Templates
Nanoteknologi Berbasis Nanokarbon dan Nanopartikel untuk Mewujudkan Tujuan Pembangunan Berkelanjutan
Keywords:
Nanoteknologi, Nanokarbon, Nanopartikel, Pembangunan berkelanjutanSynopsis
Pada orasi ini, akan disampaikan state of the art tentang inovasi, perkembangan, peluang dan tantangan penelitian Material Nanokarbon dan Nanopartikel dalam mewujudkan Tujuan Pembangunan Berkelanjutan (SDGs) di Indonesia terutama di bidang energi, lingkungan dan kesehatan.
Orasi ini diharapkan dapat memberikan pemahaman tentang perkembangan material nanokarbon dan nanopartikel, Jenis jenis material nanokarbon dan nanopartikel, metode sintesis dan karakterisasinya serta aplikasi material nanokarbon dan nanopartikel sebagai teknologi hijau dalam berbagai bidang seperti bidang energi sebagai material elektroda superkapasitor dan baterai, di bidang lingkungan dengan pemanfaatan nanocarbon dan nanopartikel sebagai katalis untuk reduksi CO2, pengolahan limbah dan remidiasi lingkungan untuk degradasi dan penghilangan zat warna, logam berat dan antibiotik serta dalam bidang kesehatan seperti aplikasi untuk biosensor dan sistem penghantar obat.
Downloads
Download data is not yet available.
References
Abbas, A., Eng, X. E., Ee, N., Saleem, F., Wu, D., Chen, W., Handayani, M., Tabish, T. A., Wai, N., & Lim, T. M. (2021). Development of reduced graphene oxide from biowaste as an electrode material for vanadium redox flow battery. Journal of Energy Storage, 41, 102848. https://doi.org/10.1016/j.est.2021.102848
Abd El Mageed, A. I. A., Handayani, M., Chen, Z., Inose, T., & Ogawa, T. (2019). Assignment of the absolute handedness chirality of single walled carbon nanotubes by using organic molecule supramolecular structures. Chemistry A European Journal, 25(8), 1941–1948. https://doi.org/10.1002/chem.201804832
Abdullah, I., Suryani, R. A., Ristiana, D. D., Maristya, A. H., Krisnandi, Y. K., & Handayani, M. (2024). Nanosilver-decorated reduced graphene oxide for catalytic carboxylation of phenylacetylene with CO2. Materials Chemistry and Physics, 314, 128852. https://doi.org/10.1016/j.matchemphys.2023.128852
Abubakre, O. K., Medupin, R. O., Akintunde, I. B., Jimoh, O. T., Abdulkareem, A. S., Muriana, R. A., James, J. A., Ukoba, K. O., Jen, T.-C., & Yoro, K. O. (2023). Carbon nanotube-reinforced polymer nanocomposites for sustainable biomedical applications: a review. Journal of Science: Advanced Materials and Devices, 8(2), 100557. https://doi.org/10.1016/j.jsamd.2023.100557
Affi, J., Handayani, M., Anggoro, M. A., Esmawan, A., Sabarman, H., Satriawan, A., Shalannanda, W., Siburian, R., & Anshori, I. (2023). Electrochemical and capacitive behavior of reduced graphene oxide from green reduction of graphene oxide by urea for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 34(22), 1638. https://doi.org/10.1007/s10854-023-11076-4
Anshori, I., Kepakisan, K. A. A., Nuraviana Rizalputri, L., Rona Althof, R., Nugroho, A. E., Siburian, R., & Handayani, M. (2022). Facile synthesis of graphene oxide/Fe3O4 nanocomposite for electrochemical sensing on determination of dopamine. Nanocomposites, 8(1), 155–166. https://doi.org/10.1080/20550324.2022.2090050
Anshori, I., Nuraviana Rizalputri, L., Rona Althof, R., Sean Surjadi, S., Harimurti, S., Gumilar, G., Yuliarto, B., & Handayani, M. (2021). Functionalized multi-walled carbon nanotube/silver nanoparticle (f-MWCNT/AgNP) nanocomposites as non-enzymatic electrochemical biosensors for dopamine detection. Nanocomposites, 7(1), 97–108. https://doi.org/10.1080/20550324.2021.1948242
Anshori, I., Ula, L. R., Asih, G. I. N., Ariasena, E., Raditya, A. N., Mulyaningsih, Y., Handayani, M., Purwidyantri, A., & Prabowo, B. A. (2023). Durable nonenzymatic electrochemical sensing using silver decorated multi-walled carbon nanotubes for uric acid detection. Nanotechnology, 35(11), 115501. https://doi.org/10.1088/1361-6528/ad143f
Ariasena, E., Raditya, A. N., Salsabila, N., Asih, G. I. N., Uperianti, Sari, R. I., Handayani, M., Siburian, R., Kurniawan, C., & Widiarti, N. (2024). Evaluation of electrodeposition synthesis of gold nanodendrite on screen-printed carbon electrode for nonenzymatic ascorbic acid sensor. Scientific Reports, 14(1), 22854. https://doi.org/10.1038/s41598-024-69970-8
Batool, F., Iqbal, M. S., Khan, S.-U.-D., Khan, J., Ahmed, B., & Qadir, M. I. (2021). Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Scientific Reports, 11(1), 22132. https://doi.org/10.1038/s41598-021-01374-4
Bethune, D. S., Kiang, C. H., De Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430), 605–607. https://ui.adsabs.harvard.edu/link_gateway/1993Natur.363..605B/doi:10.1038/363605a0
Brodie, B. C. (1859). XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149, 249–259.
Ciptasari, N. I., Handayani, M., Kaharudin, C. L., Afkauni, A. A., Hatmanto, A. D., Anshori, I., Maksum, A., Riastuti, R., & Soedarsono, J. W. (2022). Synthesis of nanocomposites reduced graphene oxide-silver nanoparticles prepared by hydrothermal technique using sodium borohydride as a reductor for photocatalytic degradation of Pb ions in aqueous solution. Eastern-European Journal of Enterprise Technologies, 6(5), 120. https://doi.org/10.15587/1729-4061.2022.269844
Compostella, F., Pitirollo, O., Silvestri, A., & Polito, L. (2017). Glyco-gold nanoparticles: synthesis and applications. Beilstein Journal of Organic Chemistry, 13(1), 1008–1021. https://doi.org/10.3762/bjoc.13.100
Darsono, N., Handayani, M., Lestari, F. P., Erryani, A., Putrayasa, I. N. G., Thaha, Y. N., Sihaloho, Y. I., & Sutanto, H. (2020). Effect of multiwalled carbon nanotubes (MWCNTs) on the micro-hardness and corrosion behaviour Mg-Zn alloy prepared by powder metallurgy. Materials Science Forum, 1000, 115–122. https://doi.org/10.4028/www.scientific.net/MSF.1000.115
Farrell, D., Majetich, S. A., & Wilcoxon, J. P. (2003). Preparation and characterization of monodisperse Fe nanoparticles. The Journal of Physical Chemistry B, 107(40), 11022–11030. https://doi.org/10.1021/jp0351831
Febriana, E., Angelina, E., Mayangsari, W., Handayani, M., Irawan, J., Prasetyo, A. B., Sulistiyono, E., Muslih, E. Y., Nugroho, F., & Firdiyono, F. (2022). The effect of using solvent medium in the ultrasonication of silica precipitates. Journal of Physics: Conference Series, 2190(1), 12008.
Febriana, E., Handayani, M., Susilo, D. N. A., Yahya, M. S., Ganta, M., & Sunnardianto, G. K. (2021). A simple approach of synthesis of graphene oxide from pure graphite: Time stirring duration variation. AIP Conference Proceedings, 2382(1), 40006. https://doi.org//10.1088/1742-6596/2190/1/012008
Firdiyono, F., Handayani, M., Sulistiyono, E., Prasetyo, A. B., & Febriana, E. (2024). Synthesis of amorphous silica from silicone oil by way of gradually roasting process. AIP Conference Proceedings, 3003(1). https://doi.org/10.1063/5.0186396
Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. (2015). Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews, 115(11), 4744–4822.
Giyanto, Jon, A., Gunawarman, Handayani, M., Yetri, Y., & Rohmat, N. (2024). CHARACTERISATION OF GRAPHENE DERIVED FROM COCONUT SHELLS: IMPACT OF AMMONIA DOPING AND THE SONICATION METHOD. CERAMICS-SILIKATY, 68(1), 116–120.
Gomathi, A., Priyadharsan, A., Handayani, M., Kumar, K. A. R., Saranya, K., Kumar, A. S., Srividhya, B., Murugesan, K., & Maadeswaran, P. (2024). Pioneering superior efficiency in Methylene blue and Rhodamine b dye degradation under solar light irradiation using CeO2/Co3O4/g-C3N4 ternary photocatalysts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 313, 124125. https://doi.org/10.1016/j.saa.2024.124125
Gutés, A., Carraro, C., & Maboudian, R. (2012). Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform. Biosensors and Bioelectronics, 33(1), 56–59. https://doi.org/10.1016/j.bios.2011.12.018
Handayani, M. (2016). Pengaruh Temperatur dan Jenis Reduktor Terhadap Perolehan Persen Metalisasi Hasil Reduksi Bijih Besi dari Kalimantan. Jurnal Furnace, 2(1). https://dx.doi.org/10.36055/furnace.v2i1.1683
Handayani, M., Asih, G. I. N., Kusumaningsih, T., & Kusumastuti, Y. (2022). Functionalization of multi-walled carbon nanotubes–silver nanoparticle (MWCNTs-AgNPs) as a drug delivery system for ibuprofen. Int. J. Adv. Sci. Eng. Inf. Technol., 12, 795–801.
Handayani, M., Ganta, M., Susilo, D. N. A., Yahya, M. S., Sunnardianto, G. K., Darsono, N., Sulistiyono, E., Setiawan, I., Lestari, F. P., & Erryani, A. (2019). Synthesis of graphene oxide from used electrode graphite with controlled oxidation process. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012032
Handayani, M., Hendrik, Abbas, A., Anshori, I., Mulyawan, R., Satriawan, A., Shalannanda, W., Setianingsih, C., Pingak, C. T. R., & Zahro, Q. (2023). Development of graphene and graphene quantum dots toward biomedical engineering applications: A review. Nanotechnology Reviews, 12(1), 20230168. https://doi.org/10.1088/1757-899X/541/1/012032
Handayani, M., Kepakisan, K. A. A., Anshori, I., Darsono, N., & Nugraha T, Y. (2021). Graphene oxide based nanocomposite modified screen printed carbon electrode for qualitative cefixime detection. AIP Conference Proceedings, 2382(1). https://doi.org/10.1063/5.0060625
Handayani, M., Mulyaningsih, Y., Aulia Anggoro, M., Abbas, A., Setiawan, I., Triawan, F., Darsono, N., Nugraha Thaha, Y., Kartika, I., Ketut Sunnardianto, G., Anshori, I., & Lisak, G. (2022). One-pot synthesis of reduced graphene oxide/chitosan/zinc oxide ternary nanocomposites for supercapacitor electrodes with enhanced electrochemical properties. Materials Letters, 314(February), 131846. https://doi.org/10.1016/j.matlet.2022.131846
Handayani, M., Suwaji, B. I., Ihsantia Ning Asih, G., Kusumaningsih, T., Kusumastuti, Y., Rochmadi, & Anshori, I. (2022). In-situ synthesis of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) nanocomposites for high loading capacity of acetylsalicylic acid. Nanocomposites, 8(1), 74–80. https://doi.org/10.1080/20550324.2022.2054210
Hermadianti, S. A., Handayani, M., Anggoro, M. A., Ristiana, D. D., Anshori, I., Esmawan, A., Rahmayanti, Y. D., Suhandi, A., Timuda, G. E., & Sunnardianto, G. K. (2024). Flower like-novel nanocomposite of Mg (Ti0. 99Sn0. 01) O3 decorated on reduced graphene oxide (rGO) with high capacitive behavior as supercapacitor electrodes. Nanotechnology, 35(25), 255702. https://doi.org/10.1088/1361-6528/ad2480/meta
Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339.
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58. https://doi.org/10.1038/354056a0
Janjua, T. I., Cao, Y., Kleitz, F., Linden, M., Yu, C., & Popat, A. (2023). Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Advanced Drug Delivery Reviews, 203, 115115. https://doi.org/10.1016/j.addr.2023.115115
Journet, C., & Bernier, P. (1998). Production of carbon nanotubes. Applied Physics A: Materials Science & Processing, 67(1).
Kelsall, R. W., Hamley, I. W., & Geoghegan, M. (2005). Nanoscale Science and Technology. https://doi.org/ 10.1002/0470020873
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
Khotimah, K., Handayani, M., Rahmawati, N., Tjahjono, A., Ristianingrum, W. D., Prasetyo, J., Elena, N., & Lutfi, M. (2024). Effect of functionalized multi-walled carbon nanotubes on adsorbents derived from cocoa waste for lead (II) adsorption in aqueous solutions. AIP Conference Proceedings, 3003(1). https://doi.org/10.1063/5.0186400
Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706–710. https://doi.org/10.1038/nature07719
Krisnandi, Y. K., Abdullah, I., Prabawanta, I. B. G., & Handayani, M. (2020). In-situ hydrothermal synthesis of nickel nanoparticle/reduced graphene oxides as catalyst on CO2 methanation. AIP Conference Proceedings, 2242(1). https://doi.org/10.1063/5.0007992
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162–163. https://doi.org/10.1038/318162a0
Kuila, T., Mishra, K., Khanra, P., & Kim, H. (2013). Recent Advances in the Efficiet Reduction of graphene oxide and its application as enrgy storage electrode materials. RSC Publishing, 5(52), 52–71. https://doi.org/10.1039/c2nr32703a
Larasati, F., Kusumastuti, Y., Mindaryani, A., & Handayani, M. (2022). Surface modification of multi-walled carbon nanotubes with polysaccharides. ASEAN Journal of Chemical Engineering, 22(1), 82–92. https://doi.org/ 10.22146/ajche.69866
Latiff, N. M., Fu, X., Mohamed, D. K., Veksha, A., Handayani, M., & Lisak, G. (2020). Carbon based copper (II) phthalocyanine catalysts for electrochemical CO2 reduction: Effect of carbon support on electrocatalytic activity. Carbon, 168, 245–253. https://doi.org/10.1016/j.carbon.2020.06.066
Li, N., Zhao, P., & Astruc, D. (2014). Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 53(7), 1756–1789. https://doi.org/10.1002/anie.201300441
Li, W., Xu, H., Cui, M., Zhao, J., Liu, F., & Liu, T. (2019). Synthesis of sulfonated graphene/carbon nanotubes/manganese dioxide composite with high electrochemical properties. Ionics, 25(3), 999–1006. https://doi.org/10.1007/s11581-018-2767-0
Majidah, S., Rizalputri, L. N., Ariasena, E., Raditya, A. N., Ropii, B., Salsabila, N., Uperianti, Handayani, M., Hartati, Y. W., & Anshori, I. (2024). Evaluating bioreceptor immobilization on Gold Nanospike (AuNS)–modified Screen-Printed Carbon Electrode (SPCE) as enzymatic glucose biosensor. Nanocomposites, 10(1), 125–137. https://doi.org/10.1080/20550324.2024.2335692
Malathi, A., Priyadharsan, A., Handayani, M., Hasan, I., Divya, G., Sivaranjani, K., & Sivakumar, S. (2024). Boosted solar-driven photocatalysis: silver molybdate/reduced graphene oxide nanocomposites for methylene blue decomposition. Ionics, 30(3), 1603–1614. https://doi.org/10.1007/s11581-023-05346-8
Muqoyyanah, M., Khoerunnisa, F., Handayani, M., Rahmayanti, Y. D., Triadi, H. A., Annifah, R. U., Iasya, Y. K. A. A., Gunawan, T., Lestari, W. W., & Sanjaya, E. H. (2023). Effect of silver nanoparticles on the morphological, antibacterial activity and performance of graphene oxide-embedded polyvinylidene fluoride membrane. Journal of Environmental Chemical Engineering, 11(6), 111394. https://doi.org/10.1016/j.jece.2023.111394
Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V, & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
Osterrieth, J. W. M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B., Allendorf, M. D., Stavila, V., Snider, J. L., Ameloot, R., Marreiros, J., Ania, C., Azevedo, D., Vilarrasa-garcia, E., Santos, B. F., Bu, X., Chang, Z., Bunzen, H., Champness, N. R., … Fairen-jimenez, D. (2022). How Reproducible are Surface Areas Calculated from the BET Equation? Advanced Science News, 2201502. https://doi.org/10.1002/adma.202201502
Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217–224. https://doi.org/10.1038/nnano.2009.58
Prasetyo, A. B., Handayani, M., Sulistiyono, E., Firdiyono, F., Febriana, E., Mayangsari, W., Wahyuningsih, S., Pramono, E., Maksum, A., & Riastuti, R. (2023). Fabrication of high purity silica precipitates from quartz sand toward photovoltaic application. Journal of Ceramic Processing Research, 24(1), 103–110. https://doi.org/10.36410/jcpr.2023.24.1.103
Prasetyo, A. B., Handayani, M., Sulistiyono, E., Syahid, A. N., Febriana, E., Mayangsari, W., Muslih, E. Y., Nugroho, F., & Firdiyono, F. (2022). Development of high purity amorphous silica from emulsifier silicon by pyrolysis process at temperature of 700 oC. Journal of Physics: Conference Series, 2190(1), 12013. https://doi.org/ /10.1088/1742-6596/2190/1/012013
Prasetyo, A. B., Mayangsari, W., Febriana, E., Ridhova, A., Sulistyono, E., Firdiyono, F., Handayani, M., & Soedarsono, J. W. (2024). Synthesis of silica precipitates from ferronickel slag using water leaching with alkali fusion treatment. AIP Conference Proceedings, 3003(1). https://doi.org/10.1063/5.0186214
Primastari, S. D., Kusumastuti, Y., & Handayani, M. (2022). Functionalization of multi-walled carbon nanotube (MWCNT) with CTACe surfactant and polyethylene glycol as potential drug carrier. IOP Conference Series: Earth and Environmental Science, 963(1), 12033. https://doi.org/ /10.1088/1755-1315/963/1/012033
Priyadharsan, A., Ramar, K., Handayani, M., Kasilingam, T., Gnanamoorthy, G., Shaik, M. R., Shaik, B., & Guru, A. (2024). Hydrothermal green synthesis of Aloe Vera Gel-Biotemplated iron oxide nanoparticles for robust photocatalytic degradation of methylene blue, chromium (VI) reduction, and antibacterial efficacy. Water, Air, & Soil Pollution, 235(5), 309. https://doi.org/10.1007/s11270-024-07120-6
Putri, R. G., Syafera, Y., Larasati, F., Putri, N. R. E., Handayani, M., & Kusumastuti, Y. (2020). Effect of reaction time on modification of multi-walled carbon nanotubes with HNO3. IOP Conference Series: Materials Science and Engineering, 742(1), 12038. https://doi.org/ 10.1088/1757-899X/742/1/012038
Rahmayanti, Y. D., Handayani, M., Jamaluddin, K., Suharty, N. S., Anshori, I., Khoerunnisa, F., Lestari, W. W., Sanjaya, E. H., & Gunawan, T. (2024). Fabrication of chitosan/graphene oxide/TiO2 (Ch/GO/TiO2) nanocomposite film for photocatalytic degradation of acetaminophen. AIP Conference Proceedings, 3003(1). https://doi.org/10.1063/5.0186401
Ristiana, D. D., Handayani, M., Anggoro, M. A., Widagdo, B. W., Angelina, E., Sutanto, H., Anshori, I., Febriana, E., Firdiyono, F., Sulistiyono, E., Prasetyo, A. B., Lusiana, & Astawa, I. N. G. P. (2024). Reduced graphene oxide/nano-silica (rGO/n-SiO2) nanocomposite for electrode materials of supercapacitor with a high cycling stability. South African Journal of Chemical Engineering, 48(October 2023), 130–137. https://doi.org/10.1016/j.sajce.2024.01.012
Rudiyanto, A. (2020). Pedoman Teknis Penyusunan Rencana Aksi—Tujuan Pembangunan Berkelanjutan/Sustainable Development Goals (TPB/SDGs). Kedeputian Bidang Kemaritiman dan Sumber Daya Alam.
Shenashen, M. A., El Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle & Particle Systems Characterization, 31(3), 293–316. https://doi.org/10.1002/ppsc.201300181
Sihombing, Y. A., Sari, R. I., Hermanto, B. R., Handayani, M., Kusumocahyo, S. P., Ulum, M. F., Siburian, R., Kurniawan, C., Widiarti, N., & Hartati, Y. W. (2024). Enhanced uric acid detection using functionalized multi-walled carbon nanotube/AgNi nanocomposites: A comparative study on screen-printed carbon electrode (SPCE) and fabric-based biosensors. Sensors and Actuators Reports, 8, 100223. https://doi.org/10.1016/j.snr.2024.100223
Sivaranjani, K., Priyadharsan, A., Handayani, M., Ansar, S., Dasha Kumar, K., Dharmaraja, J., & Sivakumar, S. (2024). Unveiling solar-powered efficiency for methylene blue photodegradation with Ag-doped CeO2/ZnO nanocomposites. Journal of Materials Science: Materials in Electronics, 35(20), 1417. https://doi.org/10.3390/moleculeS-29215152
Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–69. https://doi.org/10.1016/0021-9797(68)90272-5
Suvarnaphaet, P., & Pechprasarn, S. (2017). Graphene-based materials for biosensors: a review. Sensors, 17(10), 2161.
Yu, H., Zhang, B., Bulin, C., Li, R., & Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Scientific Reports, 6(1), 36143. https://doi.org/10.3390/s17102161
Yuliantoro, H., Kusumastuti, Y., Mindaryani, A., Handayani, M., & Rochmadi. (2021). Functionalization of single-walled carbon nanotubes with a HNO3/H2SO4 mixture through different treatments: A DFT supported study. AIP Conference Proceedings, 2349(1), 20071. https://doi.org/10.1063/5.0051916
Zhu, Z., Garcia-Gancedo, L., Flewitt, A. J., Xie, H., Moussy, F., & Milne, W. I. (2012). A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors, 12(5), 5996–6022. https://doi.org/10.3390/s120505996
Downloads
Published
November 24, 2025
Online ISSN
3090-8485
Categories
HOW TO CITE
Copyright (c) 2025 National Research and Innovation Agency
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












