Y., Kusumaningayu D.S., Lintang, P.M., Ningrum, W., & Pribadi, U. A. (2012). Informasi tingkat bahaya kebakaran hutan/lahan dari data satelit. Majalah Inderaja Vol. III, No.5. LAPAN. ISSN: 2087-8141.
Prasasti, I., Febranti, N., Parwati, & Mustiika NS. (2015). Analisis pemanfaatan data TRMM (Tropical Rainfall Measuring Mission) untuk deteksi kejadian dan estimasi hujan. Prosiding Pertemuan Ilmiah Tahunan XX Dan Kongres VI Masyarakat Ahli Penginderaan Jauh Indonesia (MAPIN), 375–382. https://karya.brin.go.id/id/eprint/11073/
Purnomo, D. M. J., Apers, S., Bechtold, M., Sofan, P., & Rein, G. (2023). KAPAS II: Simulation of peatland wildfires with daily variations of peat moisture content. International Journal of Wildland Fire, 32(6), 823–835. https://doi.org/10.1071/WF22109
Rahmi, K. I. N., Nugroho, G., Sofan, P., Vetrita, Y., Chulafak, G. A., & Santoso, I. (2024). Identification of smoke peatland fire using remote sensing data based on machine learning. Proc.SPIE, 12977, 1297717. https://doi.org/10.1117/12.3009368
Riyanto, B., Judianto, C. T., Prihanto, I. G., Sofan, P., Priyatna, M., Gunawan, H., Prasetio, W., & Jayati, A. (2022). Acceptance of information on the distribution of smoke and locations of fire (hotspot) resulted from remote sensing data. IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, ICARES 2022 -Proceedings. https://doi.org/10.1109/ICARES56907.2022.9993509
Roswintiarti, O., Niyogi, D. S., & Raman, S. (2000). Comparative assessment of predictability over mid-latitudinal and tropical climate using statistical models: Example over North Carolina and Indonesia. 15th Conference on Probability and Statistics in the Atmospheric Sciences. American Meteorological Society. https://ams.confex.com/ams/May2000/techprogram/programexpanded_23.htm
Roswintiarti, O., Sofan, P., & Zubaidah, A. (2009). Pemanfaatan data TRMM dalam mendukung pemantauan dan prediksi curah hujan di Indonesia. Majalah Berita Inderaja. Volume VIII No.14, Juli. LAPAN. ISSN 1412-4564.
Roswintiarti, O., Sofan, P., & Anggraini, N. (2011). Monitoring of drought-vulnerable area in Java Island, Indonesia using satellite remote-sensing data. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, Vol.8, 21–34. https://jurnal.lapan.go.id/index.php/jurnal_inderaja/article/view/1610/1448
Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79(2), 213–224. https://doi.org/https://doi.org/10.1016/S0034-4257(01)00274-7
Schindele, W., Thoma, W., & Panzer, K. (1989). Investigation of the steps needed to rehabilitate the areas of East Kalimantan seriously affected by fire. The forest fire 1982/83 in east kalimantan. Part I: The fire, the effects, the damage and the technical solutions. GTZ-PN: 38.3021. 3-11.000, ITTO: PD 17/87 (F).
Schroeder, W., Oliva, P., Giglio, L., & Csiszar, I. A. (2014). The new VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143, 85–96. https://doi.org/10.1016/j.rse.2013.12.008
Schroeder, W., Oliva, P., Giglio, L., Quayle, B., Lorenz, E., & Morelli, F. (2016). Active fire detection using Landsat-8/OLI data. Remote Sensing of Environment, 185, 210–220. https://doi.org/10.1016/j.rse.2015.08.032
Science Team Publications. MODIS-NASA. https://modis.gsfc.nasa.gov/sci_team/pubs/abstract_new.php?id=54316
Shofiyati, R., Takeuchi, W., Darmawan, S., & Sofan, P. (2017). An effective information system of drought impact on rice production based on remote sensing. International Journal of Remote Sensing and Earth Sciences (IJReSES), 11(2), 153. https://doi.org/10.30536/j.ijreses.2014.v11.a2613
Siegert, F., Zhukov, B., Oertel, D., Limin, S., Page, S. E., & Rieley, J. O. (2004). Peat fires detected by the BIRD satellite. International Journal of Remote Sensing, 25(16), 3221–3230. https://doi.org/10.1080/01431160310001642377
Sofan, P. (2007). Agricultural Drought Based on Temperature Vegetation Dryness Index in Jambi Province using Terra-MODIS Data. Pusat Survei Sumber Daya Alam Laut Bakosurtanal. ISBN 978-979-1266-18-5. https://opac.perpusnas.go.id/DetailOpacBlank.aspx?id=336030
Sofan, P., Zubaedah, A., & Roswintiarti, O. (2008). Predictive skills of long-term convection prediction over Indonesia related to el nino/southern oscillation (ENSO). Proceedings of International Symposium on Equatorial Monsoon System, 16-18 September 2008. ISBN 978-979-15549-4-7.
Sofan, P., Zubaidah, A., Vetrita, Y., Yulianto, F., Sukowati, K. A. D., & Khomarudin, M. R. (2012). Kapasitas indeks lahan terbakar normalized burn ratio (NBR) dan normalized difference vegetation index (NDVI) dalam mengidentifikasi bekas lahan terbakar berdasarkan data SPOT-4. Jurnal Ilmiah Geomatika, 18(1), 29–41.
Sofan, P. (2015). Karakteristik pola curah hujan di wilayah Indonesia berdasarkan data satelit TRMM (1998-2011). Bunga Rampai Penginderaan Jauh Indonesia 2013. Institut Teknologi Bandung, Bandung, pp. 2-21. ISBN 978-602-19911-3-8
Sofan, P., Suwarsono, S., Febrianti, N., & Khomarudin, M. R. (2014). Mewaspadai fenomena iklim ekstrim el nino dan osilasi selatan (ENSO) pada musim kemarau 2014 di Indonesia berdasarkan data satelit penginderaan jauh. Media Dirgantara. Vol.9 No.2. Juni. LAPAN. ISSN 1907-6169.
Sofan, P., Vetrita, Y., Yulianto, F., & Khomarudin, M. R. (2016). Multi-temporal remote sensing data and spectral indices analysis for detection tropical rainforest degradation: case study in Kapuas Hulu and Sintang districts, West Kalimantan, Indonesia. Natural Hazards, 80(2), 1279–1301. https://doi.org/10.1007/s11069-015-2023-0
Sofan, P., Bruce, D., Jones, E., & Marsden, J. (2018). Detecting peatland combustion using shortwave and thermal infrared Landsat-8. In D. X. Viegas (Ed.), Advances in Forest Fire Research. Coimbra, Portugal: ADAI/CEIF, Universitu of Coimbra. https://doi.org/10.14195/978-989-26-16-506_106
Sofan, P., Bruce, D., Jones, E., & Marsden, J. (2019). Detection and validation of tropical peatland flaming and smouldering using Landsat-8 SWIR and TIRS bands. Remote Sensing, 11(4), 465. https://doi.org/10.3390/rs11040465
Sofan, P., Bruce, D., Jones, E., Khomarudin, M. R., & Roswintiarti, O. (2020a). Applying the tropical peatland combustion algorithm to Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery. Remote Sensing, 12(23), 1–37. https://doi.org/10.3390/rs12233958
Sofan, P., Bruce, D., Schroeder, W., Jones, E., & Marsden, J. (2020b). Assessment of VIIRS 375 m active fire using tropical peatland combustion algorithm applied to Landsat-8 over Indonesia’s peatlands. International Journal of Digital Earth, 13(12), 1695–1716. https://doi.org/10.1080/17538947.2020.1791268
Sofan, P. (2021). Mapping tropical peatlands combustion from satellite remote sensing data. Doctoral Thesis. University of South Australia. https://hdl.handle.net/11541.2/26033
Sofan, P., Chulafak, G. A., Pambudi, A. I., & Yulianto, F. (2022a). Assessment of space-based tropical smouldering peatlands: Mixed pixel analysis. IOP Conference Series: Earth and Environmental Science, 1109(1), 2–11. https://doi.org/10.1088/1755-1315/1109/1/012054
Sofan, P., Yulianto, F., & Sakti, A. D. (2022b). Characteristics of false-positive active fires for biomass burning monitoring in Indonesia from viirs data and local geo-features. ISPRS International Journal of Geo-Information, 11(12). https://doi.org/10.3390/ijgi11120601
Sofan, P., Chulafak, G. A., Yulianto, F., Suwarsono, S., Tonoto, P., Prasasti, I., Khomarudin, M.R., & Adiningsih, E. (2024a). Assessing space-based smoldering peatland in the tropics with atmospheric products from multi-sensor satellites. Modeling Earth Systems and Environment, 10(1), 465–481. https://doi.org/10.1007/s40808-023-01793-4
Sofan, P., Nugroho, G., Suwarsono, S., Widodo, J., Setyaningrum, N., Cahyana, D., Yulihastin, E., Qodrita, L., & Risyanto, R. (2024b). Multi-machine learning approach for mapping drought-driven fires in Kalimantan using geo-AI data. 2024 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), 1–6. https://doi.org/10.1109/ICARES64249.2024.10767999
Suwarsono, Parwati, & Suprapto, T. (2009a). Mendeteksi titik panas (hotspot) kebakaran hutan dan lahan menggunakan data satelit. Majalah Berita Inderaja. Volume VIII No.14, Juli. LAPAN. ISSN 1412-4564.
Suwarsono, Yulianto, F., Parwati, & Suprapto, T. (2009b). Analisis persebaran titik panas (hotspot) indikasi kebakaran hutan dan lahan di wilayah Kalimantan sepanjang tahun 2001-2009. Majalah Berita Inderaja Vol IX. No. 16. LAPAN. ISSN 1412-4564.
Suwarsono, Yulianto, F., Parwati, & Suprapto, T. (2009c). Pemanfaatan data MODIS untuk identifikasi daerah bekas terbakar (burned area) berdasarkan perubahan nilai NDVI di provinsi Kalimantan Tengah tahun 2009. Jurnal Penginderaan Jauh, 6, 54–64. Retrieved from https://jurnal.lapan.go.id/index.php/jurnal_inderaja/article/view/1186/1064
Suwarsono, Vetrita, Y., Sofan, P., Priyatna, M., & Khomarudin, M. R. (2015a). Karakteristik reflektansi daerah bekas kebakaran hutan dan lahan (burned area) dari data Landsat-8 Operational Land Imager. Seminar Nasional Sains Atmosfer 2015, 252–261. Bandung: LAPAN. Retrieved from https://karya.brin.go.id/id/eprint/15176/
Suwarsono, Vetrita, Y., Parwati, & Khomarudin, M. (2015). Deteksi Titik Api (Fire Spot) Kebakaran Hutan dan Lahan Menggunakan Citra Landsat-8 TIRS. Prosiding Seinar Nasional Sains Atmosfer. Bandung: LAPAN. Retrieved from https://karya.brin.go.id/id/eprint/15179/
Suwarsono, Zubaidah, A., Parwati, & Khomarudin, M. R. (2016a). Analisis karakteristik temperatur area terbakar (burned area) menggunakan data Landsat-8 TIRS di Kalimantan. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 13(1), 13–22. https://doi.org/10.30536/j.pjpdcd.2016.v13.a2558
Suwarsono, Sofan, P., Khomarudin, M. R., & Ravan, S. (2016b). Lessons Learnt from Forest and Land Fires in Indonesia. UNSPIDER. https://www.un-spider.org/news-and-events/news/booklet-forest-fires-lapan
Tang, R., Mao, J., Jin, M., Chen, A., Yu, Y., Shi, X., Zhang, Y., Hoffman, F.M., Xu, M., & Wang, Y. (2021). Interannual variability and climatic sensitivity of global wildfire activity. Advances in Climate Change Research, 12(5), 686–695.
Tosca, M. G., Randerson, J. T., Zender, C. S., Nelson, D. L., Diner, D. J., & Logan, J. A. (2011). Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia. Journal of Geophysical Research: Atmospheres, 116(D8).
UNEP. (2022). Spreading like wildfire – The rising threat of extraordinary landscape fires. In United Nations Environment Programme (UNEP). Nairobi.
Usup, A, Y. Hashimoto, H. Takashi, and H. Hayasaka. 2004. "Combustion and Thermal Characteristics of Peat Fire in Tropical Peatland in Central Kalimantan, Indonesia." Tropics 14 (1):1–19. doi:10.3759/tropics.14.1.
Vetrita, Y., Albar, I., Santoso, I., Prasasti, I., Kartika, T., Usman, A. B., Tosiani, A., Haryanto, D., Endrawati, Famurianty, E., Ulfa K., & Purwanto, J. (2024). Monthly mapping of Indonesia’s burned areas: implementation, history, techniques, and future directions. International Journal of Remote Sensing, 1–25. https://doi.org/10.1080/01431161.2024.2421942
Wickramasinghe, C. H., Jones, S., Reinke, K., & Wallace, L. (2016). Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8. Remote Sensing, 8(11), 1–13. https://doi.org/10.3390/rs8110932
World Bank. (2016). The cost of fire: an economic analysis of Indonesia’s 2015 fire crisis (English). Indonesia sustainable landscapes knowledge note no. 1 Washington, D.C.: World Bank Group. http://documents.worldbank.org/curated/en/776101467990969768
World Bank. (2019). Indonesia economic quarterly: Investing in people (English). Indonesia Economic Quarterly Washington, D.C.: World Bank Group. http://documents.worldbank.org/curated/en/622281575920970133economic-quarterly-investing-in-people
Zheng, Y., Zhang, G., Tan, S., Yang, Z., Wen, D., & Xiao, H. (2023). A forest fire smoke detection model combining convolutional neural network and vision transformer. Frontiers in Forests and Global Change, 6. https://www.frontiersin.org/journals/forests-and-global-change/articles/10.3389/ffgc.2023.1136969
Downloads
Published
July 25, 2025
Online ISSN
3090-8485
Categories
HOW TO CITE
Copyright (c) 2025 National Research and Innovation Agency
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












