Templates
Pemanfaatan Biofuel dalam Mendukung Transisi Energi Berkelanjutan di Indonesia: Kasus Biodiesel
Keywords:
Biofuel, Energi, Biodiesel, EmisiSynopsis
Biodiesel adalah bahan bakar nabati yang terbuat dari minyak tumbuhan seperti minyak sawit, kedelai, atau jarak pagar, yang dapat menjadi alternatif pengganti bahan bakar fosil ramah lingkungan dan terbarukan. Saat ini minyak sawit menjadi bahan baku utama untuk produksi biodiesel di Indonesia. Untuk mendapatkan harga produk biodiesel yang lebih ekonomis, telah dilakukan riset produksi biodiesel dari berbagai bahan baku selain minyak sawit seperti diantaranya dari limbah pabrik kelapa sawit (minyak parit), Coconut Fatty Acid Distilate (CFAD) dan Palm Fatty Acid Distilate (PFAD). Demikian juga riset terkait dengan teknologi proses produksi yang lebih efisien dan ekonomis seperti teknologi proses produksi biodiesel tanpa katalis dan lainnya telah dilakukan.
Berbagai riset untuk menjaga agar kualitas biodiesel tetap aman digunakan seperti riset untuk menghilangkan/ menurunkan kadar air (water removal) dan riset kompatibilitas bahan bakar biodiesel terhadap material komponen mesin juga telah dilakukan. Selain riset teknis terkait proses produksi dan kompatibilitas material, riset yang meneliti efek dari penggunaan biodiesel terhadap kinerja mesin dan emisi juga telah dilakukan.
Lewat sinergi dengan berbagai lembaga terkait, riset ini turut berkontribusi dalam penyusunan berbagai kebijakan yang mendukung jalannya implementasi pemanfaatan biodiesel nasional termasuk dalam penyusunan buku Pedoman Umum Penanganan dan Penyimpanan Bahan Bakar Nabati dan Campurannya dengan Kandungan Maksimum 40% untuk Mesin Diesel. Hasil riset yang telah dicapai, mendukung program transisi energi berkelanjutan di Indonesia.
Downloads
Download data is not yet available.
References
Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653. https://doi.org/10.1016/j.rser.2016.07.015
Allen, M. R., Dube, O. P., Solecki, W., Aragon-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., & Zickfeld, K. (2018). Framing and Context. In Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, (Vol. 16, Issue 2, pp. 49–92). Cambridge University Press. https://doi.org/https://doi.org/10.1017/9781009157940.003
Anditya, C., Lasnawatin, F., Prananto, A. B., Halim, L., Anutomo, I. G., Anggreani, D., Indarwati, F., Yusuf, M., Ambarsari, L., & Yuanningrat, H. (2023). Handbook of Energy & Economic Statistics of Indonesia 2023. Indonesian Ministry of Energy and Mineral Resources. https://www.esdm.go.id/en/publication/handbook-of-energy-economic-statistics-of-indonesia-heesi
Anditya Chrisnawan. (2025). Wujudkan Ketahanan Energi dan Kurangi Impor, Menteri ESDM: Mandatori B40 Berlaku 1 Januari 2025. Esdm. https://www.esdm.go.id/id/media-center/arsip-berita/wujudkan-ketahanan-energi-dan-kurangi-impor-menteri-esdm-mandatori-b40-berlaku-1-januari-2025
Arisanti, A. G., Pratiwi, F. T., Wimada, A. R., Wirawan, S. S., & Solikhah, M. D. (2024). Novel Findings on Elastomer Exposure Effects in Palm-Based Biodiesel Blends. Evergreen, 11(3), 2537–2544. https://doi.org/10.5109/7236894
Ashok, B., Nanthagopal, K., & Sakthi Vignesh, D. (2018). Calophyllum inophyllum methyl ester biodiesel blend as an alternate fuel for diesel engine applications. Alexandria Engineering Journal, 57(3), 1239–1247. https://doi.org/10.1016/j.aej.2017.03.042
Astari, A. J., Lovett, J. C., & Wasesa, M. (2025). Sustainable pathways in Indonesia’s palm oil industry through historical institutionalism. World Development Sustainability, 6(229), 100200. https://doi.org/10.1016/j.wds.2024.100200
Bai, A., Jobbágy, P., Popp, J., Grasselli, G., Szendrei, J., & Balogh, P. (2016). Technical and environmental effects of biodiesel use in local public transport. Transportation Research Part D: Transport and Environment, 47, 323–335. https://doi.org/10.1016/j.trd.2016.06.009
Ban, K., Kaieda, M., Matsumoto, T., Kondo, A., & Fukuda, H. (2001). Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal, 8(1), 39–43. https://doi.org/10.1016/S1369-703X(00)00133-9
Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Azad, A. K. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel - Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renewable and Sustainable Energy Reviews, 55, 1109–1128. https://doi.org/10.1016/j.rser.2015.04.163
Blin, J., Brunschwig, C., Chapuis, A., Changotade, O., Sidibe, S. S., Noumi, E. S., & Girard, P. (2013). Characteristics of vegetable oils for use as fuel in stationary diesel engines - Towards specifications for a standard in West Africa. Renewable and Sustainable Energy Reviews, 22, 580–597. https://doi.org/10.1016/j.rser.2013.02.018
BPS. (2025). Jumlah Penduduk Pertengahan Tahun (Ribu Jiwa), 2025. https://www.bps.go.id/id/statistics-table/2/MTk3NSMy/jumlah-penduduk-pertengahan-tahun--ribu-jiwa-.html
Canakci, M., & Van Gerpen, J. (1999). Biodiesel production via acid catalysis. Transactions of the American Society of Agricultural Engineers, 42(5), 1203–1210. https://doi.org/10.13031/2013.13285
Canan, A. (2025). Enrichment of 3rd generation biodiesel/diesel blends with optimum boron oxide for cleaner diesel emissions by multi-objective optimization using RSM. Environmental Research, 276(March), 121472. https://doi.org/10.1016/j.envres.2025.121472
Chandra Setiawan, I., Indarto, & Deendarlianto. (2021). Quantitative analysis of automobile sector in Indonesian automotive roadmap for achieving national oil and CO2 emission reduction targets by 2030. Energy Policy, 150(2), 112135. https://doi.org/10.1016/j.enpol.2021.112135
Correa, D. F., Beyer, H. L., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2017). Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renewable and Sustainable Energy Reviews, 74(December 2016), 1131–1146. https://doi.org/10.1016/j.rser.2017.02.068
Darnoko, D., & Cheryan, M. (2000). Kinetics of palm oil transesterification in a batch reactor. JAOCS, Journal of the American Oil Chemists’ Society, 77(12), 1263–1267. https://doi.org/10.1007/s11746-000-0198-y
Dasari, M. A., Goff, M. J., & Suppes, G. J. (2003). Noncatalytic alcoholysis kinetics of soybean oil. JAOCS, Journal of the American Oil Chemists’ Society, 80(2), 189–192. https://doi.org/10.1007/s11746-003-0675-3
Demirbas, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43(17), 2349–2356. https://doi.org/10.1016/S0196-8904(01)00170-4
Diasakou, M., Louloudi, A., & Papayannakos, N. (1998). Kinetics of the non-catalytic transesterification of soybean oil. Fuel, 77(12), 1297–1302. https://doi.org/10.1016/S0016-2361(98)00025-8
Djamin, M., & S.Wirawan, S. (2010). Pengaruh Komposisi Biodiesel Terhadap Kinerja Mesin Dan Emisi Gas Buang. Jurnal Teknologi Lingkungan, 11(3), 381–387. https://doi.org/10.29122/jtl.v11i3.1183
Elgharbawy, A. S., Farghali, M., Osman, A. I., Hanafy, M. A., & Al-Muhtaseb, A. H. (2025). Innovative biodiesel production for sustainable energy: Advances in feedstocks, transesterification, and cost efficiency. Biomass and Bioenergy, 201(October 2024), 108114. https://doi.org/10.1016/j.biombioe.2025.108114
ENDC. (2022). Enhanced Nationally Determined Contribution Republic of Indonesia. https://www.icctf.or.id/wp-content/uploads/2023/02/Enhanced-National-Determined-Contribution-ENDC-Republic-of-Indonesia.pdf
ERIA. (2024). Developing Biofuel-Based Road Transport Industry Market Penetration Assessment of Biodiesel (B100) and Bioethanol (E100) as Road Transport Fuels in Indonesia. 13, 163.
Fajar, R. (2005). Efek Penggunaan Biodiesel Kalitas Standar Indonesia terhadap Unjuk Kerja Mesin Kendaran Penumpang.
Fatimah, Y. A. (2015). Fantasy, values, and identity in biofuel innovation: Examining the promise of Jatropha for Indonesia. Energy Research and Social Science, 7, 108–116. https://doi.org/10.1016/j.erss.2015.04.002
Freedman, B, Pryde, E. H., & Mounts, T. L. (1984). Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils. JAOCS, Journal of the American Oil Chemists’ Society, 61(10), 1638–1643. https://doi.org/10.1145/3017680.3017802
Freedman, Bernard, Butterfield, R. O., & Pryde, E. H. (1985). Transesterification Kinetics of Soybean Oil. JAOCS, Journal of the American Oil Chemists’ Society, 63(10), 1375–1380.
Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92(5), 405–416. https://doi.org/10.1016/S1389-1723(01)80288-7
Gopinath, A., Sairam, K., Velraj, R., & Kumaresan, G. (2014). Effects of the properties and the structural configurations of fatty acid methyl esters on the properties of biodiesel fuel: a review. Journal of Automobile Engineering, 229(3), 1–34. https://doi.org/https://doi.org/10.1177/0954407014541103
Gunawan, E. (2025). Kesiapan Industri Pendukung Kegiatan Program Mandatori Biodiesel.
Halimatussadiah, A., Nainggolan, D., Yui, S., Moeis, F. R., & Siregar, A. A. (2021). Progressive biodiesel policy in Indonesia: Does the Government’s economic proposition hold? Renewable and Sustainable Energy Reviews, 150(July), 111431. https://doi.org/10.1016/j.rser.2021.111431
Han, H., Cao, W., & Zhang, J. (2005). Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochemistry, 40(9), 3148–3151. https://doi.org/10.1016/j.procbio.2005.03.014
Harahap, F., Leduc, S., Mesfun, S., Khatiwada, D., Kraxner, F., & Silveira, S. (2020). Meeting the bioenergy targets from palm oil based biorefineries: An optimal configuration in Indonesia. Applied Energy, 278(May), 115749. https://doi.org/10.1016/j.apenergy.2020.115749
Hendrawan, D., & Musshoff, O. (2024). Smallholders’ preferred attributes in a subsidy program for replanting overaged oil palm plantations in Indonesia. Ecological Economics, 224(August 2023), 108278. https://doi.org/10.1016/j.ecolecon.2024.108278
Heryana, Y., Pamungkas, A., Romelan, R., Solikhah, M. D., Matheofani, Barus, B. R., Wibowo, C. S., Supriyadi, F., Thahar, A., Wibowo, E., & Wirawan, S. S. (2024). Evaluation of Corrosion Effects in Diesel-Biodiesel and Diesel-Biodiesel-HVO Blends on Metals for Fuel Storage Systems. Corrosion Science and Technology, 23(5), 352–364. https://doi.org/10.14773/cst.2024.23.5.352
Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143–169. https://doi.org/10.1016/j.rser.2011.07.143
Ibadurrohman, I. A., Hamidi, N., Yuliati, L., Winarto, & Mikami, M. (2023). The impact of ethanol addition on the droplet combustion mechanism of saturated and unsaturated fatty acid/fatty acid methyl ester molecules. Fuel, 334. https://doi.org/10.1016/j.fuel.2022.126731
Jacob, A., Ashok, B., Alagumalai, A., Chyuan, O. H., & Le, P. T. K. (2021). Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Conversion and Management, 228(July 2020), 113655. https://doi.org/10.1016/j.enconman.2020.113655
Joelianingsih, Maeda, H., Hagiwara, S., Nabetani, H., Sagara, Y., Soerawidjaya, T. H., Tambunan, A. H., & Abdullah, K. (2008). Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: A kinetic study. Renewable Energy, 33(7), 1629–1636. https://doi.org/10.1016/j.renene.2007.08.011
Kirmse, S. (2019). Towards the Commercialization of a Carbon Fiber Composite Reinforced with Carbon Nanofiber Z Threads Utilizing a Hybrid Lean LaunchPad / Model-Based Systems Engineering Approach (Issue November) [University of South Alabama]. https://doi.org/10.13140/RG.2.2.12142.13129
Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58, 36–59. https://doi.org/10.1016/j.pecs.2016.08.001
Koizumi, T. (2015). Biofuels and food security. Renewable and Sustainable Energy Reviews, 52, 829–841. https://doi.org/10.1016/j.rser.2015.06.041
Komariah, L. N., Arita, S., Novia, Wirawan, S. S., & Yazid, M. (2013). Emission factors of biodiesel combustion in industrial boiler: A comparison to fossil fuel. Journal of Renewable and Sustainable Energy, 5(5). https://doi.org/10.1063/1.4822036
Komariah, Leily Nurul, Arita, S., Novia, S., Wirawan, S. S., & Yazid, M. (2013). Effects of palm biodiesel blends on fuel consumption in fire tube boiler. Applied Mechanics and Materials, 391, 93–97. https://doi.org/10.4028/www.scientific.net/AMM.391.93
Løkke, S., Aramendia, E., & Malskær, J. (2021). A review of public opinion on liquid biofuels in the EU: Current knowledge and future challenges. Biomass and Bioenergy, 150. https://doi.org/10.1016/j.biombioe.2021.106094
Ma, Y., Zhong, W., Huang, X., Yan, F., Pachiannan, T., Yuan, W., & He, Z. (2024). A comparative study of first and second generation biodiesel blends under quaternary injection strategies for enhanced engine performance and reduced emissions. Process Safety and Environmental Protection, 191(July), 605–615. https://doi.org/10.1016/j.psep.2024.08.089
Malley, J. O., & Searle, S. (2021). Air Quality Impacts of Biodiesel in the United States. ICCT White Paper, January.
McCormick, R., & Moriarty, K. (2023). Biodiesel Handling and Use Guide: Sixth Edition. www.nrel.gov/publications.
Mittelbach, M. (1990). Lipase catalyzed alcoholysis of sunflower oil. Journal of the American Oil Chemists’ Society, 67(3), 168–170. https://doi.org/10.1007/BF02539619
Mittelbach, M., & Remschmidt, C. (2004). Biodiesel – A comprehensive handbook.
Mukherjee, I., & Sovacool, B. K. (2014). Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renewable and Sustainable Energy Reviews, 37, 1–12. https://doi.org/10.1016/j.rser.2014.05.001
Nelson, L. A., Foglia, T. A., & Marmer, W. N. (1996). Lipase-catalyzed production of biodiesel. JAOCS, Journal of the American Oil Chemists’ Society, 73(9), 1191–1195. https://doi.org/10.1007/BF02523383
Nouredduni H., & Zhu D. (1997). Kinetics of Transesterification of Soybean. Biocatalysis Articles, 74(11), 1457–1463.
Oliphant, E., & Simon, A. C. (2022). The cost of sustainable palm oil: Should an Indonesian smallholder pursue RSPO-certification? World Development Perspectives, 26(May 2020), 100432. https://doi.org/10.1016/j.wdp.2022.100432
Pamungkas, A., Solikhah, M. D., Pratiwi, F. T., Romelan, Matheofani, & Wirawan, S. S. (2023). Investigation of Biodiesel Stability under Vacuum Heating Process. IOP Conference Series: Earth and Environmental Science, 1187(1). https://doi.org/10.1088/1755-1315/1187/1/012017
Pamungkas, A., Solikhah, M. D., Pratiwi, F. T., Romelan, R., Jenie, S. N. A., Wirawan, S. S., & Petrus, H. T. B. M. (2025). Utilization of geothermal silica to improve the properties of acrylic acid-based hydrogels: A study on swelling behavior and kinetics. Polymer, 335, 128802. https://doi.org/10.1016/j.polymer.2025.128802
Pamungkas, A., Solikhah, M. D., Romelan, R., Amri, K., Kismanto, A., & Wirawan, S. S. (2023). Efficiency amplified: Enhancing energy performance in biodiesel vacuum thermal water removal system. Thermal Science and Engineering Progress, 46(July), 102193. https://doi.org/10.1016/j.tsep.2023.102193
Pham, P. X., Nguyen, K. T., Pham, T. V., & Nguyen, V. H. (2020). Biodiesels manufactured from different feedstock: From fuel properties to fuel atomization and evaporation. ACS Omega, 5(33), 20842–20853. https://doi.org/10.1021/acsomega.0c02083
Prajapati, A. K., Mahajan, A., Jadhav, S. M., & Kumar, K. (2026). Fourth-generation (4G) biodiesel: Paving the way for a greener and sustainable energy future in emerging economies. Renewable and Sustainable Energy Reviews, 225(November 2024), 116103. https://doi.org/10.1016/j.rser.2025.116103
Prasad, S., Yadav, K. K., Kumar, S., Pandita, P., Bhutto, J. K., Alreshidi, M. A., Ravindran, B., Yaseen, Z. M., Osman, S. M., & Cabral-Pinto, M. M. S. (2024). Review on biofuel production: Sustainable development scenario, environment, and climate change perspectives-A sustainable approach. Journal of Environmental Chemical Engineering, 12(2), 111996. https://doi.org/10.1016/j.jece.2024.111996
Prayoga, M. Z. E., Putra, H. P., Adelia, N., Luktyansyah, I. M., Ifanda, I., Prismantoko, A., Darmawan, A., Hartono, J., Wirawan, S. S., Aziz, M., Prabowo, P., & Hariana, H. (2024). Co-combustion performance of oil palm biomass with coal: thermodynamics and kinetics analyses. Journal of Thermal Analysis and Calorimetry, 149(7), 2873–2891. https://doi.org/10.1007/s10973-023-12865-z
Rahmadi, A. (2005). Kajian Strategi Pengembangan Industri Biodiesel dalam Rangka Pemenuhan Target Penggunaan Biodiesel sebagai Bagian Land Mark Energi.
Ramadhan, R., Mon, M. T., Tangparitkul, S., Tansuchat, R., & Agustin, D. A. (2024). Carbon capture, utilization, and storage in Indonesia: An update on storage capacity, current status, economic viability, and policy. Energy Geoscience, 5(4), 100335. https://doi.org/10.1016/j.engeos.2024.100335
Reksowardojo, I. K., Setiapraja, H., Mokhtar, Yubaidah, S., Mansur, D., & Putri, A. K. (2023). A Study on Utilization of High-Ratio Biodiesel and Pure Biodiesel in Advanced Vehicle Technologies. Energies, 16(2). https://doi.org/10.3390/en16020718
Ruhiyat, A. S., Putra, H. P., Hariana, Monika, I., Wirawan, S. S., & Aminnudin. (2022). Combustion Characteristic of Low Rank Coal Blend with EFB and Plastic Waste. Energy Proceedings, 26, 1–5. https://doi.org/10.46855/energy-proceedings-10131
Saka, S., & Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80(2), 225–231. https://doi.org/10.1016/S0016-2361(00)00083-1
Seetharaman, S., Vasanth Kumar, P., Thiagarajan, S., Dhamodaran, G., Vikneswaran, M., Ranjith Raj, A., Mahesh, G., Josephin Js, F., Albeshr, M. F., & Varuvel, E. G. (2025). Combustion, performance, and emission analysis of hydrogen-enhanced diesel blends with Scenedesmus dimorphus biodiesel: A third-generation biofuel study. International Journal of Hydrogen Energy, 155(June), 150312. https://doi.org/10.1016/j.ijhydene.2025.150312
Senusi, W., Ahmad, M. I., Abdul Khalil, H. P. S., Shakir, M. A., Binhweel, F., Shalfoh, E., & Alsaadi, S. (2024). Comparative assessment for biodiesel production from low-cost feedstocks of third oil generation. Renewable Energy, 236(September), 121369. https://doi.org/10.1016/j.renene.2024.121369
Setiyo, M., Yuvenda, D., & Samue, O. D. (2021). The concise latest report on the advantages and disadvantages of pure biodiesel (B100) on engine performance: literature review and bibliometric analysis. Indonesian Journal of Science and Technology, 6(3), 469–490. https://doi.org/10.17509/ijost.v6i3.38430
Shokravi, H., Shokravi, Z., Heidarrezaei, M., Ong, H. C., Rahimian Koloor, S. S., Petru, M., Lau, W. J., & Ismail, A. F. (2021). Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. Chemosphere, 285(May). https://doi.org/10.1016/j.chemosphere.2021.131535
Singh, D., Sharma, D., Soni, S. L., Inda, C. S., Sharma, S., Sharma, P. K., & Jhalani, A. (2021). A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas. Fuel, 285(August 2020), 119110. https://doi.org/10.1016/j.fuel.2020.119110
Siregar, A. A., Halimatussadiah, A., Moeis, F. R., Anky, W. A. K., & Nainggolan, D. (2024). The oil palm replanting imperative: Are smallholder farmers willing to participate? Forest Policy and Economics, 169(November), 103362. https://doi.org/10.1016/j.forpol.2024.103362
Siregar, K., Tambunan, A. H., Sholihati, Wirawan, S. S., & Araki, T. (2019). Comparison of energy production, net energy balance, net energy ratio, and renewable index for biodiesel production from oil palm (Elaeis guineensis Jacq.) and jatropha (Jatropha curcas L.) based on life cycle assessment. IOP Conference Series: Earth and Environmental Science, 293(1). https://doi.org/10.1088/1755-1315/293/1/012025
Siregar, K, Tambunan, A. H., Irwanto, A. K., & Wirawan S.S. (2012). A Comparison of Life Cycle Inventory of Pre-harvest, Production of Crude Oil, and Biodiesel Production on Jatropha curcas and Palm Oil as A Feedstock for Biodiesel in Indonesia. Proceeding of Ecobalance 2012, June. https://doi.org/10.13140/RG.2.1.3469.5848
Siregar, Kiman, Tambunan, A. H., Irwanto, A. K., Wirawan, S. S., & Araki, T. (2010). Life Cycle GHG Emission and Energy Consumption for Production of Biodiesel Using Catalyst from Crude Palm Oil and Curde Jatropha Curcas Oil in Indonesia.
Siregar, Kiman, Tambunan, A. H., Irwanto, A. K., Wirawan, S. S., & Araki, T. (2013). Perbandingan Penilaian Siklus Hidup (Life Cycle Assessment) Produksi Biodiesel Secara Katalis Dari Crude Palm Oil Dan Crude Jatropha Curcas Oil. Jurnal Telnologi Industri Pertanian, 23(2), 129–141.
Siregar, Kiman, Tambunan, A. H., Irwanto, A. K., Wirawan, S. S., & Araki, T. (2015). A Comparison of Life Cycle Assessment on Oil Palm (Elaeis guineensis Jacq.) and Physic Nut (Jatropha curcas Linn.) as Feedstock for Biodiesel Production in Indonesia. Energy Procedia, 65, 170–179. https://doi.org/10.1016/j.egypro.2015.01.054
Siregar, Y. I. (2024). Pathways towards net-zero emissions in Indonesia’s energy sector. Energy, 308(July), 133014. https://doi.org/10.1016/j.energy.2024.133014
Soerawidjaja, T. H., & Tahar, A. (2003). Menggagas Kebijakan Pengembangan Biodiesel di Indonesia” Proseding Seminar Peluang Bisnis Industri Hilir Kelapa Sawit, Serpong. 1–16.
Solikhah, M. D., Wirawan, S. S., Sugiarto, A. T., Wulandani, D., Nabetani, H., Hagiwara, S., Araki, T., & Purwanto, Y. A. (2024). Exploring the Potential of High-Fatty Acid Content Oils for Biodiesel Production: A Catalyst-Free Approach. IOP Conference Series: Earth and Environmental Science, 1354(1). https://doi.org/10.1088/1755-1315/1354/1/012005
Solikhah, Maharani Dewi, Nuramin, M., Rizal, S., & Wirawan, S. S. (2005). Biodiesel Pilot Plant Kapasitas 1,5 Ton/hari Sebuah Langkah Kecil Dalam Roadmap Biodiesel Indonesia. Prosiding Seminar Nasional Rekayasa Kimia Dan Proses, 1–16.
Solikhah, Maharani Dewi, Wibowo, Y. G., Anwar, D., Andriani, A., Pamungkas, A., Pratiwi, F. T., Wirawan, S. S., Jenie, S. N. A., Prasetia, H., & Petrus, H. T. B. M. (2025). A comprehensive review of potential utilization of novel flame-resistant hydrogel composites using alginate-cellulose-LDH Zn/Al-carbon nanotubes for water removal from biofuel. Inorganic Chemistry Communications, 180(P1), 114986. https://doi.org/10.1016/j.inoche.2025.114986
Suali, E., & Suali, L. (2023). Impact assessment of global biofuel regulations and policies on biodiversity. In Environmental Sustainability of Biofuels. Elsevier Inc. https://doi.org/10.1016/B978-0-323-91159-7.00012-6
Sugiyono, A. (2005). Biaya Eksternal dari Pembangkit Listrik Batubara. Seminar Akademik Ilmu Ekonomi 2005, April, 1–13. https://agussugiyono.wordpress.com/2010/04/29/biaya-eksternal-dari-pembangkit-listrik-batubara/
Suhartini, S., Rohma, N. A., Mardawati, E., Kasbawati, Hidayat, N., & Melville, L. (2022). Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review. Renewable and Sustainable Energy Reviews, 154(September 2021), 111817. https://doi.org/10.1016/j.rser.2021.111817
Sumarno, T. B., Sihotang, P., & Prawiraatmadja, W. (2022). Exploring Indonesia’s energy policy failures through the JUST framework. Energy Policy, 164(June 2021), 112914. https://doi.org/10.1016/j.enpol.2022.112914
Wimada, A. R., Nitamiwati, N. P. D., Pratiwi, F. T., Solikhah, M. D., Barus, B. R., Wijanarko, E. D., Anggarani, R., Asiyah, L., Widodo, S., Thahar, A., & Wirawan, S. S. (2024). SBR elastomer response to renewable diesel blends: An experimental investigation. Journal of Metals, Materials and Minerals, 34(4), 1–11. https://doi.org/10.55713/JMMM.V34I4.2020
Wirawan, S. S. (2008). Studi Penentuan Komposisi Optimum Campuran Bahan Bakar Biodiesel-Petrodiesel. Jurnal Rekayasa Lingkungan, 4(2), 99–109. https://doi.org/10.29122/jrl.v4i2.1858
Wirawan, S., Tambunan, A., Djamin, M., & Nabetani, H. (2007). VALIDASl SPESIFlKASI CAMPURAN BIODIESEL-SOLAR HASIL PENGUKURAN DENGAN METODA PERHITUNGAN SEDERHANA. In Jurnal Keteknikan Pertanian (Vol. 21, Issue 3, pp. 295–306). https://www.neliti.com/id/publications/22016/validasl-spesiflkasi-campuran-biodiesel-solar-hasil-pengukuran-dengan-metoda-per
Wirawan, Soni S. (2011). Studi Efek Penggunaan Biodiesel Terhadap Emisi Pada Sektor Transportasi Di Jakarta. Jurnal Teknologi Lingkungan, 9(2), 211-219. https://doi.org/10.29122/jtl.v9i2.464
Wirawan, Soni S, Solikhah, M. D., Setiapraja, H., & Sugiyono, A. (2024). Biodiesel implementation in Indonesia: Experiences and future perspectives. Renewable and Sustainable Energy Reviews, 189(PA), 113911. https://doi.org/10.1016/j.rser.2023.113911
Wirawan, Soni S, Tambunan, A. H., Djamin, M., & Nabetani, H. (2008). The Effect of Palm Biodiesel Fuel on the Performance and Emission of the Automotive Diesel Engine. Agricultural Engineering International, X, 1–13. http://www.cigrjournal.org/index.php/Ejounral/.../1059.
Wirawan, Soni Solistia. (2005a). Pengembangan Biodiesel Indonesia Dengan Teknologi Bangsa Sendiri: Kesempatan dan Tantangan. Prosiding Seminar Nasional Teknologi Proses Kimia Ke VII. https://doi.org/10.17528/cifor/006975
Wirawan, Soni Solistia. (2005b). The Current Status and Future Development of Biodiesel in Indonesia Palm Oil today-Jatropha Oil tomorrow. Proceeding World Renewable Energy Regional Congress and Exhibition.
Wirawan, Soni Solistia. (2007a). Prosiding Konferensi Jarak Pagar: Menuju Bisnis Jarak Pagar yang Feasible. https://repository.ipb.ac.id/handle/123456789/40355
Wirawan, Soni Solistia. (2005c). Biodiesel Plant Design: Perencanaan, Pemilihan Lokasi dan Hal-hal Penting Lainnya. Prosiding Seminar Teknologi Untuk Negeri, 58, 1–6.
Wirawan, Soni Solistia. (2007b). ELECTRICITY GENERATION OPPORTUNITIES FROM PALM OIL MILLS IN INDONESIA. The 4th Biomass-Asia Workshop, 1–10.
Wirawan, Soni Solistia. (2003). Palm Biodiesel Bahan Bakar Alternatif Pengganti Minyak Diesel (Solar). Jurnal Teknologi Agro-Industri, 5. https://doi.org/10.34128/jtai.v2i1.23
Wirawan, Soni Solistia. (2009). Potential of Jatropha curcas L. Proceedings of the Eria Workshop, October, 169. https://www.calameo.com/read/001422839d01aafd5e56c
Wirawan, Soni Solistia, & BRDST. (2008). Kata Kunci Judul Semua Bahan. Penebar Swadaya.
Wirawan, Soni Solistia, Setiapraja, H., Mokhtar, Sugiyono, A., Ibadurrohman, I. A., Dian Nitamiwati, N. P., & Solikhah, M. D. (2025a). Assessing the readiness to implement bioethanol-blended fuel in Indonesia. Biomass and Bioenergy, 201(February), 108112. https://doi.org/10.1016/j.biombioe.2025.108112
Wirawan, Soni Solistia, Setiapraja, H., Mokhtar, Sugiyono, A., Ibadurrohman, I. A., Dian Nitamiwati, N. P., & Solikhah, M. D. (2025b). Assessing the readiness to implement bioethanol-blended fuel in Indonesia. Biomass and Bioenergy, 201(June), 108112. https://doi.org/10.1016/j.biombioe.2025.108112
Wirawan, Soni Solistia, Solikhah, M. D., Widiyanti, P. T., Nitamiwati, N. P. D., Romelan, R., Heryana, Y., Nurhasanah, A., & Sugiyono, A. (2024a). Unlocking Indonesia’s sweet sorghum potential: A techno-economic analysis of small-scale integrated sorghum-based fuel grade bioethanol industry. Bioresource Technology Reports, 25(October 2023), 101706. https://doi.org/10.1016/j.biteb.2023.101706
Wirawan, Soni Solistia, Solikhah, M. D., Widiyanti, P. T., Nitamiwati, N. P. D., Romelan, R., Heryana, Y., Nurhasanah, A., & Sugiyono, A. (2024b). Unlocking Indonesia’s sweet sorghum potential: A techno-economic analysis of small-scale integrated sorghum-based fuel grade bioethanol industry. Bioresource Technology Reports, 25(November 2023), 101706. https://doi.org/10.1016/j.biteb.2023.101706
Wirawan, Soni Solistia, Sugiyono, A., Nitamiwati, N. P. D., Widiyanti, P. T., Romelan, R., Heryana, Y., Nurhasanah, A., & Solikhah, M. D. (2025). Integrated supply chain optimization model for sorghum-based bioethanol industry on a small scale: Case study in East Java Province, Indonesia. Bioresource Technology Reports, 29(September 2024), 102051. https://doi.org/10.1016/j.biteb.2025.102051
Wirawan, Soni Solistia, & Tambunan, A. H. (2006). The Current Status and Prospects of Biodiesel Development in Indonesia: a review. April, 1–15.
Wirawan, Soni Solistia, Tambunan, A. H., & Djamin, M. (2012). The Effect of Biodiesel to Pollutant Emission and External Cost: Biodiesel Utilization in Transportation Sector: Case Study Jakarta. LAP LAMBERT Academic Publishing. https://books.google.co.id/books/about/The_Effect_of_Biodiesel_to_Pollutant_Emi.html?id=PdxlzwEACAAJ&redir_esc=y
Wu, W. H., Foglia, T. A., Marmer, W. N., & Phillips, J. G. (1999). Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodology. JAOCS, Journal of the American Oil Chemists’ Society, 76(4), 517–521. https://doi.org/10.1007/s11746-999-0034-2
Xin, Y., Sun, L., & Hansen, M. C. (2022). Oil palm reconciliation in Indonesia: Balancing rising demand and environmental conservation towards 2050. Journal of Cleaner Production, 380(P2), 135087. https://doi.org/10.1016/j.jclepro.2022.135087
Yamazaki, R., Iwamoto, S., Nabetani, H., Osakada, K., Miyawaki, O., & Sagara, Y. (2007). Noncatalytic alcholysis of oils for biodiesel fuel production by a semi-batch process. Japan Journal of Food Engineering, 8(1), 11–18.
Zahan, K. A., & Kano, M. (2018). Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies, 11(8), 1–25. https://doi.org/10.3390/en11082132
Zhao, J., Elmore, A. J., Lee, J. S. H., Numata, I., Zhang, X., & Cochrane, M. A. (2023). Replanting and yield increase strategies for alleviating the potential decline in palm oil production in Indonesia. Agricultural Systems, 210(July), 103714. https://doi.org/10.1016/j.agsy.2023.103714
Downloads
Published
October 19, 2025
Online ISSN
3090-8485
Categories
HOW TO CITE
Copyright (c) 2025 National Research and Innovation Agency
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












