Pengembangan Material Implan Tulang Permanen dan Sementara untuk Mendukung Kemandirian Kesehatan Nasional: Sinergi antara Riset Material dan Tantangan Demografi Indonesia

Authors

Ika Kartika
National Research and Innovation Agency

Keywords:

Implan tulang permanen, Implan tulang sementara , Total hip arthroplasty, Paduan logam berpori Mg-Ca-Zn, Paduan Ti-6Al-4V

Synopsis

Orasi ini menyajikan state of the art mengenai kebutuhan implan tulang di Indonesia yang erat kaitannya dengan dinamika demografi dan tantangan kesehatan masyarakat. Di satu sisi, peningkatan jumlah penduduk lanjut usia, tingginya angka kecelakaan, serta prevalensi penyakit degeneratif mendorong urgensi pengembangan implan tulang permanen dalam negeri. Di sisi lain, dalam kasus pediatrik seperti kerusakan tulang tengkorak maupun patah tulang yang terjadi di dekat daerah pertumbuhan tulang, menuntut hadirnya implan sementara yang terdegradasi yang dapat menyatu dengan tulang alami seiring pertumbuhan pasien. Melalui pendekatan multidisiplin, riset implan tulang ini bukan sekadar menjawab kebutuhan medis, melainkan juga memperkuat posisi Indonesia dalam rantai nilai global, mendukung pembangunan berkelanjutan, dan mewujudkan visi bangsa yang sehat, mandiri, serta berdaya saing.

   

Downloads

Download data is not yet available.

Author Biography

Ika Kartika, National Research and Innovation Agency

Berdasarkan Keputusan Presiden Republik Indonesia Nomor 3/M Tahun 2022 tanggal 19 Januari 2022 yang bersangkutan diangkat sebagai Peneliti Ahli Utama terhitung mulai 1 Oktober 2021.
Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional Nomor ………. Tahun ………… tanggal angka bulan tahun yang bersangkutan melakukan orasi pengukuhan Profesor Riset.
Menamatkan Sekolah Dasar Negeri Halimun III Bandung, tahun 1984, Sekolah Menengah Pertama Negeri 13 Bandung, tahun 1987, dan Sekolah Menengah Atas Negeri 12 Bandung, tahun 1990. Memperoleh gelar Sarjana Teknik Metalurgi dari Universitas Jenderal Achmad Yani Bandung tahun 1996, gelar Magister Teknik Material dari Institut Teknologi Bandung tahun 2006, dan gelar Doktor bidang Material Processing dari Universitas Tohoku Jepang tahun 2009.
Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain: Heat Treatment and Surface Engineering in Industry, Pelatihan JICA, Osaka, Jepang (Desember 2000), Pelatihan Teknologi Pembuatan Implan Menggunakan electron beam melting (EBM) di Institute for Materials Research Tohoku University Japan (Oktober 2014), Development of Nickel-Free Cobalt Base Alloy for Intravascular Stent, GMIRT, Institute for Materials Research Tohoku University Jepang (Juli 2019), Japan Decarbonizations Activities, NEDO Jepang (Maret 2024), International Symposium on Critical Metals for Battery Production from Primary and Alternative Resources, Swinburne University of Technology, Melbourne, Australia (Juli 2024).
Pernah menduduki jabatan struktural sebagai Kepala Sub Bidang Rekayasa Metalurgi Pusat Penelitian Metalurgi LIPI (tahun 2010–2012), Kepala Bidang Metalurgi Ekstraksi Pusat Penelitian Metalurgi LIPI (tahun 2012–2014), dan Kepala Bidang Pengelolaan dan Diseminasi Hasil Penelitian Pusat Penelitian Metalurgi dan Material-LIPI (tahun 2014–2019), Kepala Pusat Riset Metalurgi BRIN (tahun 2022–masih menjabat di 2025).
Jabatan fungsional peneliti diawali sebagai Asisten Peneliti Muda golongan III-a tahun 2000, Asisten Peneliti Madya golongan III-b tahun 2003, Peneliti Ahli Muda golongan III-b tahun 2004, Peneliti Ahli Muda golongan III-c tahun 2007, Peneliti Ahli Muda gol. III-d tahun 2011, Peneliti Ahli Madya golongan IV-a tahun 2015, Peneliti Ahli Madya golongan IV-b tahun 2017 dan memperoleh jabatan Peneliti Ahli Utama golongan IV-b bidang Metalurgi dan Material tahun 2020.
Menghasilkan 85 (delapan puluh lima) karya tulis ilmiah (KTI) bersama penulis lain dalam bentuk buku, jurnal, dan prosiding. Sebanyak 56 (lima puluh enam) KTI ditulis dalam bahasa Inggris.
Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pem­bimbing jabatan fungsional peneliti, pembimbingan karya tulis ilmiah untuk instansi BMKG, BPOM, pembimbing skripsi (S-1) pada Universitas Pertamina, Universitas Sultan Ageng Tirtayasa, Universitas Teknologi Sumbawa, Universitas Negeri Islam Syarif Hidayatullah Jakarta, pembimbing tesis (S-2) pada Institut Teknologi Bandung, dan Universitas Indonesia; pembimbing disertasi (S-3) pada Universitas Indonesia dan Swinburne University of Technology Australia; serta penguji disertasi (S-3) pada Universitas Indonesia dan Institut Pertanian Bogor.
Aktif dalam organisasi profesi ilmiah, yaitu sebagai anggota Japan Institute of Metals and Materials JIMM (2007–2009), anggota Masyarakat Biomaterial Indonesia (2011–2013), anggota Himpunan Peneliti Indonesia HIMPENINDO (2018–2020), dan anggota Persatuan Peneliti Indonesia PPI (2022–2025). Menerima tanda penghargaan Satyalancana Karya Satya X Tahun (2011), Satyalancana Karya Satya XX Tahun (2018) dari Presiden RI.

References

Agarwal, S., Curtin, J., Duffy, B., & Jaiswal, S. (2016). Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science and Engineering C, 68, 948–963. https://doi.org/10.1016/j.msec.2016.06.020

Amal, M. I., Annur, D., Lestari, F. P., Sutowo, C., & Kartika, I. (2016). Processing of porous Mg-Zn-Ca alloy via powder metallurgy. AIP Conference Proceedings, 1778. https://doi.org/10.1063/1.4965744

Anderson, J., Neary, F., & Pickstone, J. V. (2007). Total Hip Replacement: Introduction, Sources and Outline. Surgeons, Manufacturers and Patients, 1–18. https://doi.org/10.1057/9780230596238_1

Annur, D., Amal, M. I., Sutowo, C., Sukaryo, S. G., & Kartika, I. (2015). Sintering of Mg-Ca-Zn Alloy Metallic Foam Based on Mg-Zn-CaH2 System. Advanced Materials Research, 1112, 474–477. https://doi.org/10.4028/www.scientific.net/AMR.1112.474

Annur, D.,A., Suhardi, M. I., Amal, M. S., Anwar, Kartika, I. (2017). Preface: 2nd International Symposium on Frontier of Applied Physics (ISFAP 2016). Journal of Physics: Conference Series, 817(1), 012062. https://doi.org/10.1088/1742-6596/755/1/011001

Annur, D., Erryani, A., Lestari, F. P., Putrayasa, I. N., Gede, P. A., & Kartika, I. (2017). Microstructure and corrosion study of porous Mg-Zn-Ca alloy in simulated body fluid. Materials Research Express, 4(3). https://doi.org/10.1088/2053-1591/aa65fd

Annur, D., Lestari, F. P., Erryani, A., Sijabat, F. A., Astawa, I. N. G. P., & Kartika, I. (2018). Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique. AIP Conference Proceedings, 1945. https://doi.org/10.1063/1.5030237

Annur, D., Kartika, I., Supriadi, S., & Suharno, B. (2021). Titanium and titanium based alloy prepared by spark plasma sintering method for biomedical implant applications - A review. Materials Research Express, 8(1). https://doi.org/10.1088/2053-1591/abd969

Annur, D., Triwardono, J., Rokhmanto, F., Kartika, I., Dimyati, A., Supriadi, S., & Suharno, B. (2021). Effect of the carbamide content on the preparation of porous Ti6Al4V using arc plasma sintering method. AIP Conference Proceedings, 2382, 1–8. https://doi.org/10.1063/5.0060861

Aprianto, D. R., Parenrengi, M. A., Utomo, B., Asra Al Fauzi, E. A. S., & Suryawan, A. (2022). Comparison of autograft and implant cranioplasty in pediatrics: A meta-analysis. Surgical Neurology International, 13(206).

Aprilia Erryani, Novantoro, Franciska Pramuji Lestari, Made Subekti Dwijaya, Kartika I. (2019). Sifat Mekanik Dan Struktur Mikro Paduan Magnesium Berpori Dengan Variasi Komposisi Senyawa pengembang Dan Temperatur Sinter Untuk Aplikasi Implan Mampu Luruh. Metalurgi, 34(2), 61. https://doi.org/10.14203/metalurgi.v34i2.469

Asmaria, T., Mayasari, D. A., Febrananda, A. D. G., Nurul, N., Rahyussalim, A. J., & Kartika, I. (2022). Computed tomography image analysis for Indonesian total hip arthroplasty designs. International Journal of Electrical and Computer Engineering, 12(6), 6123–6131. https://doi.org/10.11591/ijece.v12i6.pp6123-6131

Asmaria, T., Rahmi, R., Utomo, M. S., Annur, D., Malau, D. P., Amal, M. I., & Kartika, I. (2020). Deteksi Tepi Untuk Validasi Model Tiga Dimensi Tulang Panggul Pada Perencanaan Desain Dan Fabrikasi Implan. Widyariset, 6(1), 51. https://doi.org/10.14203/widyariset.6.1.2020.51-61

Badan Pusat Statistik. (2025a). Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi. https://www.bps.go.id/id/statistics-table/2/NTEzIzI%3D/jumlah-kecelakaan-korban-mati-luka-berat-luka-ringan-dan-kerugian-materi.html

Badan Pusat Statistik. (2025b). Jumlah penduduk Indonesia 2025. https://www.bps.go.id/id/statistics-table/3/V1ZSbFRUY3lTbFpEYTNsVWNGcDZjek53YkhsNFFUMDkjMw==/penduduk-laju-pertumbuhan-penduduk-distribusi-persentase-penduduk-kepadatan-penduduk-rasio-jenis-kelamin-penduduk-menurut-provinsi.html?year=2025

Bauer, S., Schmuki, P., von der Mark, K., & Park, J. (2013). Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Progress in Materials Science, 58(3), 261–326. https://doi.org/10.1016/j.pmatsci.2012.09.001

BPS. (2023). Kajian Tematik: Hubungan Faktor Sosial dan Demografi dengan Pekerja Lansia di Indonesia. In Indikator Kesejahteraan Rakyat 2023 (p. 5)

Erryani, A., Al-Aziz, I., Lestari, F. P., & Kartika, I. (2019). Fabrication, microstructure and corrosion study of porous Mg-Ca-Zn using CaCO3 pre-treatment with sodium trisilicate. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012033

Erryani, A., Greenita, C., Lestari, F. P., Utomo, M. S., Kartika, I., & Nugraha, T. (2021). Casting technique of NaCl space-holder using 3D printed PLA template for manufacture porous Mg alloy. AIP Conference Proceedings, 2382, 1–7. https://doi.org/10.1063/5.0060617

Erryani, A., Lestari, F. P., Annur, D., & Amal, M. I., Kartika, I. (2018). Laju dan Morfologi Korosi Paduan Logam Berpori Mg-Ca-Zn dengan Foaming Agent CaCO 3 Corrotion Rate and Morphology of Porous Metal Alloy. Widyariset, 4(1).

Erryani, A., Pramuji, F., Annur, D., Amal, M. I., & Kartika, I. (2017). Microstructures and Mechanical Study of Mg Alloy Foam Based on Mg-Zn-Ca-CaCO3 System. IOP Conference Series: Materials Science and Engineering, 202(1). https://doi.org/10.1088/1757-899X/202/1/012028

Fendy, R., Bambang, S., & Kartika, I. (2016). Pengaruh penambahan Karbon dan Nitrogen terhadap mikrostruktur, kekuatan tarik dan mampu bentuk paduan Co-28Cr-6Mo-0,8Si-0,8Mn-0,4Fe-0,2Ni. Metalurgi. 3(3), 138–149.

Fernández Vázquez, J. M., & Camacho Galindo, J. (2007). Martin Kirschner (1879-1942). Acta Ortopédica Mexicana, 21(1), 45–46.

Lestari, F. P., Erryani, A., Annur, D., and Kartika, I. (2017). Corrosion Behavior of Magnesium Based Foam Structure in Hank’s Solution. IOP Conference Series: Materials Science and Engineering, 202, 011002. https://doi.org/10.1088/1757-899x/202/1/011002

Lestari, F.P., Annur, D., Astawa, I. N. G. P., Erryani, A., & Kartika, I. (2017). Proses Sinter Logam Berpori Paduan Magnesium Dengan Kalsium Hidrida Sebagai Senyawa pengembang. Seminar Nasional Sains Dan Teknologi, November, 1–5.

Lestari, F.P., Erryani, A., Annur, D., & Kartika, I. (2017). Corrosion Behavior of Magnesium Based Foam Structure in Hank’s Solution. IOP Conference Series: Materials Science and Engineering, 202(1), 0–10. https://doi.org/10.1088/1757-899X/202/1/012035

Lestari, F.P., Erryani, A., Annur, D., & Kartika, I. (2018). The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition. AIP Conference Proceedings, 1945. https://doi.org/10.1063/1.5030293

Gorejova, R., Haverova, L., Orinakova, R., Orinak, A., & Orinak, M. (2019). Recent advancements in Fe-based biodegradable materials for bone repair. Journal of Materials Science, 54(3), 1913–1947. https://doi.org/10.1007/s10853-018-3011-z

Grant, G. A., Jolley, M., Ellenbogen, R. G., Roberts, T. S., Gruss, J. R., & Loeser, J. D. (2004). Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. Journal of Neurosurgery, 100(2 SUPPL.), 163–168. https://doi.org/10.3171/ped.2004.100.2.0163

Gurappa, I. (2002). Characterization of different materials for corrosion resistance under simulated body fluid conditions. Materials Characterization, 49(1), 73–79. https://doi.org/10.1016/S1044-5803(02)00320-0

Harris, B. (1979). Corrosion of stainless steel surgical implants. Journal of Medical Engineering and Technology, 3(3), 117–122. https://doi.org/10.3109/03091907909162089

Hersh, D. S., Anderson, H. J., Woodworth, G. F., Martin, J. E., & Khan, Y. M. (2021). Bone Flap Resorption in Pediatric Patients following Autologous Cranioplasty. Operative Neurosurgery, 20(5), 436–443. https://doi.org/10.1093/ons/opaa452

Astawa, I. N. G. P., Purawiardi, I., Rokhmanto, F., Kartika, I. (2018). Sintesis Fasa pada Paduan Co26Cr6Mo0.18N DENGAN.pdf (pp. 60–69). https://doi.org/http://jurnal.umj.ac.id/index.php/sintek

Indonesia Orthopedic Artificial Joints Market Outlook to 2030e. (2024). Ken Research. https://www.kenresearch.com/industry-reports/indonesia-orthopedic-artificial-joints-market

Kamrani, S., & Fleck, C. (2019). Biodegradable magnesium alloys as temporary orthopaedic implants: a review. BioMetals, 32(2), 185–193. https://doi.org/10.1007/s10534-019-00170-y

Kartika, I., Amal, M. I., Sutowo, C., Sukarso, S. G., & Sriyono, B. (2018). Pengaruh Variasi Berat Foaming Agent CaH2 terhadap Karakteristik Paduan Mg-Ca-Zn Metal Selular Berbasis Sistem Mg-Zn-CaH2. Metalurgi, 29(2), 145. https://doi.org/10.14203/metalurgi.v29i2.286

Kartika, I., Ashari, A. M., Trenggono, A., Lestari, F. P., & Erryani, A. (2019). Analisis Struktur Pori dan Sifat Mekanik Paduan Mg-0,5Ca-4Zn Hasil Proses Metalurgi Serbuk dengan Variasi Komposisi Foaming Agent CaCO3 dan Temperatur Sintering. Teknik, 40(3), 142. https://doi.org/10.14710/teknik.v40i3.25327

Kartika, I., Lestari, F. P., & Erryani, A. (n.d.). Pengembangan Metal Foaming Mg-Ca-Zn_Tematik_2017.

Kartika, I., Matsumoto, H., & Chiba, A. (2009). Deformation and microstructure evolution in Co-Ni-Cr-Mo superalloy during hot working. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40(6), 1457–1468. https://doi.org/10.1007/s11661-009-9829-x

Kartika, I., Risanti, D. D., Laksana, H. R. P., Lestari, F. P., Rokhmanto, F., & Erryani, A. (2021). Fabrication of Porous Mg–Ca–Zn Alloy by High Energy Milling for Bone Implants. Lecture Notes in Electrical Engineering, 746 LNEE(5), 711–722. https://doi.org/10.1007/978-981-33-6926-9_62

Kartika, I., Rokhmanto, F., Thaha, Y. N., Purawiardi, I., Astawa, I. N. G. P., Erryani, A., & Asmaria, T. (2021). Influence of Thermo-Mechanical Processing on Microstructure, Mechanical Properties and Corrosion Behavior of Ti-6Al-6Mo Implant Alloy. Lecture Notes in Electrical Engineering, 746 LNEE, 397–405. https://doi.org/10.1007/978-981-33-6926-9_34

Kartika, I., Sriyono, B., Annur, D., & Amal, M. I. (2014). Pembuatan Master Alloy Mg-Ca sebagai Bahan Baku Paduan Metal Selular Mg-Ca-Zn. 199–203.

Kartika, I., Thaha, Y. N., Lestari, F. P., & Sriyono, B. (2014). Characteristics of Mg-Ca-Zn alloy metallic foam based on Mg-Zn-CaH2 system. Advanced Materials Research, 896, 267–271. https://doi.org/10.4028/www.scientific.net/AMR.896.267

Kartika, I., Werdaningsih, R., Alfirano, Rokhmanto, F., & Thaha, Y. N. (2019). An investigation of phases intensity and hardness of Ti-6Al-6Mo implant alloy influenced by temperature of solution treatment and quenching media. AIP Conference Proceedings, 2120, 1–6. https://doi.org/10.1063/1.5115685

Kennedy, A. (2012). Porous Metals and Metal Foams Made from Powders. Powder Metallurgy. https://doi.org/10.5772/33060

Lee, S. H., Yoo, C. J., Lee, U., Park, C. W., Lee, S. G., & Kim, W. K. (2014). Resorption of Autogenous Bone Graft in Cranioplasty: Resorption and Reintegration Failure. Korean Journal of Neurotrauma, 10(1), 10. https://doi.org/10.13004/kjnt.2014.10.1.10

Lestari, F. P., Hidayat, F., Erryani, A., Utomo, M. S., Thaha, Y. N., & Kartika, I. (2019). Fabrikasi Paduan Magnesium Berpori dengan Partikel Garam NaCl sebagai Space Holder. Metalurgi, V(E-ISSN 2443-3926), 125–134.

Lestari, F. P., Julhida, F., Erryani, A., & Kartika, I. (2018). Microstructure and Mechanical Properties by Addition of Zn AND TiH 2 in Quarternary Mg Alloy Foam. 41(1), 8–15.

Lestari, F. P., Kartika, I., Juwono, A. L., & Anawati, A. (2022). Kajian Komposit Berbasis Paduan Logam Magnesium Berpenguat Keramik untuk Aplikasi Ortopedi. Teknik, 43(3), 236–253. https://doi.org/10.14710/teknik.v43i3.46575

Lestari, F. P., Saputra, B. A., Erryani, A., Mulyati, I., Dwijaya, M. S., & Kartika, I. (2021). Analisis Variasi Temperatur Sintering dan Ukuran Senyawa pengembang Dolomit terhadap Fabrikasi Paduan Logam Mg-Ca-Zn Berpori Tertutup dengan Proses Metalurgi Serbuk. Teknik, 42(2), 128–136. https://doi.org/10.14710/teknik.v42i2.36978

Li, Z., Gu, X., Lou, S., & Zheng, Y. (2008). The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 29(10), 1329–1344. https://doi.org/10.1016/j.biomaterials.2007.12.021

Liang-yu, C., Cui, Y., & Lai-chang, Z. (2020). Recent Development in Beta Titanium Alloys for. Metals.

Lita, Y. A., Azhari, A., Firman, R. N., Epsilawati, L., & Pramanik, F. (2019). Aspek radiografis dan biologis tulang dalam penilaian kualitas tulang pada osteoporosis. Jurnal Radiologi Dentomaksilofasial Indonesia (JRDI), 3(2), 47. https://doi.org/10.32793/jrdi.v3i2.490

Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4

Malachevsky, M. T., & D’Ovidio, C. A. (2009). Thermal evolution of titanium hydride optimized for aluminium foam fabrication. Scripta Materialia, 61(1), 1–4. https://doi.org/10.1016/j.scriptamat.2008.12.023

Markatos, K., Tsoucalas, G., & Sgantzos, M. (2016). Hallmarks in the history of orthopaedic implants for trauma and joint replacement. Acta Medico-Historica Adriatica: AMHA, 14(1), 161–176.

Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A. Fukui. H., and Niwa, S. (2002). Development of Low Rigidity Beta-type Titanium Alloy for Biomedical Application (pp. 2970–2977). https://doi.org/https://doi.org/10.2320/matertrans.43.2970

Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8(11), 3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

Orthopedic, I., Market, I., Size, R., & Analysis, P. (2025). Indonesia Orthopedic Implants Market Size , Production , Sales , Average Product Price , Market Share. 8–10.

Patel, P., Bhingole, P. P., & Makwana, D. (2018). Manufacturing, characterization, and applications of lightweight metallic foams for structural applications: Review. Materials Today: Proceedings, 5(9), 20391–20402. https://doi.org/10.1016/j.matpr.2018.06.414

Pramono, A. W., Nuraini, L., Iskandar, Rohman, R. F., Kartika, I., Lestari, F. P., Erryani, A., & Zander, D. (2021). Biodegradable Mg-Ca-Zn alloys synthesized by powder metallurgy. AIP Conference Proceedings, 2382, 1–16. https://doi.org/10.1063/5.0060715

Rizaty, M. A. (2024). Data Persentase Penduduk Lanjut Usia di Indonesia pada 2023.

Rokhmanto, F., Panghihutan, M. D., Putri, A. P., Prayoga, B. T., Kartika, I., Erryani, A., Dwijaya, M. S., Senopati, G., Setyawan, A. D. H., & Sutowo, C. (2023). Pengaruh Variasi Temperatur Solution Treatment pada Kekerasan dan Presipitat Paduan Co-30Cr-5Mo-0,32C-0,23N. Teknik, 44(1), 1–6. https://doi.org/10.14710/teknik.v44i1.49496

Rokhmanto, F., Senopati, G., Sutowo, C., Astawa, I. N. G. P., Darsono, N., & Kartika, I. (2017). Perlakuan Termomekanikal Ingot Paduan Co-26Cr-6Mo-0,18N. Prosiding Semnastek, November 2017, 1–2.

Rokhmanto, F., Sutowo, C., & Kartika, I. (2018). Pengaruh Penambahan Karbon dan Nitrogen terhadap Ketahanan Korosi Paduan Co-28Cr-6Mo-0,8Si-0,8Mn-0,4Fe- 0,2Ni. Widyariset, 4(1).

Senopati, G., Rashid, R. A. R., Kartika, I., & Palanisamy, S. (2023). Recent Development of Low-Cost B-Ti Alloys for Biomedical Applications: A Review. Metals, 13(2). https://doi.org/10.3390/met13020194

Senopati, G., Rashid, R. A. R., Juliadmi, D., Prastya, M. E., Mori, M., Yamanaka, K., Kartika, I., & Palanisamy, S. (2024). Design and characterization of novel Ti-8Mo-xFe-yCu alloys as implant materials: Evaluation of biocompatibility, mechanical properties, and antibacterial potential. Materials Science and Technology (United Kingdom). https://doi.org/10.1177/02670836241276288

Senopati, G., Sutowo, C., Kartika, I., & Suharno, B. (2019). The effect of solution treatment on microstructure and mechanical properties of Ti-6Mo-6Nb-8Sn alloy. Materials Today: Proceedings, 13, 224–228. https://doi.org/10.1016/j.matpr.2019.03.218

Senopati, G., Sutowo, C., Rokhmanto, F., Kartika, I., & Suharno, B. (2020). Microstructure, mechanical properties, and corrosion resistance of Ti-6Mo-6Nb-xSn alloys for biomedical application. Materials Science Forum, 988 MSF(April), 175–181. https://doi.org/10.4028/www.scientific.net/msf.988.175

Seyedraoufi, Z. S., & Mirdamadi, S. (2013). Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 21, 1–8. https://doi.org/10.1016/j.jmbbm.2013.01.023

Todros, S., Todesco, M., & Bagno, A. (2021). Biomaterials and their biomedical applications: From replacement to regeneration. Processes, 9(11). https://doi.org/10.3390/pr9111949

Utomo, E. P., Kartika, I., & Anawati, A. (2018). Effect of Sn on mechanical hardness of as-cast Ti-Nb-Sn alloys. AIP Conference Proceedings, 1964. https://doi.org/10.1063/1.5038328

Utomo, M. S., Asmaria, T., Malau, D. P., Triwardono, J., Kartika, I., Dilogo, I. H., & Rahyussalim, A. J. (2021). Design criteria for cementless total hip arthroplasty: A retrospective study from cadaver implantation. AIP Conference Proceedings, 2344, 1–6. https://doi.org/10.1063/5.0047288

Utomo, M. S., Whulanza, Y., Lestari, F. P., Erryani, A., & Kartika, I. (2020). Computational mechanics of porous magnesium alloy as Herbert compression screw for hallux valgus osteotomy. AIP Conference Proceedings, 2232, 1–6. https://doi.org/10.1063/5.0001957

Witte, F., Hort, N., Feyerabend, F., & Vogt, C. (2011). Magnesium (Mg) corrosion: A challenging concept for degradable implants. Corrosion of Magnesium Alloys, 403–425. https://doi.org/10.1533/9780857091413.3.403

Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5–6), 63–72. https://doi.org/10.1016/j.cossms.2009.04.001

Yamanaka, K., Mori, M., Kartika, I., Anwar, M. S., Kuramoto, K., Sato, S., & Chiba, A. (2019). Effect of multipass thermomechanical processing on the corrosion behaviour of biomedical Co–Cr–Mo alloys. Corrosion Science, 148(November 2018), 178–187. https://doi.org/10.1016/j.corsci.2018.12.009

Yang, D. H., Hur, B. Y., & Yang, S. R. (2008). Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent. Journal of Alloys and Compounds, 461(1–2), 221–227. https://doi.org/10.1016/j.jallcom.2007.07.098

Zhao, C. Y. (2012). Review on thermal transport in high porosity cellular metal foams with open cells. International Journal of Heat and Mass Transfer, 55(13–14), 3618–3632. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.017

Downloads

Published

November 20, 2025

Online ISSN

3090-8485
HOW TO CITE