Nanoteknologi Berbasis Nanokarbon dan Nanopartikel untuk Mewujudkan Tujuan Pembangunan Berkelanjutan

Authors

Murni Handayani
Badan Riset dan Inovasi Nasional

Keywords:

Nanoteknologi, Nanokarbon, Nanopartikel, Pembangunan berkelanjutan

Synopsis

Pada orasi ini, akan disampaikan state of the art tentang inovasi, perkembangan, peluang dan tantangan penelitian Material Nanokarbon dan Nanopartikel dalam mewujudkan Tujuan Pembangunan Berkelanjutan (SDGs) di Indonesia terutama di bidang energi, lingkungan dan kesehatan.

Orasi ini diharapkan dapat memberikan pemahaman tentang perkembangan material nanokarbon dan nanopartikel, Jenis jenis material nanokarbon dan nanopartikel, metode sintesis dan karakterisasinya serta aplikasi material nanokarbon dan nanopartikel sebagai teknologi hijau dalam berbagai bidang seperti bidang energi sebagai material elektroda superkapasitor dan baterai, di bidang lingkungan dengan pemanfaatan nanocarbon dan nanopartikel sebagai katalis untuk reduksi CO2, pengolahan limbah dan remidiasi lingkungan untuk degradasi dan penghilangan zat warna, logam berat dan antibiotik serta dalam bidang kesehatan seperti aplikasi untuk biosensor dan sistem penghantar obat.

Downloads

Download data is not yet available.

Author Biography

Murni Handayani, Badan Riset dan Inovasi Nasional

Berdasarkan Keputusan Presiden Republik Indonesia Nomor 13/M Tahun 2023 tanggal 21 Maret 2023 yang bersangkutan diangkat sebagai Peneliti Ahli Utama di Badan Riset dan Inovasi Nasional terhitung mulai 6 April 2023.
Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional Nomor 220/I/HK/2025, tanggal 11 November 2025 tentang Majelis Pengukuhan Profesor Riset, yang bersangkutan dapat melakukan Orasi Ilmiah Pengukuhan Profesor Riset.
Menamatkan Sekolah Dasar di SD Jomboran 1 Klaten, tahun 1991, Sekolah Menengah Pertama di SMP N 1 Klaten tahun 1994 dan Sekolah Menengah Atas SMA N 1 Klaten tahun 1997. Memperoleh gelar Sarjana Sains dari Universitas Sebelas Maret (UNS) Surakarta tahun 2003, gelar Master of Science bidang Kimia dari Universitas Osaka tahun 2013, dan gelar Doctor of Philosophy bidang Kimia dari Universitas Osaka tahun 2016.
Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain: diklat prajabatan di Depok (2005), Diklat Fungsional Peneliti Tingkat Pertama di Cibinong (2006), Postdoctoral Research Fellow di Osaka University, Jepang (2016–2017), Pelatihan Audit Internal Sistem Manajemen Mutu SNI ISO 9001:2015 di Tangerang Selatan (2017), Visiting Research Scientist di Nanyang Technological University (NTU) di Singapore (2019), Visiting Research Scientist di TU Braunschweig, Jerman (2019), Metallography Training di Puspiptek, Tangerang Selatan (2020) dan Visiting Research Scientist di Nanyang Technological University (NTU) di Singapore (2023).
Pernah menduduki jabatan sebagai koordinator kelompok penelitian material karbon, metaloid dan hibrida, Pusat Riset Metalurgi dan Material LIPI (tahun 2020). Menduduki jabatan struktural sebagai Kepala Pusat Riset Sistem Nanoteknologi BRIN (tahun 2024–Sekarang).
Jabatan fungsional peneliti diawali sebagai Peneliti Ahli Pertama golongan III/a tahun 2008, Peneliti Ahli Muda golongan III/c tahun 2010 Peneliti Ahli Madya golongan IV/c tahun 2021, dan memperoleh jabatan Peneliti Ahli Utama golongan IV/d bidang Nanomaterial Fungsional tahun 2023.
Menghasilkan 135 karya tulis ilmiah (KTI), baik yang ditulis sendiri maupun bersama penulis lain dalam bentuk bagian buku, jurnal internasional, prosiding internasional, jurnal nasional, dan prosiding nasional. Selain itu telah menghasilkan 36 paten terdaftar dan 2 buku internasional (chapter book).
Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pem­bimbing jabatan fungsional peneliti pada Universitas Indonesia, dan BRIN. Mentor/host postdoctoral fellow dari Universitas Gadjah Mada dan Saveetha Institute of Medical and Technical Sciences (SIMATS), India; pembimbing skripsi (S-1) pada Universitas Unika Atmajaya, Sampoerna University, Institut Tekno­logi Kalimantan, Universitas Indonesia, Universitas Sebelas Maret, Institut Teknologi Bandung, Institut Teknologi Sains Bandung, Swiss German University, Universitas Negeri Jakarta, Institut Teknologi Sumatera, Universitas Ahmad Dahlan, dan Universitas Airlangga; pembimbing tesis (S-2) pada Universitas Gadjah Mada, Universitas Pamulang, dan Institut Teknologi Bandung; pembimbing disertasi (S-3) pada Universitas
Indonesia, Universitas Andalas, dan Universitas Sumatera Utara.
Aktif dalam organisasi profesi ilmiah, yaitu The Chemical Society of Japan (JCS), The Indonesian chemical society (HKI), The electrochemical Society (ECS), Material Research Society (MRS), Material Research Society-Indonesia (MRS-Id), JSPS Alumni Association of Indonesia (JAAI), Himpunan Peneliti Indonesia (Himpenindo) dan Himpunan Periset Indonesia (PPI).
Menerima tanda penghargaan First winner on Scientific Oral Presentation Award, di Tokushima University (Tahun 2013), Best Poster Presentation Award on 7th International Conference on Molecular Electronics, di Perancis dari The ChemPubSoc Europe Societies, Wiley-VCH (tahun 2014), JSPS HOPE Fellow, The 9th HOPE Meeting with Nobel Laurates (tahun 2017), Satyalancana Karya Satya X dari Presiden RI (tahun 2017), Finalis – Loreal Unesco for Women in Science National Fellowship 2017 dari Loreal Indonesia (tahun 2017), ter­pilih sebagai satu-satunya delegasi Indonesia di Symposium of Women in Chemistry-Canada dari OPCW (tahun 2018), Finalis – Loreal Unesco for Women in Science National Fellowship 2018 dari Loreal Indonesia (tahun 2018), Japan-ASEAN Science, Technology and Innovation Platform Net Award, Jepang (tahun 2022), STRG award-Indonesia Toray Science Foundation dari ITSF (tahun 2023), Best presenter of 29th ITSF Seminar on Science and Technology dari ITSF (tahun 2024) dan Satyalancana Karya Satya XX dari Presiden RI (tahun 2025).

Sebagai reviewer di banyak international journal bereputasi tinggi (Q1) seperti Chemical Physic Letters, Journal of Environmental Management, International Journal of Energy Research, Journal of the Taiwan Institute of Chemical Engineers, Chemosphere, dll.

References

Abbas, A., Eng, X. E., Ee, N., Saleem, F., Wu, D., Chen, W., Handayani, M., Tabish, T. A., Wai, N., & Lim, T. M. (2021). Development of reduced graphene oxide from biowaste as an electrode material for vanadium redox flow battery. Journal of Energy Storage, 41, 102848. https://doi.org/10.1016/j.est.2021.102848

Abd El Mageed, A. I. A., Handayani, M., Chen, Z., Inose, T., & Ogawa, T. (2019). Assignment of the absolute handedness chirality of single walled carbon nanotubes by using organic molecule supramolecular structures. Chemistry A European Journal, 25(8), 1941–1948. https://doi.org/10.1002/chem.201804832

Abdullah, I., Suryani, R. A., Ristiana, D. D., Maristya, A. H., Krisnandi, Y. K., & Handayani, M. (2024). Nanosilver-decorated reduced graphene oxide for catalytic carboxylation of phenylacetylene with CO2. Materials Chemistry and Physics, 314, 128852. https://doi.org/10.1016/j.matchemphys.2023.128852

Abubakre, O. K., Medupin, R. O., Akintunde, I. B., Jimoh, O. T., Abdulkareem, A. S., Muriana, R. A., James, J. A., Ukoba, K. O., Jen, T.-C., & Yoro, K. O. (2023). Carbon nanotube-reinforced polymer nanocomposites for sustainable biomedical applications: a review. Journal of Science: Advanced Materials and Devices, 8(2), 100557. https://doi.org/10.1016/j.jsamd.2023.100557

Affi, J., Handayani, M., Anggoro, M. A., Esmawan, A., Sabarman, H., Satriawan, A., Shalannanda, W., Siburian, R., & Anshori, I. (2023). Electrochemical and capacitive behavior of reduced graphene oxide from green reduction of graphene oxide by urea for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 34(22), 1638. https://doi.org/10.1007/s10854-023-11076-4

Anshori, I., Kepakisan, K. A. A., Nuraviana Rizalputri, L., Rona Althof, R., Nugroho, A. E., Siburian, R., & Handayani, M. (2022). Facile synthesis of graphene oxide/Fe3O4 nanocomposite for electrochemical sensing on determination of dopamine. Nanocomposites, 8(1), 155–166. https://doi.org/10.1080/20550324.2022.2090050

Anshori, I., Nuraviana Rizalputri, L., Rona Althof, R., Sean Surjadi, S., Harimurti, S., Gumilar, G., Yuliarto, B., & Handayani, M. (2021). Functionalized multi-walled carbon nanotube/silver nanoparticle (f-MWCNT/AgNP) nanocomposites as non-enzymatic electrochemical biosensors for dopamine detection. Nanocomposites, 7(1), 97–108. https://doi.org/10.1080/20550324.2021.1948242

Anshori, I., Ula, L. R., Asih, G. I. N., Ariasena, E., Raditya, A. N., Mulyaningsih, Y., Handayani, M., Purwidyantri, A., & Prabowo, B. A. (2023). Durable nonenzymatic electrochemical sensing using silver decorated multi-walled carbon nanotubes for uric acid detection. Nanotechnology, 35(11), 115501. https://doi.org/10.1088/1361-6528/ad143f

Ariasena, E., Raditya, A. N., Salsabila, N., Asih, G. I. N., Uperianti, Sari, R. I., Handayani, M., Siburian, R., Kurniawan, C., & Widiarti, N. (2024). Evaluation of electrodeposition synthesis of gold nanodendrite on screen-printed carbon electrode for nonenzymatic ascorbic acid sensor. Scientific Reports, 14(1), 22854. https://doi.org/10.1038/s41598-024-69970-8

Batool, F., Iqbal, M. S., Khan, S.-U.-D., Khan, J., Ahmed, B., & Qadir, M. I. (2021). Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Scientific Reports, 11(1), 22132. https://doi.org/10.1038/s41598-021-01374-4

Bethune, D. S., Kiang, C. H., De Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430), 605–607. https://ui.adsabs.harvard.edu/link_gateway/1993Natur.363..605B/doi:10.1038/363605a0

Brodie, B. C. (1859). XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149, 249–259.

Ciptasari, N. I., Handayani, M., Kaharudin, C. L., Afkauni, A. A., Hatmanto, A. D., Anshori, I., Maksum, A., Riastuti, R., & Soedarsono, J. W. (2022). Synthesis of nanocomposites reduced graphene oxide-silver nanoparticles prepared by hydrothermal technique using sodium borohydride as a reductor for photocatalytic degradation of Pb ions in aqueous solution. Eastern-European Journal of Enterprise Technologies, 6(5), 120. https://doi.org/10.15587/1729-4061.2022.269844

Compostella, F., Pitirollo, O., Silvestri, A., & Polito, L. (2017). Glyco-gold nanoparticles: synthesis and applications. Beilstein Journal of Organic Chemistry, 13(1), 1008–1021. https://doi.org/10.3762/bjoc.13.100

Darsono, N., Handayani, M., Lestari, F. P., Erryani, A., Putrayasa, I. N. G., Thaha, Y. N., Sihaloho, Y. I., & Sutanto, H. (2020). Effect of multiwalled carbon nanotubes (MWCNTs) on the micro-hardness and corrosion behaviour Mg-Zn alloy prepared by powder metallurgy. Materials Science Forum, 1000, 115–122. https://doi.org/10.4028/www.scientific.net/MSF.1000.115

Farrell, D., Majetich, S. A., & Wilcoxon, J. P. (2003). Preparation and characterization of monodisperse Fe nanoparticles. The Journal of Physical Chemistry B, 107(40), 11022–11030. https://doi.org/10.1021/jp0351831

Febriana, E., Angelina, E., Mayangsari, W., Handayani, M., Irawan, J., Prasetyo, A. B., Sulistiyono, E., Muslih, E. Y., Nugroho, F., & Firdiyono, F. (2022). The effect of using solvent medium in the ultrasonication of silica precipitates. Journal of Physics: Conference Series, 2190(1), 12008.

Febriana, E., Handayani, M., Susilo, D. N. A., Yahya, M. S., Ganta, M., & Sunnardianto, G. K. (2021). A simple approach of synthesis of graphene oxide from pure graphite: Time stirring duration variation. AIP Conference Proceedings, 2382(1), 40006. https://doi.org//10.1088/1742-6596/2190/1/012008

Firdiyono, F., Handayani, M., Sulistiyono, E., Prasetyo, A. B., & Febriana, E. (2024). Synthesis of amorphous silica from silicone oil by way of gradually roasting process. AIP Conference Proceedings, 3003(1). https://doi.org/10.1063/5.0186396

Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. (2015). Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews, 115(11), 4744–4822.

Giyanto, Jon, A., Gunawarman, Handayani, M., Yetri, Y., & Rohmat, N. (2024). CHARACTERISATION OF GRAPHENE DERIVED FROM COCONUT SHELLS: IMPACT OF AMMONIA DOPING AND THE SONICATION METHOD. CERAMICS-SILIKATY, 68(1), 116–120.

Gomathi, A., Priyadharsan, A., Handayani, M., Kumar, K. A. R., Saranya, K., Kumar, A. S., Srividhya, B., Murugesan, K., & Maadeswaran, P. (2024). Pioneering superior efficiency in Methylene blue and Rhodamine b dye degradation under solar light irradiation using CeO2/Co3O4/g-C3N4 ternary photocatalysts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 313, 124125. https://doi.org/10.1016/j.saa.2024.124125

Gutés, A., Carraro, C., & Maboudian, R. (2012). Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform. Biosensors and Bioelectronics, 33(1), 56–59. https://doi.org/10.1016/j.bios.2011.12.018

Handayani, M. (2016). Pengaruh Temperatur dan Jenis Reduktor Terhadap Perolehan Persen Metalisasi Hasil Reduksi Bijih Besi dari Kalimantan. Jurnal Furnace, 2(1). https://dx.doi.org/10.36055/furnace.v2i1.1683

Handayani, M., Asih, G. I. N., Kusumaningsih, T., & Kusumastuti, Y. (2022). Functionalization of multi-walled carbon nanotubes–silver nanoparticle (MWCNTs-AgNPs) as a drug delivery system for ibuprofen. Int. J. Adv. Sci. Eng. Inf. Technol., 12, 795–801.

Handayani, M., Ganta, M., Susilo, D. N. A., Yahya, M. S., Sunnardianto, G. K., Darsono, N., Sulistiyono, E., Setiawan, I., Lestari, F. P., & Erryani, A. (2019). Synthesis of graphene oxide from used electrode graphite with controlled oxidation process. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012032

Handayani, M., Hendrik, Abbas, A., Anshori, I., Mulyawan, R., Satriawan, A., Shalannanda, W., Setianingsih, C., Pingak, C. T. R., & Zahro, Q. (2023). Development of graphene and graphene quantum dots toward biomedical engineering applications: A review. Nanotechnology Reviews, 12(1), 20230168. https://doi.org/10.1088/1757-899X/541/1/012032

Handayani, M., Kepakisan, K. A. A., Anshori, I., Darsono, N., & Nugraha T, Y. (2021). Graphene oxide based nanocomposite modified screen printed carbon electrode for qualitative cefixime detection. AIP Conference Proceedings, 2382(1). https://doi.org/10.1063/5.0060625

Handayani, M., Mulyaningsih, Y., Aulia Anggoro, M., Abbas, A., Setiawan, I., Triawan, F., Darsono, N., Nugraha Thaha, Y., Kartika, I., Ketut Sunnardianto, G., Anshori, I., & Lisak, G. (2022). One-pot synthesis of reduced graphene oxide/chitosan/zinc oxide ternary nanocomposites for supercapacitor electrodes with enhanced electrochemical properties. Materials Letters, 314(February), 131846. https://doi.org/10.1016/j.matlet.2022.131846

Handayani, M., Suwaji, B. I., Ihsantia Ning Asih, G., Kusumaningsih, T., Kusumastuti, Y., Rochmadi, & Anshori, I. (2022). In-situ synthesis of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) nanocomposites for high loading capacity of acetylsalicylic acid. Nanocomposites, 8(1), 74–80. https://doi.org/10.1080/20550324.2022.2054210

Hermadianti, S. A., Handayani, M., Anggoro, M. A., Ristiana, D. D., Anshori, I., Esmawan, A., Rahmayanti, Y. D., Suhandi, A., Timuda, G. E., & Sunnardianto, G. K. (2024). Flower like-novel nanocomposite of Mg (Ti0. 99Sn0. 01) O3 decorated on reduced graphene oxide (rGO) with high capacitive behavior as supercapacitor electrodes. Nanotechnology, 35(25), 255702. https://doi.org/10.1088/1361-6528/ad2480/meta

Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339.

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58. https://doi.org/10.1038/354056a0

Janjua, T. I., Cao, Y., Kleitz, F., Linden, M., Yu, C., & Popat, A. (2023). Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Advanced Drug Delivery Reviews, 203, 115115. https://doi.org/10.1016/j.addr.2023.115115

Journet, C., & Bernier, P. (1998). Production of carbon nanotubes. Applied Physics A: Materials Science & Processing, 67(1).

Kelsall, R. W., Hamley, I. W., & Geoghegan, M. (2005). Nanoscale Science and Technology. https://doi.org/ 10.1002/0470020873

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

Khotimah, K., Handayani, M., Rahmawati, N., Tjahjono, A., Ristianingrum, W. D., Prasetyo, J., Elena, N., & Lutfi, M. (2024). Effect of functionalized multi-walled carbon nanotubes on adsorbents derived from cocoa waste for lead (II) adsorption in aqueous solutions. AIP Conference Proceedings, 3003(1). https://doi.org/10.1063/5.0186400

Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706–710. https://doi.org/10.1038/nature07719

Krisnandi, Y. K., Abdullah, I., Prabawanta, I. B. G., & Handayani, M. (2020). In-situ hydrothermal synthesis of nickel nanoparticle/reduced graphene oxides as catalyst on CO2 methanation. AIP Conference Proceedings, 2242(1). https://doi.org/10.1063/5.0007992

Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162–163. https://doi.org/10.1038/318162a0

Kuila, T., Mishra, K., Khanra, P., & Kim, H. (2013). Recent Advances in the Efficiet Reduction of graphene oxide and its application as enrgy storage electrode materials. RSC Publishing, 5(52), 52–71. https://doi.org/10.1039/c2nr32703a

Larasati, F., Kusumastuti, Y., Mindaryani, A., & Handayani, M. (2022). Surface modification of multi-walled carbon nanotubes with polysaccharides. ASEAN Journal of Chemical Engineering, 22(1), 82–92. https://doi.org/ 10.22146/ajche.69866

Latiff, N. M., Fu, X., Mohamed, D. K., Veksha, A., Handayani, M., & Lisak, G. (2020). Carbon based copper (II) phthalocyanine catalysts for electrochemical CO2 reduction: Effect of carbon support on electrocatalytic activity. Carbon, 168, 245–253. https://doi.org/10.1016/j.carbon.2020.06.066

Li, N., Zhao, P., & Astruc, D. (2014). Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angewandte Chemie International Edition, 53(7), 1756–1789. https://doi.org/10.1002/anie.201300441

Li, W., Xu, H., Cui, M., Zhao, J., Liu, F., & Liu, T. (2019). Synthesis of sulfonated graphene/carbon nanotubes/manganese dioxide composite with high electrochemical properties. Ionics, 25(3), 999–1006. https://doi.org/10.1007/s11581-018-2767-0

Majidah, S., Rizalputri, L. N., Ariasena, E., Raditya, A. N., Ropii, B., Salsabila, N., Uperianti, Handayani, M., Hartati, Y. W., & Anshori, I. (2024). Evaluating bioreceptor immobilization on Gold Nanospike (AuNS)–modified Screen-Printed Carbon Electrode (SPCE) as enzymatic glucose biosensor. Nanocomposites, 10(1), 125–137. https://doi.org/10.1080/20550324.2024.2335692

Malathi, A., Priyadharsan, A., Handayani, M., Hasan, I., Divya, G., Sivaranjani, K., & Sivakumar, S. (2024). Boosted solar-driven photocatalysis: silver molybdate/reduced graphene oxide nanocomposites for methylene blue decomposition. Ionics, 30(3), 1603–1614. https://doi.org/10.1007/s11581-023-05346-8

Muqoyyanah, M., Khoerunnisa, F., Handayani, M., Rahmayanti, Y. D., Triadi, H. A., Annifah, R. U., Iasya, Y. K. A. A., Gunawan, T., Lestari, W. W., & Sanjaya, E. H. (2023). Effect of silver nanoparticles on the morphological, antibacterial activity and performance of graphene oxide-embedded polyvinylidene fluoride membrane. Journal of Environmental Chemical Engineering, 11(6), 111394. https://doi.org/10.1016/j.jece.2023.111394

Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V, & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896

Osterrieth, J. W. M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B., Allendorf, M. D., Stavila, V., Snider, J. L., Ameloot, R., Marreiros, J., Ania, C., Azevedo, D., Vilarrasa-garcia, E., Santos, B. F., Bu, X., Chang, Z., Bunzen, H., Champness, N. R., … Fairen-jimenez, D. (2022). How Reproducible are Surface Areas Calculated from the BET Equation? Advanced Science News, 2201502. https://doi.org/10.1002/adma.202201502

Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217–224. https://doi.org/10.1038/nnano.2009.58

Prasetyo, A. B., Handayani, M., Sulistiyono, E., Firdiyono, F., Febriana, E., Mayangsari, W., Wahyuningsih, S., Pramono, E., Maksum, A., & Riastuti, R. (2023). Fabrication of high purity silica precipitates from quartz sand toward photovoltaic application. Journal of Ceramic Processing Research, 24(1), 103–110. https://doi.org/10.36410/jcpr.2023.24.1.103

Prasetyo, A. B., Handayani, M., Sulistiyono, E., Syahid, A. N., Febriana, E., Mayangsari, W., Muslih, E. Y., Nugroho, F., & Firdiyono, F. (2022). Development of high purity amorphous silica from emulsifier silicon by pyrolysis process at temperature of 700 oC. Journal of Physics: Conference Series, 2190(1), 12013. https://doi.org/ /10.1088/1742-6596/2190/1/012013

Prasetyo, A. B., Mayangsari, W., Febriana, E., Ridhova, A., Sulistyono, E., Firdiyono, F., Handayani, M., & Soedarsono, J. W. (2024). Synthesis of silica precipitates from ferronickel slag using water leaching with alkali fusion treatment. AIP Conference Proceedings, 3003(1). https://doi.org/10.1063/5.0186214

Primastari, S. D., Kusumastuti, Y., & Handayani, M. (2022). Functionalization of multi-walled carbon nanotube (MWCNT) with CTACe surfactant and polyethylene glycol as potential drug carrier. IOP Conference Series: Earth and Environmental Science, 963(1), 12033. https://doi.org/ /10.1088/1755-1315/963/1/012033

Priyadharsan, A., Ramar, K., Handayani, M., Kasilingam, T., Gnanamoorthy, G., Shaik, M. R., Shaik, B., & Guru, A. (2024). Hydrothermal green synthesis of Aloe Vera Gel-Biotemplated iron oxide nanoparticles for robust photocatalytic degradation of methylene blue, chromium (VI) reduction, and antibacterial efficacy. Water, Air, & Soil Pollution, 235(5), 309. https://doi.org/10.1007/s11270-024-07120-6

Putri, R. G., Syafera, Y., Larasati, F., Putri, N. R. E., Handayani, M., & Kusumastuti, Y. (2020). Effect of reaction time on modification of multi-walled carbon nanotubes with HNO3. IOP Conference Series: Materials Science and Engineering, 742(1), 12038. https://doi.org/ 10.1088/1757-899X/742/1/012038

Rahmayanti, Y. D., Handayani, M., Jamaluddin, K., Suharty, N. S., Anshori, I., Khoerunnisa, F., Lestari, W. W., Sanjaya, E. H., & Gunawan, T. (2024). Fabrication of chitosan/graphene oxide/TiO2 (Ch/GO/TiO2) nanocomposite film for photocatalytic degradation of acetaminophen. AIP Conference Proceedings, 3003(1). https://doi.org/10.1063/5.0186401

Ristiana, D. D., Handayani, M., Anggoro, M. A., Widagdo, B. W., Angelina, E., Sutanto, H., Anshori, I., Febriana, E., Firdiyono, F., Sulistiyono, E., Prasetyo, A. B., Lusiana, & Astawa, I. N. G. P. (2024). Reduced graphene oxide/nano-silica (rGO/n-SiO2) nanocomposite for electrode materials of supercapacitor with a high cycling stability. South African Journal of Chemical Engineering, 48(October 2023), 130–137. https://doi.org/10.1016/j.sajce.2024.01.012

Rudiyanto, A. (2020). Pedoman Teknis Penyusunan Rencana Aksi—Tujuan Pembangunan Berkelanjutan/Sustainable Development Goals (TPB/SDGs). Kedeputian Bidang Kemaritiman dan Sumber Daya Alam.

Shenashen, M. A., El Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle & Particle Systems Characterization, 31(3), 293–316. https://doi.org/10.1002/ppsc.201300181

Sihombing, Y. A., Sari, R. I., Hermanto, B. R., Handayani, M., Kusumocahyo, S. P., Ulum, M. F., Siburian, R., Kurniawan, C., Widiarti, N., & Hartati, Y. W. (2024). Enhanced uric acid detection using functionalized multi-walled carbon nanotube/AgNi nanocomposites: A comparative study on screen-printed carbon electrode (SPCE) and fabric-based biosensors. Sensors and Actuators Reports, 8, 100223. https://doi.org/10.1016/j.snr.2024.100223

Sivaranjani, K., Priyadharsan, A., Handayani, M., Ansar, S., Dasha Kumar, K., Dharmaraja, J., & Sivakumar, S. (2024). Unveiling solar-powered efficiency for methylene blue photodegradation with Ag-doped CeO2/ZnO nanocomposites. Journal of Materials Science: Materials in Electronics, 35(20), 1417. https://doi.org/10.3390/moleculeS-29215152

Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–69. https://doi.org/10.1016/0021-9797(68)90272-5

Suvarnaphaet, P., & Pechprasarn, S. (2017). Graphene-based materials for biosensors: a review. Sensors, 17(10), 2161.

Yu, H., Zhang, B., Bulin, C., Li, R., & Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Scientific Reports, 6(1), 36143. https://doi.org/10.3390/s17102161

Yuliantoro, H., Kusumastuti, Y., Mindaryani, A., Handayani, M., & Rochmadi. (2021). Functionalization of single-walled carbon nanotubes with a HNO3/H2SO4 mixture through different treatments: A DFT supported study. AIP Conference Proceedings, 2349(1), 20071. https://doi.org/10.1063/5.0051916

Zhu, Z., Garcia-Gancedo, L., Flewitt, A. J., Xie, H., Moussy, F., & Milne, W. I. (2012). A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors, 12(5), 5996–6022. https://doi.org/10.3390/s120505996

Downloads

Published

November 24, 2025

Online ISSN

3090-8485
HOW TO CITE