Templates
Indexed by
Citedness
Asap rokok pasif adalah sebuah permasalahan kesehatan global yang menyebabkan lebih dari 41.000 kematian di seluruh dunia per tahunnya. Hal ini disebabkan oleh sejumlah penyakit mematikan yang dapat disebabkan oleh asap rokok pasif, antara lain penyakit jantung, kanker paru, serta stroke. Berbagai penelitian mengemukakan bahwa sedikit apapun paparan asap rokok, tetap dapat meningkatkan risiko penyakit jantung. Asap rokok mengandung sejumlah zat kimiawi seperti formaldehid, benzena, vinil klorida, amonia arsenik, hidrogen sianida, serta hingga sejumlah 7000 zat lain, di mana setidaknya 70 dari zat-zat tersebut memiliki sifat beracun serta karsinogenik. Zat-zat ini memicu sejumlah respons dari sistem-sistem jaringan dan dapat mengganggu fungsi organ tubuh. Bahaya paparan asap rokok dapat terjadi di mana saja, seperti tempat kerja, tempat umum, di rumah, hingga di kendaraan tertutup. Selain pada populasi dewasa, paparan asap rokok pasif juga sangat berdampak pada kesehatan populasi anak-anak dan dapat mengakibatkan peningkatan frekuensi sakit, infeksi paru, gejala-gejala pernapasan, serta infeksi lain seperti infeksi telinga pada anak. Buku tentang efek paparan asap rokok ini ditulis sebagai referensi pembaca dalam memahami mekanisme patofisiologis asap rokok terhadap berbagai sistem tubuh terutama sistem kardiovaskuler, baik sebagai khazanah baru ilmu pengetahuan maupun sebagai rujukan pustaka dalam membuat karya ilmiah. Dalam buku ini akan dibahas pengaruh dan mekanisme kerja paparan asap rokok yang memicu sejumlah respons tubuh, seperti pada metabolisme, jaringan neuron, imunologis, dan terutama penyakit jantung.
Dr. MEITY ARDIANA, dr., Sp.JP(K)., FIHA., FAsCC., FICA. Lahir di Surabaya, 3 Mei 1977 dan lulus pendidikan dokter di Fakultas Kedokteran Universitas Airlangga pada tahun 2003. Gelar Spesialis Jantung dan Pembuluh Darah diperoleh dari Fakultas Kedokteran Universitas Airlangga pada tahun 2013. Selanjutnya pendidikan fellowship - konsultan bidang Preventif dan Rehabilitasi Kardiovaskular di RS Jantung Harapan Kita - Fakultas Kedokteran Universitas Indonesia diselesaikan pada tahun 2016. Pada tahun 2020, penulis meraih gelar doktor Ilmu Kedokteran di Fakultas Kedokteran Universitas Airlangga. Saat ini di samping sebagai dosen, beliau juga sebagai Sekretaris Departemen Kardiologi dan Kedokteran Vaskular, Fakultas Kedokteran Universitas Airlangga. Penulis aktif dalam Pokja Prevensi dan Rehabilitasi Kardiovaskular - Perhimpunan Dokter Spesialis Kardiovaskular Indonesia (PERKI) , sebagai Fellow of Indonesian Heart Association dan Fellow of ASEAN College of Cardiology serta Fellow of the International College of Angiology.
Spiegler P. Second-hand Smoke. Clin Pulm Med. 2011; 18(6): 317-318.Doi:10.1097/cpm.0b013e318234cab1.
Barupal DK, Pinkerton KE, Hood C, Kind T, Fiehn O. Environmental Tobacco Smoke Alters Metabolic Sistems in Adult Rats. Chem Res Toxicol. 2016; 29: 1818-1827. doi:10.1021/acs.chemrestox. 6b00187.
Schick S, Glantz S. Philip Morris toxicological experiments with fresh sidestream smoke: More toxic than mainstream smoke. Tob Control. 2005; 14(6): 396-404. doi:10.1136/tc.2005.011288.
Wooden JR. Global estimate of SHS burden. Environ Health Perspect. 2011; 119(2): 66-69. doi:10.1289/ehp.119-a66
Barnoya J, Glantz SA. Cardiovaskular effects of secondhand smoke: Nearly as large as smoking. Circulation. 2005; 111(20): 2684-2698. doi:10.1161/CIRCULATIONAHA.104.492215.
He J, Vupputuri S, Allen K, Prerost MR, Hughes J, Whelton PK. Passive Smoking and The Risk of Coronary Heart Disease— A meta-analysis of epidemiological studies. N Engl J Med. 1999; 340(12): 920–926.
Glantz SA, Parmley WW. Passive Smoking and Heart Disease: Mechanisms and Risk. JAMA J Am Med Assoc. 1995;273(13):1047-1053. doi:10.1001/jama.1995.03520370089043.
Department of Health and Human Sercives. How Tobacco Smoke Causes Disease The Biology and Behavioral Basis for Smoking-Attributable Disease A Report of the Surgeon General Executive Summary How Tobacco Smoke Causes Disease : The Biology and Behavioral Basis for Smoking-Attributable Disease A Rep.; 2010.
Wall MA, Johnson J, Jacob P, Benowitz NL. Cotinine in serum, saliva, and urine of nonsmokers, passive smokers, and active smokers. Am J Public Health. 1988;78(6):699-701. doi:10.2105/AJPH.78.6.699.
Jung S, Lee IS, Kim SB, et al. Urine cotinine for assessing tobacco smoke exposure in Korean: Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES). Tuberc Respir Dis (Seoul). 2012; 73(4): 210-218. doi:10.4046/trd.2012.73.4.210.
Repace J, Associates R, Consultants SS, et al. Fact sheet on secondhand smoke. 1999: 1–31.
Doe, J., & DeSanto C. Smoking’s immediate effects on the body. Tobacco-Free Kids. 2009;(202):1-9.https://www.tobaccofreekids.org/research/factsheets/pdf/0264.pdf.
Vani G, Anbarasi K, Shyamaladevi CS. Bacoside A: Role in Cigarette Smoking Induced Changes in Brain. Evidence-based Complement Altern Med. 2015; 2015. doi:10.1155/2015/286137.
Ho YS, Yang X, Yeung SC, et al. Cigarette smoking accelerated brain aging and induced pre-alzheimer-like neuropathology in rats. PLoS One. 2012; 7(5): 1-11. doi:10.1371/journal.pone.0036752.
Bahk JY, Li S, Park MS, Kim MO. Dopamine D1 and D2 receptor mRNA upregulation in the caudate-putamen and nucleus accumbens of rat brains by smoking. Prog Neuro-Psychopharmacology Biol Psychiatry. 2002; 26(6): 1095-1104. doi:10.1016/S0278-5846(02)00243-9.
Yin R, French ED. A comparison of the effects of nicotine on dopamine and non-dopamine neurons in the rat ventral tegmental area: An in vitro electrophysiological study. Brain Res Bull. 2000; 51(6): 507-514. doi:10.1016/S0361-9230(00)00237-9.
Ashok AH, Mizuno Y, Howes OD. Tobacco smoking and dopaminergic function in humans: a meta-analysis of molecular imaging studies. Psychopharmacology (Berl). 2019: 1119-1129. doi:10.1007/s00213-019-05196-1.
Chen H, Saad S, Sandow SL, Bertrand PP. Cigarette smoking and brain regulation of energy homeostasis. Front Pharmacol. 2012;3 JUL(July):1-8. doi:10.3389/fphar.2012.00147.
Flouris AD, Vardavas CI, Metsios GS, Tsatsakis AM, Koutedakis Y. Biological evidence for the acute health effects of secondhand smoke exposure. Am J Physiol - Lung Cell Mol Physiol. 2010; 298(1). doi:10.1152/ajplung.00215.2009.
Kivell BM, Danielson K. Neurological Effects of Nicotine, Tobacco, and Particulate Matter. Vol 1. Elsevier Inc.; 2016. doi:10.1016/B978-0-12-800213-1.00011-0.
Chen H, Vlahos R, Bozinovski S, Jones J, Anderson GP, Morris MJ. Effect of Short-Term Cigarette Smoke Exposure on Body Weight, Appetite and Brain Neuropeptide Y in Mice. 2005: 713-719. doi:10.1038/sj.npp.1300597.
Kapoor D, Jones TH. Smoking and hormones in health and endocrine disorders. Eur J Endocrinol. 2005; 152(4): 491-499. doi:10.1530/eje.1.01867.
Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: A mechanistic review. Int J Environ Res Public Health. 2018; 15(5). doi:10.3390/ijerph15051033.
Counotte DS, Spijker S, Van De Burgwal LH, et al. Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology. 2009; 34(2): 299-306. doi:10.1038/npp.2008.96.
Mazzone P, Tierney W, Hossain M, Puvenna V, Janigro D, Cucullo L. Pathophysiological impact of cigarette smoke exposure on the cerebrovaskular sistem with a focus on the blood-brain barrier: Expanding the awareness of smoking toxicity in an underappreciated area. Int J Environ Res Public Health. 2010; 7(12):4111-4126. doi:10.3390/ijerph7124111.
Middlekauff HR, Park J, Moheimani RS. Adverse effects of cigarette and noncigarette smoke exposure on the otonomic nervous sistem: Mechanisms
and implications for cardiovaskular risk. J Am Coll Cardiol. 2014;64(16):1740-1750. doi:10.1016/j.jacc.2014.06.1201.
Jia WP. The impact of cigarette smoking on metabolic syndrome. Biomed Environ Sci. 2013;26(12):947-952. doi:10.3967/bes2013.029.
Jones MR, Magid HS, Al-Rifai M, et al. Secondhand smoke exposure and subclinical cardiovaskular disease: The multi-ethnic study of atherosklerosis. J Am Heart Assoc. 2016;5(12). doi:10.1161/JAHA.115.002965.
Benowitz N, Hukkanen J, Jacob III P. Nicotine Chemistry metabolism and kinetics. Handb Exp Pharmacol. 2010; 192(192): 29-60. doi:10.1007/978-3-540-69248-5.
Bajaj M. Nicotine and insulin resistance: When the smoke clears. Diabetes. 2012; 61(12):3078-3080. doi:10.2337/db12-1100.
Chiolero A, Faeh D, Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr. 2008;87(4):801-809. doi:10.1093/ajcn/87.4.801.
Gabriel O, Shinshima, Iveren, et al. Lactational nicotine alters pancreatic histomorphology and carbohydrate metabolism in Wistar rats. Biomed Res Clin Pract. 2019;4(3):1-4. doi:10.15761/brcp.1000187.
Wang-Sattler R, Yu Y, Mittelstrass K, et al. Metabolic profiling reveals distinct variations linked to nicotine consumption in humans - First results from the KORA study. PLoS One. 2008;3(12):1-10. doi:10.1371/journal.pone.0003863.
Schuman-Olivier Z, Stoeckel LE, Weisz E, Evins AE. Smoking Effects in the Human Nervous Sistem. Elsevier; 2013. doi:10.1016/B978-0-12-418679-8.00011-3
Qiu F, Liang C-L, Liu H, et al. Oncotarget 268 www.impactjournals.com/oncotarget Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget. 2017;8(1):268-284. www.impactjournals.com/oncotarget/.
Barua RS, Rigotti NA, Benowitz NL, et al. 2018 ACC Expert Consensus Decision Pathway on Tobacco Cessation Treatment: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2018;72(25):3332-3365. doi:10.1016/j.jacc.2018.10.027.
Nemmar A, Raza H, Subramaniyan D, et al. Short-term sistemic effects of noseonly cigarette smoke exposure in mice: Role of oxidative stress. Cell Physiol Biochem. 2013;31(1):15-24. doi:10.1159/000343345.
Su Y, Han W, Giraldo C, De Li Y, Block ER. Effect of cigarette smoke extract on nitric oxide synthase in pulmonary artery endothelial cells. Am J Respir Cell Mol Biol. 1998;19(5):819-825. doi:10.1165/ajrcmb.19.5.3091.
Zhang WZ, Venardos K, Chin-Dusting J, Kaye DM. Adverse effects of cigarette smoke on no bioavailability: Role of arginine metabolism and oxidative stress. Hypertension. 2006;48(2):278-285. doi:10.1161/01.HYP.0000231509.27406.42.
Kaplan HM, Kuyucu Y, Polat S, et al. Molecular basis of vaskular damage caused by cigarette smoke exposure and a new approach to the treatment: Alpha-linolenic acid. Biomed Pharmacother. 2018;102(March):458-463. doi:10.1016/j.biopha.2018.03.112.
Morris PB, Ference BA, Jahangir E, et al. Cardiovaskular Effects of Exposure to Cigarette Smoke and Electronic Cigarettes: Clinical Perspectives from the Prevention of Cardiovaskular Disease Section Leadership Council and Early
Career Councils of the American College of Cardiology. J Am Coll Cardiol. 2015;66(12):1378-1391.doi:10.1016/j.jacc.2015.07.037.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.