Strategi Molekuler dalam Teknologi Permukaan Biomaterial untuk Mendukung Sektor Kesehatan Nasional

Authors

Bidhari Pidhatika
Politeknik Teknologi Nuklir Indonesia

Keywords:

Biomaterial cerdas, Fungsionalisasi permukaan, Teknologi plasma, Teknologi supramolekuler

Synopsis

Penguasaan teknologi modifikasi permukaan biomaterial merupakan elemen strategis dalam mendukung transformasi sistem kesehatan nasional menuju visi Indonesia Emas 2045. Inovasi dalam bidang ini melibatkan pendekatan multidisipliner yang mencakup ilmu fisika, kimia, dan biologi molekuler, serta pengembangan permukaan biomaterial dari sifat biopasif menuju sistem bioaktif hingga responsif dan otonom. Selama dua dekade terakhir, berbagai kontribusi ilmiah telah dihasilkan bersama tim kolaboratif, baik di dalam maupun luar negeri, seperti pengembangan lapisan polimer di permukaan sebagai platform biopasif yang stabil, sistem bioaktif dual-fungsi untuk menekan infeksi dan mendukung regenerasi jaringan, hingga lapisan responsif yang mampu merespons stimuli. Berbagai teknologi berbasis kimia, fisika, dan kombinasi keduanya telah digunakan, seperti teknologi pencangkokan dan plasma. Dengan menjadikan permukaan biomaterial sebagai tempat interaksi utama dengan lingkungan biologis, strategi modifikasi ini membuka peluang besar untuk memperkuat kemandirian teknologi alat kesehatan nasional, menurunkan biaya kesehatan, dan meningkatkan kualitas hidup pasien secara berkelanjutan. Melalui penguatan ekosistem inovasi, hasil riset ini siap menjadi fondasi untuk kebijakan dan pengembangan industri biomaterial Indonesia yang tangguh, adaptif, dan berbasis sains.

Downloads

Download data is not yet available.

Author Biography

Bidhari Pidhatika, Politeknik Teknologi Nuklir Indonesia

Bidhari Pidhatika, lahir di Jakarta pada tahun 1980, adalah anak kedua dari Bapak Yoanes Chrisostomus dan Ibu Lucia. Menikah dengan Indra Perdana dan dikaruniai tiga orang anak, yaitu Leonardi, Khrisandra, dan Khrisantika.
Berdasarkan Keputusan Presiden Republik Indonesia Nomor 43/M Tahun 2024 tanggal 13 Juni 2024, yang bersangkutan diangkat sebagai Peneliti Ahli Utama.
Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional (BRIN) Nomor 199/I/HK/2025, tanggal 7 Oktober 2025 tentang Majelis Pengukuhan Profesor Riset, yang bersangkutan dapat melakukan Orasi Ilmiah Pengukuhan Profesor Riset.
Menamatkan Sekolah Dasar Marsudirini I Jakarta, tahun 1987–1993, Sekolah Menengah Pertama Marsudirini I Jakarta, tahun 1993–1995, dan Sekolah Menengah Atas Stella Duce I Yogyakarta, tahun 1995–1998. Memperoleh gelar Sarjana Teknik Kimia (S.T.) dari Universitas Gadjah Mada, Yogyakarta, tahun 2003, gelar Magister Teknik Kimia (M.Sc.) dari Chalmers University of Technology, Gothenburg, Swedia, tahun 2006, dan gelar Doktor bidang Ilmu Material (Dr.Sc.) dari ETH Zürich , Zürich, Swiss, tahun 2011.
Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain: pascadoctoral di University of Freiburg, Freiburg, Jerman (tahun pelaksanaan 2016–2018), kunjungan riset di Flinders University, Adelaide, Australia (tahun pelaksanaan 2022–2023), dan kunjungan riset di State University of New York at Buffalo, New York, Amerika Serikat (tahun pelaksanaan 2024–2025).
Pernah menduduki jabatan struktural sebagai Sekretaris Program Studi di Politeknik ATK (Akademi Teknologi Kulit), Kementerian Perindustrian (tahun 2011–2013).
Perjalanan karir yang pernah ditempuh adalah sebagai Lektor pada Akademi Teknologi Kulit pada tahun 2012, dan Lektor pada Sekolah Tinggi Manajemen Industri pada tahun 2013. Jabatan fungsional peneliti diawali sebagai Peneliti Ahli Muda golongan III/c tahun 2015, Peneliti Ahli Madya golongan III/d tahun 2020, dan memperoleh jabatan Peneliti Ahli Utama golongan IV/a bidang Material tahun 2024.
Menghasilkan 43 karya tulis ilmiah (KTI) yang ditulis bersama penulis lain dalam bentuk buku, jurnal internasional, prosiding internasional, jurnal nasional, dan prosiding nasional. Sebanyak 39 KTI ditulis dalam bahasa Inggris, dan 4 dalam bahasa Indonesia., serta menghasilkan 4 paten.
Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pembimbing jabatan fungsional peneliti pada BRIN, pembimbing skripsi (S-1) pada Politeknik Teknologi Nuklir Indonesia dan Universitas Pertamina, pembimbing tesis (S-2) pada ETH Zürich, Universitas Gadjah Mada, University at Buffalo, University of Freiburg, dan BRIN; pembimbing disertasi (S-3) pada Universitas Gadjah Mada dan Universitas Islam Negeri Mataram.
Aktif dalam organisasi profesi ilmiah, yaitu sebagai anggota bidang kerja sama Perhimpunan Periset Indonesia (PPI) DIY (2015–2025), anggota bidang advokasi dan kekayaan intelektual PPI Pusat (2024–2029).
Menerima tanda penghargaan L’Oreal–UNESCO National (Indonesia) Fellowship Program for Women in Science (tahun 2011), Alexander von Humboldt Research Fellowship for Experienced Researcher (tahun 2016), APEC–Australia Women in Research Fellowship (tahun 2022), Peneliti berkinerja tinggi (tahun 2024), Fulbright Visiting Scholar Program (tahun 2024), Satyalancana Karya Satya X Tahun (tahun 2014), dan Satyalancana Karya Satya XX Tahun (tahun 2024) dari Presiden RI.

References

Abdulrahman, A. G., Endytiastuti, E., Ardhani, R., Sudarso, I. S. R., Pidhatika, B., Fauzi, M. B., Susilowati, H., Kristanti, Y., & Handajani, J. (2025). Evaluating the Efficacy of Gelatin-Chitosan-Tetraethyl Orthosilicate Calcium Hydroxide Composite as a Dental Pulp Medicament on COX-2, PGP 9.5, TNF-a Expression and Neutrophil number. F1000Research, 13, 1258. https://doi.org/10.12688/f1000research.156336.2

Ana, I. D., Vrana, N. E., Morita, A., Satria, G. A. P., & Hathroubi, S. (2025). Antibacterial surface functionalization of biomedical scaffolds: A transformation towards more adaptive, resilient regenerative therapy. Results in Surfaces and Interfaces, 19, 100481. https://doi.org/10.1016/j.rsurfi.2025.100481

Ardhani, R., Diana, R., & Pidhatika, B. (2022). How Porphyromonas gingivalis Navigate the Map: The Effect of Surface Topography on the Adhesion of Porphyromonas gingivalis on Biomaterials. Materials, 15(14), 4988. https://doi.org/10.3390/ma15144988

Ardhani, R., Suraya, T., Wulanjati, M. P., Ana, I. D., Rühe, J., & Pidhatika, B. (2022). Photoreactive polymer and C,H-insertion reaction to tailor the properties of CHA/gelatin-based scaffold. International Journal of Polymer Analysis and Characterization, 27(5), 326–345. https://doi.org/10.1080/1023666X.2022.2076012

Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

Bousquet, A., Awada, H., Hiorns, R. C., Dagron-Lartigau, C., & Billon, L. (2014). Conjugated-polymer grafting on inorganic and organic substrates: A new trend in organic electronic materials. In Progress in Polymer Science (Vol. 39, Issue 11, pp. 1847–1877). Elsevier Ltd. https://doi.org/10.1016/j.progpolymsci.2014.03.003

Castner, D. G., & Ratner, B. D. (2002). Biomedical surface science: Foundations to frontiers. Surface Science, 500(1), 28–60. https://doi.org/https://doi.org/10.1016/S0039-6028(01)01587-4

Chen, S., Guo, Y., Liu, R., Wu, S., Fang, J., Huang, B., Li, Z., Chen, Z., & Chen, Z. (2018). Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids and Surfaces. B, Biointerfaces, 164, 58–69. https://doi.org/10.1016/j.colsurfb.2018.01.022

Chen, Y., Cao, W., Zhou, J., Pidhatika, B., Xiong, B., Huang, L., Tian, Q., Shu, Y., Wen, W., Hsing, I.-M., & Wu, H. (2015). Poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA): A Bioactive Copolymer for Specific Targeting to Folate Receptor-Positive Cancer Cells. ACS Applied Materials & Interfaces, 7(4), 2919–2930. https://doi.org/10.1021/am508399w

Chen, Y., Pidhatika, B., von Erlach, T., Konradi, R., Textor, M., Hall, H., & Lühmann, T. (2014). Comparative assessment of the stability of nonfouling poly(2-methyl-2-oxazoline) and poly(ethylene glycol) surface films: An in vitro cell culture study. Biointerphases, 9(3), 031003. https://doi.org/10.1116/1.4878461

Cordero, D., López-Álvarez, M., Rodríguez-Valencia, C., Serra, J., Chiussi, S., & González, P. (2013). In vitro response of pre-osteoblastic cells to laser microgrooved PEEK. Biomedical Materials, 8(5), 055006. https://doi.org/10.1088/1748-6041/8/5/055006

Eskani, I. N., Rahayuningsih, E., Astuti, W., & Pidhatika, B. (2023). Low Temperature In Situ Synthesis of ZnO Nanoparticles from Electric Arc Furnace Dust (EAFD) Waste to Impart Antibacterial Properties on Natural Dye-Colored Batik Fabrics. Polymers, 15(3). https://doi.org/10.3390/polym15030746

Eskani, I. N., Rahayuningsih, E., Astuti, W., & Pidhatika, B. (2024). In situ synthesis of zinc oxide nanoparticles from electric arc furnace dust waste for functionalization of fabric: optimization with response surface methodology. IOP Conference Series: Earth and Environmental Science, 1388(1), 012022. https://doi.org/10.1088/1755-1315/1388/1/012022

Gad, S. C., & Gad-McDonald, S. (2015). Biomaterials, medical devices, and combination products: Biocompatibility testing and safety assessment. CRC Press.

Gheisarifar, M., Thompson, G. A., Drago, C., Tabatabaei, F., & Rasoulianboroujeni, M. (2021). In vitro study of surface alterations to polyetheretherketone and titanium and their effect upon human gingival fibroblasts. The Journal of Prosthetic Dentistry, 125(1), 155–164. https://doi.org/https://doi.org/10.1016/j.prosdent.2019.12.012

Handajani, J., Ardhani, R., Sudarso, I. S. R., Pidhatika, B., Mohammed, A., & Fauzi, M. B. (2024). Evaluation of the Expression of Nestin in the Pulp after Application of Gelatin-Chitosan-Tetraethyl Orthosilicate-Calcium Hydroxide Composite. Malaysian Journal of Medicine & Health Sciences, 20, 29–34.

Hoogenboom, R. (2007). Poly (2-oxazoline) s: Alive and Kicking. Macromolecular Chemistry and Physics, 208(1), 18–25. https://doi.org/https://doi.org/10.1002/macp.200600558

Hoogenboom, R. (2009). Poly (2-oxazoline) s: a polymer class with numerous potential applications. Angewandte Chemie International Edition, 48(43), 7978–7994. https://doi.org/10.1002/anie.200901607

Hoogenboom, R., & Schlaad, H. (2017). Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polymer Chemistry, 8(1), 24–40. https://doi.org/10.1039/c6py01320a

Kleber, C., Bruns, M., Lienkamp, K., Rühe, J., & Asplund, M. (2017). An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces. Acta Biomaterialia, 58, 365–375. https://doi.org/https://doi.org/10.1016/j.actbio.2017.05.056

Konradi, R., Pidhatika, B., Mühlebach, A., & Textor, M. (2008). Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir, 24(3), 613–616. https://doi.org/10.1021/la702917z

Lava, K., Verbraeken, B., & Hoogenboom, R. (2015). Poly(2-oxazoline)s and click chemistry: A versatile toolbox toward multi-functional polymers. European Polymer Journal, 65, 98–111. https://doi.org/10.1016/j.eurpolymj.2015.01.014

Ma, S., Zhang, X., Yu, B., & Zhou, F. (2019). Brushing up functional materials. NPG Asia Materials, 11(24). https://doi.org/10.1038/s41427-019-0121-2

Mahajan, A., & Sidhu, S. S. (2018). Surface modification of metallic biomaterials for enhanced functionality: a review. Materials Technology, 33(2), 93–105. https://doi.org/10.1080/10667857.2017.1377971

Mahmudi, M., Ardhani, R., Pidhatika, B., Suyanta, S., Swasono, Y. A., Rudianto, R. P., & Nuryono, N. (2024). Development of a local drug delivery system for promoting the regeneration of infective bone defects: composite films with controlled properties. Polymer Bulletin, 81(12), 11215–11238. https://doi.org/10.1007/s00289-024-05243-8

Mahmudi, Nuryono, Pidhatika, B., & Suyanta. (2022). Synthesis of bioactive membranes for guided tissue regeneration (GTR): a comparative study of the effect silane-based cross-linker. RASAYAN J.Chem, 15(1), 102–107. https://doi.org/10.31788/RJC.2022.1516435

Maudisha. (2024). DOKTOR FTUI KEMBANGKAN BIOMATERIAL BERBASIS LOGAM DALAM NEGERI GUNA PENGEMBANGAN BONE PLATE IMPLAN TULANG . Https://Www.Ui.Ac.Id/Doktor-Ftui-Kembangkan-Biomaterial-Untuk-Bone-Plate-Implan-Tulang/.

Montoya, C., Du, Y., Gianforcaro, A. L., Orrego, S., Yang, M., & Lelkes, P. I. (2021). On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Research, 9(1). https://doi.org/10.1038/s41413-020-00131-z

Mukherji, R., Patil, A., & Prabhune, A. (2014). Role of Extracellular Proteases in Biofilm Disruption of Gram Positive Bacteria with Special Emphasis on Staphylococcus aureus Biofilms. Enzyme Engineering, 04(01), 1000126. https://doi.org/10.4172/2329-6674.1000126

Namiki, A., Kawai, T., & Ichige, K. (1986). Angle-resolved time-of-flight spectra of neutral particles desorbed from laser irradiated CdS. Surface Science, 166(1), 129–140. https://doi.org/https://doi.org/10.1016/0039-6028(86)90536-4

National Institute of Biomedical Imaging and Bioengineering. (2024). Biomaterial Technologies: What are biomaterials? . https://www.nibib.nih.gov/science-education/science-topics/biomaterials

Ngoerah, I. G. N. G. (2023). Akselerasi Alat Kesehatan PDN dalam Mutu dan Keselamatan Pasien Suatu Keinginan atau Kebutuhan. Https://Www.Persi.or.Id/Wp-Content/Uploads/2023/11/36.K6_RSUP-Prof.Dr_.IGNG_.-Ngoerah_-Akselerasi-Alat-Kesehatan-PDN-Dalam-Mutu-Dan-Keselamatan-Pasien-Suatu-Keinginan-Atau-Kebutuhan.Pdf.

Ninan, N., Pidhatika, B., Bright, R., Kartika, B. M., Rudianto, R. P., Swasono, Y. A., Ardhani, R., & Vasilev, K. (2024). Advancing sustainable technologies: plasma-engineered bioplastics with silver nanoparticle integration. Journal of Materials Science, 59(20), 9003–9020. https://doi.org/10.1007/s10853-024-09673-7

Pandiyarajan, C. K., & Genzer, J. (2019). Thermally activated one-pot, simultaneous radical and condensation reactions generate surface-anchored network layers from common polymers. Macromolecules, 52(2), 700–707. https://doi.org/10.1021/acs.macromol.8b02194

Pidhatika, B. (2019). Hemocompatibility study of surface-attached antibiofouling polymer monolayers. Journal of Physics: Conference Series, 1282(1), 012069. https://doi.org/10.1088/1742-6596/1282/1/012069

Pidhatika, B., Ardhani, R., & Prasetyanto, E. A. (2022). PERMUKAAN BIOMATERIAL: Strategi Modifikasi Karakterisasi dan Respon Tubuh. UGM PRESS.

Pidhatika, B., Ardhani, R., Swasono, Y. A., Anggraeni, R., Andriyanti, W., Santosa, F. A., Rudianto, R. P., Ana, I. D., & Dewi, A. H. (2025). Advancing Bone Regeneration: The Impactful Role of Plasma Technology. Plasma Processes and Polymers, 22(2), 2400171. https://doi.org/https://doi.org/10.1002/ppap.202400171

Pidhatika, B., Chen, Y., Coullerez, G., Al-Bataineh, S., & Textor, M. (2014). ToF-SIMS analysis of poly(l-lysine)-graft-poly(2-methyl-2-oxazoline) ultrathin adlayers. Analytical and Bioanalytical Chemistry, 406(5), 1509–1517. https://doi.org/10.1007/s00216-013-7537-2

Pidhatika, B., & Macgregor, M. (2023). Surface “CLICK” Reaction Between Acetylene-Decorated Polymeric Platform and Azide-Decorated Compounds. Surface Review and Letters, 30(03), 2350016.

Pidhatika, B., Möller, J., Benetti, E. M., Konradi, R., Rakhmatullina, E., Mühlebach, A., Zimmermann, R., Werner, C., Vogel, V., & Textor, M. (2010). The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films. Biomaterials, 31(36), 9462–9472. https://doi.org/https://doi.org/10.1016/j.biomaterials.2010.08.033

Pidhatika, B., Möller, J., Vogel, V., & Konradi, R. (2008). Nonfouling surface coatings based on poly(2-methyl-2-oxazoline). Chimia, 62(4), 264–269. https://doi.org/10.2533/chimia.2008.264

Pidhatika, B., & Nalam, P. C. (2019). Investigation of design parameters in generating antifouling and lubricating surfaces using hydrophilic polymer brushes. Journal of Applied Polymer Science, 136(24), 47659. https://doi.org/https://doi.org/10.1002/app.47659

Pidhatika, B., Ninan, N., Bright, R., Palms, D., Rahmawan, Y., & Vasilev, K. (2024). Plasma-assisted surface engineering for value added in starch bioplastics: A study on enhanced surface properties and natural dye immobilization. Journal of Applied Polymer Science, 141(12). https://doi.org/10.1002/app.55130

Pidhatika, B., & Rakhmatullina, E. (2014). The synthesis of polymeric dual-functional antimicrobial surface based on poly(2-methyl-2-oxazoline). Indonesian Journal of Biotechnology, 19(1), 12–22. https://doi.org/10.22146/ijbiotech.8630

Pidhatika, B., Ridwan, N. F., & Rakhmawati, A. (2016). Poly (2-methyl-2-oxazoline)(PMOXA) and antimicrobial peptide GKH17 as potential antimicrobial coatings for contact lenses. ASEAN Engineering Journal, 5(1), 15–24. https://doi.org/https://doi.org/10.11113/aej.v5.15464

Pidhatika, B., Rodenstein, M., Chen, Y., Rakhmatullina, E., Mühlebach, A., Acikgöz, C., Textor, M., & Konradi, R. (2012). Comparative stability studies of Poly(2-methyl-2-oxazoline) and Poly(ethylene glycol) brush coatings. Biointerphases, 7(1), 1–15. https://doi.org/10.1007/s13758-011-0001-y

Pidhatika, B., Widyaya, V. T., Nalam, P. C., Swasono, Y. A., & Ardhani, R. (2022). Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers, 11(24). https://doi.org/10.3390/polym14245526

Pidhatika, B., Zhao, N., & Rühe, J. (2019). Development of surface-attached thin film of non-fouling hydrogel from poly(2-oxazoline). Journal of Polymer Research, 26(1). https://doi.org/10.1007/s10965-018-1677-1

Pidhatika, B., Zhao, N., Zinggeler, M., & Rühe, J. (2019). Surface-attached dual-functional hydrogel for controlled cell adhesion based on poly(N,N-dimethylacrylamide). Journal of Polymer Research, 26(3). https://doi.org/10.1007/s10965-019-1728-2

Ratner, B. D., Hoffman, A. S., Schoen, F. J., Lemons, J. E., Wagner, W. R., Sakiyama-Elbert, S. E., Zhang, G., & Yaszemski, M. J. (2020). 1.1.1 -Introduction to Biomaterials Science: An Evolving, Multidisciplinary Endeavor. In W. R. Wagner, S. E. Sakiyama-Elbert, G. Zhang, & M. J. Yaszemski (Eds.), Biomaterials Science (Fourth Edition) (pp. 3–19). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816137-1.00001-5

Richardson, J. J., Björnmalm, M., & Caruso, F. (2015). Technology-driven layer-by-layer assembly of nanofilms. Science, 348(6233), aaa2491. https://doi.org/10.1126/science.aaa2491

Riga, E., Saar, J., Erath, R., Hechenbichler, M., & Lienkamp, K. (2017). On the Limits of Benzophenone as Cross-Linker for Surface-Attached Polymer Hydrogels. Polymers, 9(12), 686. https://doi.org/10.3390/polym9120686

Rossegger, E., Schenk, V., & Wiesbrock, F. (2013). Design strategies for functionalized poly (2-oxazoline) s and derived materials. Polymers, 5(3), 956–1011. https://doi.org/https://doi.org/10.3390/polym5030956

Subbiahdoss, G., Pidhatika, B., Coullerez, G., Charnley, M., Kuijer, R., van der Mei, H., Textor, M., & Busscher, H. (2010). Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating. European Cells and Materials, 19, 205–213. https://doi.org/10.22203/eCM.v019a20

Sukaryo, S. G., Purnama, A., & Hermawan, H. (2016). Structure and properties of biomaterials. In Biomaterials and Medical Devices: a Perspective from an Emerging Country (pp. 1–22). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-14845-8_1

Syibyan, F. L., Siswanta, D., Pidhatika, B., Suprapto, Kamiya, Y., & Otomo, R. (2024). Plasma Functionalization for Enhanced Natural Dye Affinity on Bioplastics: A Novel Approach. Plasma Processes and Polymers. https://doi.org/10.1002/ppap.202400184

Tang, X., Huang, K., Dai, J., Wu, Z., Cai, L., Yang, L., Wei, J., & Sun, H. (2017). Influences of surface treatments with abrasive paper and sand-blasting on surface morphology, hydrophilicity, mineralization and osteoblasts behaviors of n-CS/PK composite. Scientific Reports, 7(1), 568. https://doi.org/10.1038/s41598-017-00571-4

Thulaseedharakurup, S., Ninan, N., Pidhatika, B., Hayles, A., Alemie, M. N., Vasilev, K., & Parameswaranpillai, J. (2025). Surface functionalisation of crosslinked polyvinyl alcohol/cellulose nanofiber biocompatible composite membrane using plasma. Nano-Structures & Nano-Objects, 41, 101461.

Verbraeken, B., Monnery, B. D., Lava, K., & Hoogenboom, R. (2017). The chemistry of poly(2-oxazoline)s. European Polymer Journal, 88, 451–469. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2016.11.016

von Erlach, T., Zwicker, S., Pidhatika, B., Konradi, R., Textor, M., Hall, H., & Lühmann, T. (2011). Formation and characterization of DNA-polymer-condensates based on poly(2-methyl-2-oxazoline) grafted poly(l-lysine) for non-viral delivery of therapeutic DNA. Biomaterials, 32(22), 5291–5303. https://doi.org/10.1016/j.biomaterials.2011.03.080

Wang, Z., Yu, Z., Wang, Z., Li, S., Song, L., Xu, T., Shen, G., Wang, Y., Huang, T., Dong, X., Yang, G., & Gao, C. (2024). Surface-activated 3D-printed PEEK implant enhances anti-infection and osteogenesis. Composites Part B: Engineering, 273, 111258. https://doi.org/10.1016/j.compositesb.2024.111258

Ye, L., & Pidhatika, B. (2010). Investigation on PLL-g-PMOXA / PLL-g-PiPrOXA: Non-fouling Polymeric Coating for Niobium Oxide Surface. ETH Zürich.

Zhao, N., & Pidhatika, B. (2020). The preparation of dual-functional hydrogel as the surface coating of plastics in biomedical applications. Majalah Kulit, Karet, Dan Plastik, 35(2), 63. https://doi.org/10.20543/mkkp.v35i2.5604

Downloads

Published

October 17, 2025

Online ISSN

3090-8485
HOW TO CITE