Templates
Indexed by
Citedness
Busur Sunda merupakan zona tempat menunjamnya Lempeng India-Australia ke bawah Lempeng Eurasia, yang memanjang dari Andaman, Sumatra, Jawa, Nusa Tenggara, hingga Banda. Pergerakan kedua lempeng tersebut merupakan bagian dari pergerakan Lempeng India yang menabrak Lempeng Asia di sisi barat dan pergerakan Lempeng Australia yang menabrak Lempeng Pasifik di sisi timur. Tidak hanya seputar permasalahan di atas, bunga rampai ini juga mengulas berbagai pergerakan pada kerak bumi yang menimbulkan lekukan, lipatan, patahan, dan retakan di sepanjang Busur Sunda. Banyak peneliti ilmu kebumian yang tertarik meneliti Busur Sunda dikarenakan adanya zona subduksi yang memiliki potensi bencana alam yang begitu besar, terutama mengenai kegempabumian, tsunami, dan aktivitas vulkaniknya. Walaupun demikian, diharapkan pembaca bunga rampai ini tidak hanya dari kalangan peneliti dan ahli gempa bumi, tetapi juga para penentu kebijakan yang terkait tata ruang wilayah, dosen, dan juga mahasiswa fakultas ilmu kebumian.
Barckhausen, U., Bagge, M., & Wilson, D. S. (2013). Sea oor spreading anomalies and crustal ages of the Clarion-Clipperton Zone. Marine Geophysical Researches, 34(2), 79–88. doi:10.1007/s11001-013-9184-6.
Clague, D. A., Holcomb, R. T., Sinton, J. M., Detrick, R. S., & Torresan, M. E. (1990). Pliocene and Pleistocene alcalic ood basalt on the sea oor north of the Hawaiian islands. Earth and Planetary Science Letters, 98(2), 175–191.
Cloose, M., & Shreve, R. L. (1996). Shear-zone thickness and the seismicity of Chilean and Mariana type subduction zones. Geology, 24, 107–110.
Faccenna, C., Becker, T. W., Lallemand, S., & Steinberger, B. (2012). On the role of slab pull in the Cenozoic motion of the Paci c Plate. Geophysi- cal Research Letters, 39(3). doi 10.1029/2011GL050155.
Harders, R., Ranero, C. R., & Weinrebe, W. (2014). Characterization of sub- marine landslide complexes o shore Costa Rica: An evolutionary mod- el related to seamount subduction. Dalam S. Krastel dkk. (Ed.), Sub- marine Mass Movements and their Consequences, Advances in Natural and Technological Hazards Research, 37, 381–390. doi:10.1007/978- 3-319-00972-8_34.
Hoernle, K., Hau , F., Werner, R., van den Bogaard, P., Gibbons, A. D., Conrad, S., & Mu?ller, R. D. (2011). Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere. Nature Geo- science, 4, 883–887.
Koppers, A. A. P., & Watts, A. B. (2010). Intraplate seamounts as a window into deep earth processes. Oceanography, 23(1), 42–57.
Li, F., Sun, Z., Hu, D., & Wang, A. (2013). Crustal structure and deforma- tion associated with seamount subduction at the north Manila Trench represented by analog and gravity modeling. Marine Geophysical Re- search, doi:10.1007/s110011-013-9193-5.
NOAA. (tth). Marine Geology and Geophysics Surface of the Earth (ET- OPO2v2) 2 minute color relief images. Dikutip pada 25 Januari 2017 dari http://www.ngdc.noaa.gov/mgg/image/2minrelief.html
Normile, D. (2010). Joint expedition discovers deep-sea biodiversity, new volcanoes. Science, 329, 1270–1271.
O’Connor, J. M., Steinberger, B., Ragelous, M., Koppers, A. A. P., Wijbrans, J. R., Haase, K., M., ... Garbe-Schonberg, D. (2013). Constraints on past
plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems, doi:10.1002/ ggge.20267.
Pe-Piper, G., Meredyk, Sh., Zhang, Y., Piper, D. J. W., & Edinger, E. (2013). Pe- trology and tectonic signi cance of seamounts within transitional crust east of Orphan Knoll, o shore eastern Canada. Geo-Marine Letters, 33(6), 433–447.
Sandwell, D. T., & Smith, W. H. F. (2009). Global marine gravity from re- tracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate. Journal of Geophysical Research (JGR), 114, B01411, doi:10.1029/2008JB006008.
Sattelite Geodesy. (2015, 26 October). Global Topography. Diakses pada 25 Januari 2017 dari http://topex.ucsd.edu/marine_topo/jpg_images/ topo5.jpg
Schlindwein, V., Demuth, A., Geissler, W. H., & Jokat, W. (2013). Seismic gap beneath Logachev Seamount: Indicator for melt focusing at an ultra- slow mid-ocean ridge?. Geophysical Research Letters, 40(9), 1703–1707. doi:10.1002/grl.50329.
Sharp, W. D., & Clague, D. A. (2006). 50-Ma Initiation of Hawaiian-Em- peror Bend Records Major Change in Paci c Plate Motion. Science, 313(5791), 1281–1284. doi:10.1126/science.1128489.
Singh, S. C., Hananto, N., Mukti, M., Robinson, D., Das, S., Chauhan, A. ... Harjono, H. (2011). Aseismic zone and earthquake segmentation asso- ciated with a deep subduted seamount. Nature Geoscience. doi:10.1038/ NGEO1119.
Smith, D. K., & Cann, J. R. (1990). Hundreds of small volcanoes on the me- dian valley oor of the Mid-Atlantic Ridge at 24–30o N. Nature, 348, 152–155.
Staudigel, H., & Clague, D. A. (2010). e geological history of deep-sea volcanoes. Oceanography, 23(1), 59–71.
Watts, A. B., Brink, U. S., Buhl, P., & Brocher, T. M. (1985). A multichan- nel seismic study of lithospheric exure across the Hawaiian-Emperor seamount chain. Nature, 315(6015), 105–111.
Watts, A. B., Koppers, A. A. P., & Robinson, D. P. (2010). Seamount Subduc- tion and Earthquakes. Oceanography, 23(1), 166–173.
Wessel, P., Sandwell, D. T., & Kim, S. (2010). e Global Seamount Census. Oceanography, 23(1), 24–33.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.