Prosiding Use Cases Artificial Intelligence Indonesia: Embracing Collaboration for Research and Industrial Innovation in Artificial Intelligence
Keywords:
Artificial Intelligence, Use Cases, Riset dan Inovasi, Industri dan Hankam, Layanan publik dan Kesehatan, Kota cerdas dan Kebencanaan, Ketahanan pangan dan maritim, machine learning, Strategi Nasional KASynopsis
Prosiding Use Cases Artificial Intelligence Indonesia adalah buku yang mengumpulkan hasil-hasil kajian dan liputan 26 use cases inovasi dan 4 inisiatif pemanfaatan kecerdasan artifisial yang kemudian dipetakan menjadi lima klaster bidang kecerdasan artifisial, yakni: riset industri dan hankam, layanan publik dan kesehatan, kota cerdas dan kebencanaan, ketahanan pangan dan maritim, serta klaster inisiatif pemanfaatan kecerdasan artifisial. Materi buku diperoleh dari para kontributor seluruh anggota quadhelix dan para narasumber pegiat kecerdasan artifisial di Indonesia. Buku ini akan membantu masyarakat dalam mendapatkan pengetahuan dan pencerahan tentang seluruh teknologi kecerdasan artifisial yang membantu sektor-sektor terkait dalam hal otomatisasi, alat bantu untuk menganalisis, membuat rekomendasi serta keputusan, memprediksi dan sebagainya.
Chapters
-
BRIBRAIN: Menuju Perbankan Masa Depan dengan Kecerdasan Artifisial
-
Industrial AI: Textile Defect Detection System
-
Kecerdasan Artifisial untuk Pengolahan Ucapan dan Teks Berbahasa Indonesia
-
Implementasi Big Data dan Kecerdasan Artifisial untuk Statistik Ofisial
-
Pemantauan Berkelanjutan Menggunakan Process Mining pada Layanan Publik Digital
-
Robot RAISA: Robot Pelayan untuk Ruang Perawatan Pasien Covid-19
-
Perkembangan Penerapan Kecerdasan Artifisial di Bidang Kesehatan dan Peran Regulasi Kotak Pasir (Regulatory Sandbox) dalam Memodulasi Prosesnya
-
Database Morfologi dan Senyawa Mikrob sebagai Dataset Artificial Intelligence untuk Percepatan Pengembangan Obat Anti-infeksi dari Sumber Daya Mikrob Indonesia
-
AI Kebencanaan dan Kewilayahan
-
Pemanfaatan Kecerdasan Artifisial untuk Meningkatkan Mitigasi Bencana Banjir
-
Segmentasi Berbasis Deep Learning untuk Mendeteksi Ketinggian Air
-
Smartland Surveillance System (SLSS): Aplikasi Sistem Informasi Big Data Perkotaan
-
Pengembangan Sistem Otonomi dengan Menggunakan Kecerdasan Artifisial untuk Trem Otonom
-
Sistem Pemantauan Perilaku Ayam Broiler pada Kandang Pintar
-
Transformasi Pertanian dengan Kecerdasan Artifisial
-
Integrated Smart Food Security System Platform (I-SFSSP)
-
Metode Rekayasa Kansei Cerdas untuk Reka Cipta Produk, Jasa, dan Sistem Kerja Agroindustri
-
Deteksi Objek dan Pengukuran Panjang serta Berat Ikan Menggunakan YOLOv3-ResNet18
-
NLP’s Golden Era in Indonesia: Project BINA
-
Kecerdasan Artifisial Dalam Genome Sequencing
-
Pemanfaatan Teknologi untuk Mendeteksi Real Beneficiary Owner dalam Perspektif Perpajakan Indonesia
-
Studi Kasus Pemanfaatan Electronic Nose dan Kecerdasan Artifisial di Indonesia
-
AIS Intelligence: Meningkatkan Pengawasan Maritim Secara Real-time Melalui Kecerdasan Artifisial dan Big Data
-
Pemanfaatan AI Pada Layanan Pemerintah Terintegrasi
-
Pemanfaatan Kecerdasan Artifisial: Regulasi Kotak Pasir (Regulatory Sandbox) dalam Pengembangan Pesawat Kargo Tanpa Awak (Cargo Drone) di Wilayah Kepulauan Republik Indonesia
Downloads
References
"Automatic inspection | BMSvision." Bmsvision.com, Accessed: Dec 20, 2021. [Online]. Available: https://www.bmsvision.com/products/automatic-inspection.
"Optical character recognition." Wikipedia. [Online] https://en.wikipedia.org/wiki/Optical_character_recognition
“AI, blockchain, cloud, big data and security consulting company in Indonesia.” GLAIR.ai. [Online]. https://glair.ai
“Bahasa Indonesia NLP – Text and speech AI solutions.” Prosa.ai. [Online]. https://prosa.ai
“Disasters in Asia and the Pacific: 2015 Year in Review,” United Nations ESCAP [online]. Accessed: April 15, 2020. Available: https://www.unescap.org/resources/disasters-asia-andpacific-2015-year-review
“Global innovation index. world intellectual property organization.” World Intellectual Property Organization. Diakses pada 27 Desember 2021. Diakses pada 27 Desember 2021 [Daring] https://www.wipo.int/global_innovation_index/en/2021/.
“Hype cycle for natural language technologies.” Gartner. [Online]. https://www.gartner.com/account/signin?method=initialize&TARGET=https%3A%2F%2Fwww.gartner.com%2Finteractive%2Fhc%2F4003843%3Fref%3DnotificationCenter
“Indonesia national ministry of industry-making indonesia 4.0.” Kementerian Perindustrian. Diakses tanggal 17 Februari 2020. [Daring] https://www.kemenperin.go.id/download/18384
“Intelligent data capture for an automated workflow.” Konvergen AI. [Online]. https://konvergen.ai
“Japan: Fujitsu develops AI disaster mitigation technology to predict river flooding with limited data.” Preventionweb.net. Accessed: April 10, 2020. Available: https://www.preventionweb.net/news/japan-fujitsu-develops-ai-disaster-mitigation-technology-predict-river-flooding-limited-data
“Kolaborasi untuk percepatan inovasi kecerdasan artifisial Indonesia.” KORIKA. [Online]. https://korika.id
“Leading countries based on Facebook audience size as of January 2022.” Statista. [Online]. https://www.statista.com/statistics/268136/top-15-countries-based-on-number-offacebook-users/
“Project BINA.” projectbina.org. [Online]. https://projectbina.org
“Regulatory technology.” Wikipedia. [Online]. https://en.wikipedia.org/wiki/Regulatory_technology
“The best text and audio data labelling tool.” Datasaur. [Online]. https://datasaur.ai
“Vision of Indonesia 2045.” Wikipedia. [Online]. https://en.wikipedia.org/wiki/Vision_of_Indonesia_2045
A. Abdallah, L. A. Al-shatti, A. F. Alhajraf, N. Al-hammad, and B. Al-awadi, “The detection of foodborne bacteria on beef: The application of the electronic nose,” SpringerPlus, vol. 2, pp. 1–9, 2013.
A. Goff dkk., “A draft sequence of the rice genome (Oryza sativa L. ssp. japonica),” Science, vol. 296, no. 5565, pp. 92–100, 2002. doi:10.1126/science.1068275
A. J. J. Graham dan F. J. Nicholson, “Preservative effect of chilling,” in Ice in fisheries, Rome: Food and Agriculture Organization of the United Nations, 1992.
A. Kareem, K. V. K. Murthy, H. A. Nadaf, dan M. A. Waseem, “Effect of temperature, relative humidity and light on lesion length due to Alternaria porri in onion,” Asian Journal of Environmental Science, vol. 7, no. 1, pp. 47–49, 2012.
A. Kasim, R. Maulana, dan G. E. Setyawan, “Implementasi otomasi kandang dalam rangka meminimalisir heat stress pada ayam broiler dengan metode fuzzy Sugeno,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 2, pp. 2548–964X, 2019.
A. Lawrie, “The eating quality of meat,” in Meat Science 7th edition, 2006, pp. 157–158.
A. Lewin dkk., “Earth BioGenome Project: Sequencing life for the future of life,” dalam Proceedings of the National Academy of Sciences, vol. 115, no. 17, 2018, pp. 4325–4333. doi:10.1073/pnas.1720115115
A. Pohan, B.R. Trilaksono, S.P. Santosa, dan A.S. Rohman, “Path planning algorithm using the hybridization of rapidly random tree and ant colony systems,” IEEE Access, vol. 9, November 2021, pp. 153599–153615.
A. Pratomoatmojo, “LanduseSim algorithm: Land use change modelling by means of cellular automata and geographic information system,” dalam IOP Conference Series: Earth and Environmental Science, Vol. 202, No. 1, p. 012020, November 2018, IOP Publishing.
A. sciortino dan R. ravikumar, “Chapter 5: Fish quality assurance,” in Fishery Harbour Manual on the Prevention of Pollution - Bay of Bengal Programme, Madras: Food and Agriculture Organization of the United Nations, 1999.
A. Soebroto, I. Cholissodin, R. C. Wihandika, M.T. Frestiyanti, dan Z. E. Arif, “Prediksi tinggi muka air (TMA) untuk deteksi dini bencana banjir menggunakan SVR-TVIWPSO, Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 2, pp. 79–86, Okt. 2015.
A. Wulder dkk., “LiDAR sampling for large-area forest characterization: A review,” Remote Sens. Environ., vol. 121, pp. 196–209, 2012, doi: 10.1016/j.rse.2012.02.001.
Administrator. “Seri mengenal Panama Papers (III): Memahami beneficial ownership (BO) dalam perpajakan.” CITA.or.id. Diakses pada 25 Agustus 2022 [Daring]. https://cita.or.id/beneficial-ownership-bo/
Advantech. “AI Defect Inspection for Textile.” Advantech.com. Accessed: December 1, 2021. [Online] Available: https://www.advantech.com/resources/case-study/ai-defect-inspection-for-textile
AI is Going Mainstream - Google Docs
Albawi, T. A. Mohammed, dan S. Alzawi, “Understanding of a convolutional neural network,” dalam 2017 International Conference on Engineering and Technology (ICET), Antalya, Turki, 2017. doi: 10.1109/ICEngTechnol.2017.8308186
Ali, W. T. O. Hare, dan B. J. Theaker, “Detection of bacterial contaminated milk by means of a quartz crystal microbalance based electronic nose,” Journal of Thermal Analysis, vol. 71, pp. 155–161, 2003.
Ambari. “Menelusuri Keberadaan Tuna yang Terancam Punah di Indonesia.” Mongabay.co.id. Diakses pada 17 April 2018 [Daring.] https://www.mongabay.co.id/2017/02/20/menelusuri-keberadaan-tuna-yang-terancam-punah-di-indonesia/
Ampuero, T. Zesiger, V. Gustafsson, A. Lunden, dan J. O. Bosset, “Determination of trimethylamine in milk using an MS based electronic Nose,” European Food Research Technology, vol. 214, pp. 163–167, 2002.
Andrews. “Making a success of digital government.” Institute for Government, 2016. [Online]. Avalaible: https://www.instituteforgovernment.org.uk/blog/making-success-digital-government
Anonymous. (2016). Skipjack tuna Updated: December 2016. 1–15.
Anonymous. (n.d.) Cakalang. Diakses pada 7 Mei 2018. [Daring.] https://www.flickr.com/photos/tags/cakalang/
Arab. “Reimagining banking’s customer experience for the digital Era.” Authority AI Technology Insight. Accessed: November 2021. [Online]. Available: https://aithority.com/technology/financial-services/reimagining-bankings-customer-experience-for-the-digital-era
Artetxe-Arrate dkk., “A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean. Advances in Marine Biology, vol. 8, pp. 89–99, 2020. doi: https://doi.org/10.1016/bs.amb.2020.09.002
Ash, Pest and Disease Management. Melbourne: Oxford University Press, 2002.
Asia AI News, “Indonesia national AI strategy published this month.” Medium.com. [Online]. https://medium.com/@asiaainews/indonesia-national-ai-strategy-published-this-month-6eaeb3d76224
Azevedo dkk., “LiDAR-based real-time detection and modeling of power lines for unmanned aerial vehicles,” Sensors, vol. 19, no. 8, 2019, doi: 10.3390/s19081812.
B. Dent, S. L. Forbes, dan B. H. Stuart, “Review of human decomposition processes in soil,” Environmental Geology, no. 1997, pp. 576–585, 2003.
Babahajiani, L. Fan, J. Kamarainen, dan M. Gabbouj, “Urban 3D segmentation and modelling from street view images and LiDAR point clouds,” Mach. Vis. Appl., vol. 28, pp. 679–694, 2017.
Bai, M. Sartor, dan J. Cavalcoli, “Current status and future perspectives for sequencing livestock genomes,” Journal of Animal Science and Biotechnology, vol. 3, no. 1, 2012. doi:10.1186/2049-1891-3-8
Bain & Company, Inc. dan NICE RPA, “Transforming Banking with Smart Automation,” 2019. Accessed: November 2021 [Online]. Available: https://www.bain.com/contentassets/32e2254f6dbe4f2cb32f48c4c2530c39/bain_playbook_transforming_banking_with_smart_automation.pdf
Balasubramanian, C. M. Logue, dan M. Marchello, “Spoilage identification of beef using an electronic nose system,” Transactions of the ASAE, vol. 47, no. 5, pp. 1625–1633, 2004.
Balasubramanian, S. Panigrahi, C. M. Logue, H. Gu, dan M. Marchello, “Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification,” Journal of Food Engineering, vol. 91, no. 1, pp. 91–98, 2009.
Baldominos, Y. Saez, dan P. Isasi, “A survey of handwritten character recognition with MNIST and EMNIST,” Applied Sciences (Switzerland), vol. 9, no. 15, 2019. https://doi.org/10.3390/app9153169
Bao dkk., “National center for biotechnology information viral genomes project,” Journal of Virology, vol. 78, no. 14, pp. 7291–7298, 2004. doi:10.1128/JVI.78.14.7291-7298.2004
Batty, H. Couclelis, dan M. Eichen, “Urban systems as cellular automata,” Environment and Planning B: Planning and Design, vol. 24, pp. 159-164, April 1997, doi: 10.1068/b240159.
Bayu, A. Wibisono, H. A. Wisesa, N. S. Intizhami, W. Jatmiko, dan A. Gamal, “Semantic segmentation of LiDAR point cloud in rural area,” dalam 2019 IEEE Int. Conf. Commun. Networks Satell., Makassar, Indonesia, 2019, pp. 73–78.
Becker, Klaus Vogel on Double Taxation Conventions. E. Reimer, A. Rust, dan K. Vogel, Eds., edisi kelima. Alphen aan den Rijn, Belanda: Wolters Kluwer, 2022.
Berdigaliyev dan M. Aljofan, “An overview of drug discovery and development,” Future Med. Chem., vol. 12, no. 10, pp. 939–947, Mei 2020, doi: 10.4155/fmc-2019-0307.
Berdy, “Bioactive microbial metabolites,” J. Antibiot. (Tokyo)., vol. 58, no. 1, pp. 1–26, Jan. 2005, doi: 10.1038/ja.2005.1.
Bernardin dan R. Stiefelhagen, “Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, no. 1, pp. 1–10, 2008.
Bessei, “Welfare of broilers: A review,” Worlds Poult Sci J., vol. 62, no. 3, pp. 455–466, 2006, doi:10.1079/WPS2005108
Bhadane, S. Sharma, dan V. B. Nerkar, “Early pest identification in agriculture crops using image processing technique,” International Journal of Electrical Electronics and Computer Engineering, vol. 2, pp. 72–82, 2013.
BNPB, April 2020, “Data Bencana Indonesia,” Badan Nasional Penanggulangan Bencana [Online]. Avalaible: https://dibi.bnpb.go.id
BPPT, “Sistem informasi simulasi spatial dinamik tata guna lahan (Simulan).” [Online]. Avalaible: http://simulan.bppt.go.id/
BPPT. 2018. Kongres Teknologi Nasional (KTN) 2018. Badan Pengkajian dan Penerapan Teknologi. [terhubung berkala]. http://ktn.bppt.go.id/ktn2018/ [20 April 2020]
BPS. Statistik Perusahaan Peternakan Unggas 2020. Direktorat Statistik Peternakan, Perikanan dan Kehutanan BPS. 2020.
Broby, A. Daly, dan D. Legg, “Towards secure and intelligent regulatory technology (Regtech): a research agenda.” Technology and Regulation. Access: 24 Nov 2022. [Online]. Available: https://techreg.org/article/view/12475/14818
C. Clarke, S. Hoppen, S., dan L. Gaydos., “A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area,” Environment and Planning B: Planning and Design, Vol. 24, pp. 247–261, Februari 1997, doi:10.1068/b240247.
C.-S. Lo dan C. Lin, “Growth-competition-based stem diameter and volume modelling for tree-level forest inventory using airborne LiDAR data,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2216–2226, 2013, doi: 10.1109/TGRS.2012.2211023.
C.-W. Peng, C.-C. Hsu, dan W.-Y. Wang, “Cost effective mobile mapping system for color point cloud reconstruction,” Sensors, vol. 20, no. 22, 2020, doi: 10.3390/s20226536.
CAH, “PBB dan BPHTB sumbang pendapatan terbesar untuk Depok.” Berita Satu, 5 Januari 2016 [Daring]. https://www.beritasatu.com/news/338175/pbb-dan-bphtbsumbang-pendapatan-terbesar-untuk-depok
Celner dan M. Shiling. “2021 Banking and capital market outlook: Strengthening resilience, accelerating transformation.” Deloitte Insights. Accessed: November 2021 [Online]. Available: https://www2.deloitte.com/us/en/insights/industry/financial-services/financial-services-industry-outlooks/banking-industry-outlook-2021.html
Chattopadhyay, S. -P. Shin, dan C. C. Y. Wang, “Business groups and the value implications of ownership transparency,” 07 Financial Accounting 1: Stock analysts/equity valuation (FAR1), 2021. http://hdl.handle.net/10125/77031
Chen dan B. Gao, “An object-based method for urban land cover classification using airborne LiDAR data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 10, pp. 4243–4254, 2014, doi: 10.1109/JSTARS.2014.2332337.
Chen dan C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016.
Chen dan W. D. Nordhaus, “Using luminosity data as a proxy for economic statistics,” in Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 21, Mei 2011, pp. 8589–8594, doi: 10.1073/pnas.1017031108.
Cheng, Y. Zhang, Y. Chen, Y. Wu, dan Y. Yue, “Pest identification via deep residual learning in complex background,” Computer and Electronics in Agriculutre, vol. 141, pp. 351–356, 2017.
Chollet, Deep Learning with Python. New York, USA: Manning, 2021.
CSIRO Food and Nutritional Sciences, “Vacuum-packed meat : storage life and spoilage,” 2003. [Online]. Available: http://www.meatupdate.csiro.au/VPmeat-spoilage-storage.pdf. [Accessed: 30-Jul-2022].
D. Elvidge, K. E. Baugh, E. A Kihn, H. W. Kroehl, E. R. Davis, dan C. W. Davis, “Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption,” International Journal of Remote Sensing, Vol.18, no. 6, pp. 1373–1379, Nov. 2010, doi: 10.1080/014311697218485.
D. Magarey, T. B. Sutton, dan C. L. Thaye, "A simple generic infection model for foliar fungal plant pathogens,” Ecology and Epidemiology, vol. 95, no. 1, pp. 92–100, 2005.
D. Prabawa, H. T. Soblia, Y. F. Amin, W. Albertha, dan E. Setiawan, “The use of mobile positioning data (MPD) to delineate metropolitan area in Indonesia: Case study in Cekungan Bandung” in 2020 Asia-Pacific Statistics Week, Bangkok, Thailand, United Nations ESCAP, Juni 2020.
D. R. Cruz, L. F. S. Leandro, dan G. P. Munkvold, “Effect of temperature and pH on Fusarium oxysporum and soybean seedling disease,” Plant Disease, vol. 103, no. 12, pp. 3234–3243, 2019.
Downloads
Published
Series
Categories
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

























