Templates
Pengembangan Material Implan Tulang Permanen dan Sementara untuk Mendukung Kemandirian Kesehatan Nasional: Sinergi antara Riset Material dan Tantangan Demografi Indonesia
Keywords:
Implan tulang permanen, Implan tulang sementara , Total hip arthroplasty, Paduan logam berpori Mg-Ca-Zn, Paduan Ti-6Al-4VSynopsis
Orasi ini menyajikan state of the art mengenai kebutuhan implan tulang di Indonesia yang erat kaitannya dengan dinamika demografi dan tantangan kesehatan masyarakat. Di satu sisi, peningkatan jumlah penduduk lanjut usia, tingginya angka kecelakaan, serta prevalensi penyakit degeneratif mendorong urgensi pengembangan implan tulang permanen dalam negeri. Di sisi lain, dalam kasus pediatrik seperti kerusakan tulang tengkorak maupun patah tulang yang terjadi di dekat daerah pertumbuhan tulang, menuntut hadirnya implan sementara yang terdegradasi yang dapat menyatu dengan tulang alami seiring pertumbuhan pasien. Melalui pendekatan multidisiplin, riset implan tulang ini bukan sekadar menjawab kebutuhan medis, melainkan juga memperkuat posisi Indonesia dalam rantai nilai global, mendukung pembangunan berkelanjutan, dan mewujudkan visi bangsa yang sehat, mandiri, serta berdaya saing.
Downloads
Download data is not yet available.
References
Agarwal, S., Curtin, J., Duffy, B., & Jaiswal, S. (2016). Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science and Engineering C, 68, 948–963. https://doi.org/10.1016/j.msec.2016.06.020
Amal, M. I., Annur, D., Lestari, F. P., Sutowo, C., & Kartika, I. (2016). Processing of porous Mg-Zn-Ca alloy via powder metallurgy. AIP Conference Proceedings, 1778. https://doi.org/10.1063/1.4965744
Anderson, J., Neary, F., & Pickstone, J. V. (2007). Total Hip Replacement: Introduction, Sources and Outline. Surgeons, Manufacturers and Patients, 1–18. https://doi.org/10.1057/9780230596238_1
Annur, D., Amal, M. I., Sutowo, C., Sukaryo, S. G., & Kartika, I. (2015). Sintering of Mg-Ca-Zn Alloy Metallic Foam Based on Mg-Zn-CaH2 System. Advanced Materials Research, 1112, 474–477. https://doi.org/10.4028/www.scientific.net/AMR.1112.474
Annur, D.,A., Suhardi, M. I., Amal, M. S., Anwar, Kartika, I. (2017). Preface: 2nd International Symposium on Frontier of Applied Physics (ISFAP 2016). Journal of Physics: Conference Series, 817(1), 012062. https://doi.org/10.1088/1742-6596/755/1/011001
Annur, D., Erryani, A., Lestari, F. P., Putrayasa, I. N., Gede, P. A., & Kartika, I. (2017). Microstructure and corrosion study of porous Mg-Zn-Ca alloy in simulated body fluid. Materials Research Express, 4(3). https://doi.org/10.1088/2053-1591/aa65fd
Annur, D., Lestari, F. P., Erryani, A., Sijabat, F. A., Astawa, I. N. G. P., & Kartika, I. (2018). Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique. AIP Conference Proceedings, 1945. https://doi.org/10.1063/1.5030237
Annur, D., Kartika, I., Supriadi, S., & Suharno, B. (2021). Titanium and titanium based alloy prepared by spark plasma sintering method for biomedical implant applications - A review. Materials Research Express, 8(1). https://doi.org/10.1088/2053-1591/abd969
Annur, D., Triwardono, J., Rokhmanto, F., Kartika, I., Dimyati, A., Supriadi, S., & Suharno, B. (2021). Effect of the carbamide content on the preparation of porous Ti6Al4V using arc plasma sintering method. AIP Conference Proceedings, 2382, 1–8. https://doi.org/10.1063/5.0060861
Aprianto, D. R., Parenrengi, M. A., Utomo, B., Asra Al Fauzi, E. A. S., & Suryawan, A. (2022). Comparison of autograft and implant cranioplasty in pediatrics: A meta-analysis. Surgical Neurology International, 13(206).
Aprilia Erryani, Novantoro, Franciska Pramuji Lestari, Made Subekti Dwijaya, Kartika I. (2019). Sifat Mekanik Dan Struktur Mikro Paduan Magnesium Berpori Dengan Variasi Komposisi Senyawa pengembang Dan Temperatur Sinter Untuk Aplikasi Implan Mampu Luruh. Metalurgi, 34(2), 61. https://doi.org/10.14203/metalurgi.v34i2.469
Asmaria, T., Mayasari, D. A., Febrananda, A. D. G., Nurul, N., Rahyussalim, A. J., & Kartika, I. (2022). Computed tomography image analysis for Indonesian total hip arthroplasty designs. International Journal of Electrical and Computer Engineering, 12(6), 6123–6131. https://doi.org/10.11591/ijece.v12i6.pp6123-6131
Asmaria, T., Rahmi, R., Utomo, M. S., Annur, D., Malau, D. P., Amal, M. I., & Kartika, I. (2020). Deteksi Tepi Untuk Validasi Model Tiga Dimensi Tulang Panggul Pada Perencanaan Desain Dan Fabrikasi Implan. Widyariset, 6(1), 51. https://doi.org/10.14203/widyariset.6.1.2020.51-61
Badan Pusat Statistik. (2025a). Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi. https://www.bps.go.id/id/statistics-table/2/NTEzIzI%3D/jumlah-kecelakaan-korban-mati-luka-berat-luka-ringan-dan-kerugian-materi.html
Badan Pusat Statistik. (2025b). Jumlah penduduk Indonesia 2025. https://www.bps.go.id/id/statistics-table/3/V1ZSbFRUY3lTbFpEYTNsVWNGcDZjek53YkhsNFFUMDkjMw==/penduduk-laju-pertumbuhan-penduduk-distribusi-persentase-penduduk-kepadatan-penduduk-rasio-jenis-kelamin-penduduk-menurut-provinsi.html?year=2025
Bauer, S., Schmuki, P., von der Mark, K., & Park, J. (2013). Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Progress in Materials Science, 58(3), 261–326. https://doi.org/10.1016/j.pmatsci.2012.09.001
BPS. (2023). Kajian Tematik: Hubungan Faktor Sosial dan Demografi dengan Pekerja Lansia di Indonesia. In Indikator Kesejahteraan Rakyat 2023 (p. 5)
Erryani, A., Al-Aziz, I., Lestari, F. P., & Kartika, I. (2019). Fabrication, microstructure and corrosion study of porous Mg-Ca-Zn using CaCO3 pre-treatment with sodium trisilicate. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012033
Erryani, A., Greenita, C., Lestari, F. P., Utomo, M. S., Kartika, I., & Nugraha, T. (2021). Casting technique of NaCl space-holder using 3D printed PLA template for manufacture porous Mg alloy. AIP Conference Proceedings, 2382, 1–7. https://doi.org/10.1063/5.0060617
Erryani, A., Lestari, F. P., Annur, D., & Amal, M. I., Kartika, I. (2018). Laju dan Morfologi Korosi Paduan Logam Berpori Mg-Ca-Zn dengan Foaming Agent CaCO 3 Corrotion Rate and Morphology of Porous Metal Alloy. Widyariset, 4(1).
Erryani, A., Pramuji, F., Annur, D., Amal, M. I., & Kartika, I. (2017). Microstructures and Mechanical Study of Mg Alloy Foam Based on Mg-Zn-Ca-CaCO3 System. IOP Conference Series: Materials Science and Engineering, 202(1). https://doi.org/10.1088/1757-899X/202/1/012028
Fendy, R., Bambang, S., & Kartika, I. (2016). Pengaruh penambahan Karbon dan Nitrogen terhadap mikrostruktur, kekuatan tarik dan mampu bentuk paduan Co-28Cr-6Mo-0,8Si-0,8Mn-0,4Fe-0,2Ni. Metalurgi. 3(3), 138–149.
Fernández Vázquez, J. M., & Camacho Galindo, J. (2007). Martin Kirschner (1879-1942). Acta Ortopédica Mexicana, 21(1), 45–46.
Lestari, F. P., Erryani, A., Annur, D., and Kartika, I. (2017). Corrosion Behavior of Magnesium Based Foam Structure in Hank’s Solution. IOP Conference Series: Materials Science and Engineering, 202, 011002. https://doi.org/10.1088/1757-899x/202/1/011002
Lestari, F.P., Annur, D., Astawa, I. N. G. P., Erryani, A., & Kartika, I. (2017). Proses Sinter Logam Berpori Paduan Magnesium Dengan Kalsium Hidrida Sebagai Senyawa pengembang. Seminar Nasional Sains Dan Teknologi, November, 1–5.
Lestari, F.P., Erryani, A., Annur, D., & Kartika, I. (2017). Corrosion Behavior of Magnesium Based Foam Structure in Hank’s Solution. IOP Conference Series: Materials Science and Engineering, 202(1), 0–10. https://doi.org/10.1088/1757-899X/202/1/012035
Lestari, F.P., Erryani, A., Annur, D., & Kartika, I. (2018). The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition. AIP Conference Proceedings, 1945. https://doi.org/10.1063/1.5030293
Gorejova, R., Haverova, L., Orinakova, R., Orinak, A., & Orinak, M. (2019). Recent advancements in Fe-based biodegradable materials for bone repair. Journal of Materials Science, 54(3), 1913–1947. https://doi.org/10.1007/s10853-018-3011-z
Grant, G. A., Jolley, M., Ellenbogen, R. G., Roberts, T. S., Gruss, J. R., & Loeser, J. D. (2004). Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. Journal of Neurosurgery, 100(2 SUPPL.), 163–168. https://doi.org/10.3171/ped.2004.100.2.0163
Gurappa, I. (2002). Characterization of different materials for corrosion resistance under simulated body fluid conditions. Materials Characterization, 49(1), 73–79. https://doi.org/10.1016/S1044-5803(02)00320-0
Harris, B. (1979). Corrosion of stainless steel surgical implants. Journal of Medical Engineering and Technology, 3(3), 117–122. https://doi.org/10.3109/03091907909162089
Hersh, D. S., Anderson, H. J., Woodworth, G. F., Martin, J. E., & Khan, Y. M. (2021). Bone Flap Resorption in Pediatric Patients following Autologous Cranioplasty. Operative Neurosurgery, 20(5), 436–443. https://doi.org/10.1093/ons/opaa452
Astawa, I. N. G. P., Purawiardi, I., Rokhmanto, F., Kartika, I. (2018). Sintesis Fasa pada Paduan Co26Cr6Mo0.18N DENGAN.pdf (pp. 60–69). https://doi.org/http://jurnal.umj.ac.id/index.php/sintek
Indonesia Orthopedic Artificial Joints Market Outlook to 2030e. (2024). Ken Research. https://www.kenresearch.com/industry-reports/indonesia-orthopedic-artificial-joints-market
Kamrani, S., & Fleck, C. (2019). Biodegradable magnesium alloys as temporary orthopaedic implants: a review. BioMetals, 32(2), 185–193. https://doi.org/10.1007/s10534-019-00170-y
Kartika, I., Amal, M. I., Sutowo, C., Sukarso, S. G., & Sriyono, B. (2018). Pengaruh Variasi Berat Foaming Agent CaH2 terhadap Karakteristik Paduan Mg-Ca-Zn Metal Selular Berbasis Sistem Mg-Zn-CaH2. Metalurgi, 29(2), 145. https://doi.org/10.14203/metalurgi.v29i2.286
Kartika, I., Ashari, A. M., Trenggono, A., Lestari, F. P., & Erryani, A. (2019). Analisis Struktur Pori dan Sifat Mekanik Paduan Mg-0,5Ca-4Zn Hasil Proses Metalurgi Serbuk dengan Variasi Komposisi Foaming Agent CaCO3 dan Temperatur Sintering. Teknik, 40(3), 142. https://doi.org/10.14710/teknik.v40i3.25327
Kartika, I., Lestari, F. P., & Erryani, A. (n.d.). Pengembangan Metal Foaming Mg-Ca-Zn_Tematik_2017.
Kartika, I., Matsumoto, H., & Chiba, A. (2009). Deformation and microstructure evolution in Co-Ni-Cr-Mo superalloy during hot working. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40(6), 1457–1468. https://doi.org/10.1007/s11661-009-9829-x
Kartika, I., Risanti, D. D., Laksana, H. R. P., Lestari, F. P., Rokhmanto, F., & Erryani, A. (2021). Fabrication of Porous Mg–Ca–Zn Alloy by High Energy Milling for Bone Implants. Lecture Notes in Electrical Engineering, 746 LNEE(5), 711–722. https://doi.org/10.1007/978-981-33-6926-9_62
Kartika, I., Rokhmanto, F., Thaha, Y. N., Purawiardi, I., Astawa, I. N. G. P., Erryani, A., & Asmaria, T. (2021). Influence of Thermo-Mechanical Processing on Microstructure, Mechanical Properties and Corrosion Behavior of Ti-6Al-6Mo Implant Alloy. Lecture Notes in Electrical Engineering, 746 LNEE, 397–405. https://doi.org/10.1007/978-981-33-6926-9_34
Kartika, I., Sriyono, B., Annur, D., & Amal, M. I. (2014). Pembuatan Master Alloy Mg-Ca sebagai Bahan Baku Paduan Metal Selular Mg-Ca-Zn. 199–203.
Kartika, I., Thaha, Y. N., Lestari, F. P., & Sriyono, B. (2014). Characteristics of Mg-Ca-Zn alloy metallic foam based on Mg-Zn-CaH2 system. Advanced Materials Research, 896, 267–271. https://doi.org/10.4028/www.scientific.net/AMR.896.267
Kartika, I., Werdaningsih, R., Alfirano, Rokhmanto, F., & Thaha, Y. N. (2019). An investigation of phases intensity and hardness of Ti-6Al-6Mo implant alloy influenced by temperature of solution treatment and quenching media. AIP Conference Proceedings, 2120, 1–6. https://doi.org/10.1063/1.5115685
Kennedy, A. (2012). Porous Metals and Metal Foams Made from Powders. Powder Metallurgy. https://doi.org/10.5772/33060
Lee, S. H., Yoo, C. J., Lee, U., Park, C. W., Lee, S. G., & Kim, W. K. (2014). Resorption of Autogenous Bone Graft in Cranioplasty: Resorption and Reintegration Failure. Korean Journal of Neurotrauma, 10(1), 10. https://doi.org/10.13004/kjnt.2014.10.1.10
Lestari, F. P., Hidayat, F., Erryani, A., Utomo, M. S., Thaha, Y. N., & Kartika, I. (2019). Fabrikasi Paduan Magnesium Berpori dengan Partikel Garam NaCl sebagai Space Holder. Metalurgi, V(E-ISSN 2443-3926), 125–134.
Lestari, F. P., Julhida, F., Erryani, A., & Kartika, I. (2018). Microstructure and Mechanical Properties by Addition of Zn AND TiH 2 in Quarternary Mg Alloy Foam. 41(1), 8–15.
Lestari, F. P., Kartika, I., Juwono, A. L., & Anawati, A. (2022). Kajian Komposit Berbasis Paduan Logam Magnesium Berpenguat Keramik untuk Aplikasi Ortopedi. Teknik, 43(3), 236–253. https://doi.org/10.14710/teknik.v43i3.46575
Lestari, F. P., Saputra, B. A., Erryani, A., Mulyati, I., Dwijaya, M. S., & Kartika, I. (2021). Analisis Variasi Temperatur Sintering dan Ukuran Senyawa pengembang Dolomit terhadap Fabrikasi Paduan Logam Mg-Ca-Zn Berpori Tertutup dengan Proses Metalurgi Serbuk. Teknik, 42(2), 128–136. https://doi.org/10.14710/teknik.v42i2.36978
Li, Z., Gu, X., Lou, S., & Zheng, Y. (2008). The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 29(10), 1329–1344. https://doi.org/10.1016/j.biomaterials.2007.12.021
Liang-yu, C., Cui, Y., & Lai-chang, Z. (2020). Recent Development in Beta Titanium Alloys for. Metals.
Lita, Y. A., Azhari, A., Firman, R. N., Epsilawati, L., & Pramanik, F. (2019). Aspek radiografis dan biologis tulang dalam penilaian kualitas tulang pada osteoporosis. Jurnal Radiologi Dentomaksilofasial Indonesia (JRDI), 3(2), 47. https://doi.org/10.32793/jrdi.v3i2.490
Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4
Malachevsky, M. T., & D’Ovidio, C. A. (2009). Thermal evolution of titanium hydride optimized for aluminium foam fabrication. Scripta Materialia, 61(1), 1–4. https://doi.org/10.1016/j.scriptamat.2008.12.023
Markatos, K., Tsoucalas, G., & Sgantzos, M. (2016). Hallmarks in the history of orthopaedic implants for trauma and joint replacement. Acta Medico-Historica Adriatica: AMHA, 14(1), 161–176.
Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A. Fukui. H., and Niwa, S. (2002). Development of Low Rigidity Beta-type Titanium Alloy for Biomedical Application (pp. 2970–2977). https://doi.org/https://doi.org/10.2320/matertrans.43.2970
Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8(11), 3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037
Orthopedic, I., Market, I., Size, R., & Analysis, P. (2025). Indonesia Orthopedic Implants Market Size , Production , Sales , Average Product Price , Market Share. 8–10.
Patel, P., Bhingole, P. P., & Makwana, D. (2018). Manufacturing, characterization, and applications of lightweight metallic foams for structural applications: Review. Materials Today: Proceedings, 5(9), 20391–20402. https://doi.org/10.1016/j.matpr.2018.06.414
Pramono, A. W., Nuraini, L., Iskandar, Rohman, R. F., Kartika, I., Lestari, F. P., Erryani, A., & Zander, D. (2021). Biodegradable Mg-Ca-Zn alloys synthesized by powder metallurgy. AIP Conference Proceedings, 2382, 1–16. https://doi.org/10.1063/5.0060715
Rizaty, M. A. (2024). Data Persentase Penduduk Lanjut Usia di Indonesia pada 2023.
Rokhmanto, F., Panghihutan, M. D., Putri, A. P., Prayoga, B. T., Kartika, I., Erryani, A., Dwijaya, M. S., Senopati, G., Setyawan, A. D. H., & Sutowo, C. (2023). Pengaruh Variasi Temperatur Solution Treatment pada Kekerasan dan Presipitat Paduan Co-30Cr-5Mo-0,32C-0,23N. Teknik, 44(1), 1–6. https://doi.org/10.14710/teknik.v44i1.49496
Rokhmanto, F., Senopati, G., Sutowo, C., Astawa, I. N. G. P., Darsono, N., & Kartika, I. (2017). Perlakuan Termomekanikal Ingot Paduan Co-26Cr-6Mo-0,18N. Prosiding Semnastek, November 2017, 1–2.
Rokhmanto, F., Sutowo, C., & Kartika, I. (2018). Pengaruh Penambahan Karbon dan Nitrogen terhadap Ketahanan Korosi Paduan Co-28Cr-6Mo-0,8Si-0,8Mn-0,4Fe- 0,2Ni. Widyariset, 4(1).
Senopati, G., Rashid, R. A. R., Kartika, I., & Palanisamy, S. (2023). Recent Development of Low-Cost B-Ti Alloys for Biomedical Applications: A Review. Metals, 13(2). https://doi.org/10.3390/met13020194
Senopati, G., Rashid, R. A. R., Juliadmi, D., Prastya, M. E., Mori, M., Yamanaka, K., Kartika, I., & Palanisamy, S. (2024). Design and characterization of novel Ti-8Mo-xFe-yCu alloys as implant materials: Evaluation of biocompatibility, mechanical properties, and antibacterial potential. Materials Science and Technology (United Kingdom). https://doi.org/10.1177/02670836241276288
Senopati, G., Sutowo, C., Kartika, I., & Suharno, B. (2019). The effect of solution treatment on microstructure and mechanical properties of Ti-6Mo-6Nb-8Sn alloy. Materials Today: Proceedings, 13, 224–228. https://doi.org/10.1016/j.matpr.2019.03.218
Senopati, G., Sutowo, C., Rokhmanto, F., Kartika, I., & Suharno, B. (2020). Microstructure, mechanical properties, and corrosion resistance of Ti-6Mo-6Nb-xSn alloys for biomedical application. Materials Science Forum, 988 MSF(April), 175–181. https://doi.org/10.4028/www.scientific.net/msf.988.175
Seyedraoufi, Z. S., & Mirdamadi, S. (2013). Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 21, 1–8. https://doi.org/10.1016/j.jmbbm.2013.01.023
Todros, S., Todesco, M., & Bagno, A. (2021). Biomaterials and their biomedical applications: From replacement to regeneration. Processes, 9(11). https://doi.org/10.3390/pr9111949
Utomo, E. P., Kartika, I., & Anawati, A. (2018). Effect of Sn on mechanical hardness of as-cast Ti-Nb-Sn alloys. AIP Conference Proceedings, 1964. https://doi.org/10.1063/1.5038328
Utomo, M. S., Asmaria, T., Malau, D. P., Triwardono, J., Kartika, I., Dilogo, I. H., & Rahyussalim, A. J. (2021). Design criteria for cementless total hip arthroplasty: A retrospective study from cadaver implantation. AIP Conference Proceedings, 2344, 1–6. https://doi.org/10.1063/5.0047288
Utomo, M. S., Whulanza, Y., Lestari, F. P., Erryani, A., & Kartika, I. (2020). Computational mechanics of porous magnesium alloy as Herbert compression screw for hallux valgus osteotomy. AIP Conference Proceedings, 2232, 1–6. https://doi.org/10.1063/5.0001957
Witte, F., Hort, N., Feyerabend, F., & Vogt, C. (2011). Magnesium (Mg) corrosion: A challenging concept for degradable implants. Corrosion of Magnesium Alloys, 403–425. https://doi.org/10.1533/9780857091413.3.403
Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5–6), 63–72. https://doi.org/10.1016/j.cossms.2009.04.001
Yamanaka, K., Mori, M., Kartika, I., Anwar, M. S., Kuramoto, K., Sato, S., & Chiba, A. (2019). Effect of multipass thermomechanical processing on the corrosion behaviour of biomedical Co–Cr–Mo alloys. Corrosion Science, 148(November 2018), 178–187. https://doi.org/10.1016/j.corsci.2018.12.009
Yang, D. H., Hur, B. Y., & Yang, S. R. (2008). Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent. Journal of Alloys and Compounds, 461(1–2), 221–227. https://doi.org/10.1016/j.jallcom.2007.07.098
Zhao, C. Y. (2012). Review on thermal transport in high porosity cellular metal foams with open cells. International Journal of Heat and Mass Transfer, 55(13–14), 3618–3632. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.017
Downloads
Published
November 20, 2025
Online ISSN
3090-8485
Categories
HOW TO CITE
Copyright (c) 2025 National Research and Innovation Agency
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












