Templates
Indexed by
Citedness
Penulis: Widya Fatriasari, Nanang Masruchin, Euis Hermiati
Selulosa merupakan salah satu bahan alam yang jumlahnya melimpah di muka bumi. Selulosa dapat diolah menjadi berbagai macam produk yang berperan penting bagi kehidupan manusia, seperti pulp, kertas, dan bioetanol.
Buku ilmiah ini akan mengupas tuntas selulosa dari segi karakteristik dan pemanfaatannya sehingga cocok digunakan sebagai buku referensi. Dengan memahami karakteristik selulosa, diharapkan penelitian lebih lanjut terkait selulosa dapat terwujud untuk membantu memperluas kemungkinan aplikasinya di berbagai bidang.
©2019 Lembaga Ilmu Pengetahuan Indonesia (LIPI)
Abe, K., Iwamoto, S., & Yano, H. (2007). Obtaining cellulose nano bers with a uniform width of 15 nm from wood. Biomacromolecules, 8(10), 3276– 3278.
Adel, A. M., El-Wahab, Z. H. A., Ibrahim, A. A., Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydrate Polymers, 83(2): 676–687.
Ahtee, M., Hattula, T., Mangs, J., & Paakkari T. (1983). An X-ray di raction method for determination of crystallinity of wood pulp. Paperi ja Puu, 65, 475–480.
Ăkerholm, M. & Salmén L. (2002). Dynamic FTIR spectroscopy for carbohydrate analyses of wood pulp. Journal Pulp Paper Science, 28(7): 245–249.
Akhtar, M., Scott, G. M., Swaney, R. E., & Kirk, T. K. (1998). Overview of biomechanical and biochemical pulping research. ACS Symposium Series, 687(2), 15–26.
Albernaz, V. L., Joanitti, G. A., Lopes, C. A. P., & Silva, L. P. (2015). Cellulose nanocrystals obtained from rice by-products and their binding potential to metallic ions. Journal Nanomaterials, 2015, 1–8.
Alvarez, V, E. Rodriguez, A.Vazquez. (2006). ermal degradation and decomposition of jute/vinylester composites. J. erm Anal Calorim 85(2), 383–389.
Amin, Y., Sya i, W., Wistara, N. J., & Prasetya, B. (2014). Lime pretreatment on jabon wood to improve its reducing sugar yield. Jurnal Ilmu dan Teknologi Kayu Tropis, 12(2), 196–206.
Andersson, S., Wikberg, H., Pesonen, E., Maunu, S. L., & Serimaa, R. (2004). Studies of crystallinity of Scots pine and Norway spruce cellulose. Tress, 18(3), 346–353.
Anita, S. H., Fitria, Solihat, N. N., Sari, F. P., Risanto, L., Fatriasari, W., & Hermiati, E. (2019). Optimization of Microwave-Assisted Oxalic Acid Pretreatment of Oil Palm Empty Fruit Bunch for Production of Fermentable Sugars. Publish online di Waste and Biomass Valorization, 7 January 2019.
Anita, S. H., Risanto, L., Hermiati, E., & Fatriasari, W. (2012). Pretreatment of oil palm empty fruit bunch (OPEFB) using microwave irradiation. Dalam Proceedings of the 3rd International Symposium of IWORS (Indonesia Wood Research Society), 348–354. Yogyakarta: Masyarakat Peneliti Kayu Indonesia.
Aprilia, N. A. S., Davoudpour, Y., Zulqarnain, W., Khalil, H. P. S. A., Hazwan, C. I. C. M., Hossain, M. S., Dungani, R., (...), & Haa z, M. K. M. (2016). Physicochemical characterization of microcrystalline cellulose extracted from kenaf bast. BioResources, 11(2), 3875–3889.
Argawal, U. P., Reiner, R. S., & Ralph, S. A. (2010). Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose, 17(4), 721–733.
Argun, M. E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modi ed oak sawdust: ermodynamics and kinetics. Journal of Hazardous Material, 141(1), 77–85.
Ashby, M. F. (2008). e CES EduPack database of natural and man-made materials. Cambridge: Granta Design.
Atalla, R. H. (1992). Structural changes in cellulose during papermaking and recycling. Dalam Material Research Society Symposium Proceedings, 266, 229–236. doi:10.1557/proc-266-229
Atic, C., Immamoglu, S., & Valchev, I. (2005). Determination of speci c beating energy applied on certain pulps in a valley beater. Journal of the University of Chemical Technology and Metallurgy, 40(3), 199–204.
Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., & Wågberg, L. (2009). Nanoscale cellulose lms with di erent crystallinities and mesostructures—their surface properties and interaction with water. Langmuir, 25(13), 7675–7685.
Aulin, C., Gällstedt, M., & Lindström, T. (2010). Oxygen and oil barrier properties of micro brillated cellulose lms and coatings. Cellulose, 17(3), 559–574.
Avérous, L. & Le Digabel, F. (2006). Properties of biocomposites based on lignocellulosic llers. Carbohydrate Polymers, 66(4), 480–493.
Awadel-Karim, S., Nazhad, M. M., & Pazsner, L. (1999). Factors a ecting crystalline structure of cellulose during solvent puri cation treatment. Holzforschung, 53(1), 1–8.
Azubuike, C. (2012). Physicochemical, spectroscopic and thermal properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells. Journal of Excipients and Food Chemicals, 3(3), 106–115.
Azubuike, C. P. & Okhamafe, A. O. (2012). Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. International Journal Recycling of Organic Waste Agriculture, 1(1), 1–7.
Bajpai, P. (2016). Pretreatment of lignocellulosic biomass for biofuel production: Structure of lignocellulosic biomass. Singapura: Springer Singapore.
Balu, B. (2009). Plasma processing of cellulose surfaces and their interactions with uids. (Disertasi, Engineering-Chemical Engineering, Georgia Institute of Technology).
Bansal, P., Hall, M., Real , M. J., Lee, J. H., & Bommarius, A. S. (2010). Multivariate statistical analysis of X-ray data from cellulose: A new method to determine degree crystallinity and predict hydrolysis rates. Bioresource Technology, 101(12), 4461–4471.
Belgacem N. (2016). Nanocellulose: Production, functionalization and application preface. Industrial Crops and Products, 93, 1.
Besbes, I., Vilar, M. R., & Bou , S. (2011). Nano brillated cellulose from alfa, eucalyptus and pine bres: Preparation, characteristics and reinforcing potential. Carbohydrate Polymers, 86(3), 1198–1206.
Bettaieb, F., Khiari, R., Dufresne, A., Mhenni, M. F., Putaux, J. L., Bou , S. (2015). Nano brillar cellulose from Posidonia oceanica: Properties and morphological features. Carbohydrate Polymers, 72, 97–106.
Bhattacharya, D., Germinaro, L. T., & Winter, W. T. (2008). Isolation, preparation and characterization of cellulose micro bers obtained from bagasse. Carbohydrate Polymers, 73(3), 371–377.
Bochek, A. M., Shevchuk, I. L., & Lavrent’ev, V. N. (2003). Fabrication of microcrystalline and powdered cellulose from short ax ber and ac straw. Journal of Applied Chemistry, 76(10), 1679–1682.
Bodirlau, R., Spiridon, I., & Teaca, C. A. (2007). Chemical investigation of wood tree species in temperate forest in east-northern Romania. BioResources, 2(1): 41-57.
Boisset, C., Fraschini, C., Schulein, M., Henrissat, B., & Chanzy, H. (2000). Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase cel 6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel 7A. Applied and Environmental Microbiology, 66(4), 1444–1452.
Bondenson, D., Mathew, A., & Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13, 171–180.
Borges, A. C., Eyholzer, C., Duc, F., Bourban, P. E., Tingaut, P., Zimmermann, T., Pioletti, D. P., Månson, J. A. (2011). Nano brillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomaterialia, 7(9), 3412–3421.
Börjesson, M. & Westman, G. (2015). Crystalline nanocellulose: Preparation, modi cation, and properties cellulose-fundamental aspects and current trends. Dalam M. Poletto (Ed.), Cellulose: Fundamental aspects and current trends (161–191). London,: IntechOpen.
Borjesson, M. & Westman, G. (2015). Crystalline nanocellulose–Preparation, modi cation, and properties. Dalam M. Poletto & H. L. O. Junior (Ed.). Cellulose: Fundamental aspects and current trends, 159–191. DOI: 10.5772/61899.
Bourbigot, S., Chlebicki, S., & Mamleev, V. (2002). ermal degradation of cotton under linear heating. Polymer Degradation and Stability, 78(1), 57– 62.
Boutros, S. & Hanna, A. A. (1978). Some electrical properties of wood pulp. Journal of Polymer Science: Polymer Chemistry Edition, 16(6), 1443–1448.
Bowyer, J. L., Shmulsky, R., & Haygreen, J. G. (2007). Forest products and wood science: An introduction. Edisi kelima. Oxford: Blackwell Publishing.
Brancato, A. A. (2008). E ect of progressive recycling on cellulose ber surface properties. (Tesis, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology).
Brett, C. T. (2000). Cellulose micro brils in plants: Biosynthesis, deposition, and integration into the cell wall. International Review of Cytology, 199, 161– 199.
Chen, H. (2014). Chemical composition and structure of natural lignocellulose. Dalam H. Chen, Biotechnology of lignocellulose: eory and practice. New York: Springer Netherlands.
Cabrera, R. Q., Meersman, F., MacMillan, P. F., & Dimitriev, V. (2011). Nanomechanical and structural properties of native cellulosic under compressive stress. Biomacromolecules, 12(6), 2178–2183.
Cuissinat, C., & Navard, P. (2006a). Swelling and dissolution of cellulose, Part I: Free oating cotton and wood bres in N-methylmorpholine N-oxide water mixtures.Macromolecular Symposia, 244(1), 1–18.
Cuissinat, C., & Navard, P. (2006b). Swelling and dissolution of cellulose, Part II: Free oating cotton and wood bres in NaOH–water-additives systems. Macromolecular Symposia, 244 (1), 19–30.
Cao, Y. & Tan, H. (2005). Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray di raction. Enzyme and Mocrobial Technology, 36(2–3), 314–317.
Caraschi J. C. & Leato, A. L. (2000). Characterization of curaua ber. Mol. Cryst. Liq. Cryst., 353(1), 149–152
Carrilo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004). Structural FTIR analysis and thermal characterization of lyocell and viscose-type bres. European Polymer Journal, 40(9), 2229–2234.
Casey, J. P. (1980). Pulp and paper: Chemistry and chemical technology. ird Edition Vol 2. New Jersey: Wiley.
Castro, C., Corderio, N., Faria, M., Zuluaga, R., Putuaux, J. L. Filpponen, I., Velez,, L., Rojas, A. & Gañán, P. (2015). In situ glyoxalization during biosynthesis of bacterial cellulose. Carbohydrate Polymers, 126, 32–39.
Chandel, A. K., Singh, O. V., & Rao, L. V. (2010). Biotechnological applications of hemicellulosic derived sugars: State-of-the-art. Dalam O. V. Singh & S. P. Harvey (Eds.), Sustainable biotechnology: Renewable resources and new perspectives, 63–81. Berlin: Springer Verlag.
Chandra, R., Bura, R., Mabee, W., Berlin, A., Pan, X., & Saddler, J. N. (2007). Substrate pretreatment: e key to e ective enzymatic hydrolysis of lignocellulosic? Advanced in Biochemical Engineering/Biotechnology, 108, 67–93.
Chang, C. & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84(1), 40–53.
Chen, H. (2014). Chemical composition and structure of natural lignocellulose. Dalam H. Chen, Biotechnology of lignocellulose: eory and practice, 25–71. New York: Springer.
Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nano bers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804–1811.
Chen, W.-H., Tu, Y.-J., & Sheen, H.-K. (2011). Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88(8), 2726–2734.
Chum, H. L., Douglas, L. J., Feinberg, D. A., & Schroeder, H. A. (1985). Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose. Golden, Colorado: Solar Energy Reasearch Institute.
Corgie, S. C., Smith, H. M., & Walker, L. P. (2011). Enzymatic transformations of cellulose assessed by quantitative high-throughput Fourier transform infrared spectroscopy (QHT-FTIR). Biotechnology and Bioengineering, 108(7), 1509–1520.
Coto, Z., Wahyudi, I., & Hadiyane, A. (2015). Peningkatan mutu kayu melalui perbaikan sifat sis untuk kayu cepat tumbuh dan berdiameter kecil. Bogor: IPB Press.
Cranston, E. D. (2003) Nanocellulose. Diakses pada 21 Maret 2013 dari https:// milo.mcmaster.ca/portal/collaborate/nanocellulose-1/nanocellulose-sheet.
Cybulska J., Szyma M., Ska-Chargot, Zdunek A., Psonka-Antonczyk K. M, Bjørn T. Stokke. (2015). Crystallinity and nanostructure of cellulose from di erent sources. Makalah dipresentasikan dalam e 12th International Congress on Engineering and Food (ICEF), Quebec City, Canada, June 14- 18, 2015.
Darmawan, S., Wistara, N. J., Pari, G., Maddu, A., & Sya i, W. (2016). Characterization of lignocellulosic biomass as raw material for the production of porous carbon-based materials. BioResources, 11(2), 3561– 3574.
Das, K., Ray, D., Bandyopadhyay, N., & Sengupta, S. (2010). Study of the properties of microcrystalline cellulose particles from di erent renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. Journal of Polymers and the Environment, 18(3), 355–363.
De Souza, I. J., Bouchard, J., Méthot, M., Berry, R., & Argyropoulos, D. S. (2002). Carbohydrates in oxygen deligni cation. Part I: Changes in cellulose crystallinity. Journal of Pulp and Paper Science, 28(5), 167–170.
Devi, R. R. & Maji, T. K. (2002). Studies of properties of rubber wood with impregnation of polymer. Bulletin of Materials Science, 25(6), 527–531.
Diddens, I., Murphy, B., Krisch, M., & Muller, M. (2008). Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromelcules, 41, 9755–9759.
Dinand, E., Vignon, M., Chanzy, H., & Heux, L. (2002). Mercerization of primary wall cellulose and its implication for the conversion of cellulose I to cellulose II. Cellulose, 9(1), 7–18.
Diniz, J. M. B. F., Gil, M. H., & Castro, J. A. A. M. (2004). Horni cation- its origin and interpretation in wood pulps. Wood Science and Technology, 37(6), 489–494.
Djahedi, L. (2015). Deformation of cellulose allomorphs studied by molecular dynamics. (Tesis, Department of Fibre and Polymer Technology KTH Royal Institute of Technology, Stockholm).
Domingues, R. M. A., Gomes, M. E., & Reis, R. L. (2014). e potential of cellulose nanocrystals in tissue engineering. Biomacromolecules, 15(7), 2327–2346.
Du, X., Zhang, Z., Liu, W., & Deng, Y. (2017). Nanocellulose-based conductive materials and their emerging applications in energy devices: A review. Nano Energy, 35, 299–320.
Dufresne, A., Dupeyre, D., & Vignon, M. R. (2000). Cellulose micro brils from potato tuber cells: Processing and characterization of starch–cellulose micro bril composites. Journal of Applied Polymer Science, 76(14), 2080– 2092.
DuPont announces plans to sell Iowa-based cellulosic ethanol plant. (2017). Diakses pada 29 Mei 2018 dari https://biofuels-news.com/display_ news/13078/dupont_announces_plans_to_sell_iowabased_cellulosic_ ethanol_plant/
Eichhorn, S. J. (2011). Cellulose nanowhiskers: Promosing materials for advanced applications. Soft Matter, 7, 303–315.
El Seoud, O. A., Fidale, L. C., Naiara, R., D’Almeida, M. L. O., & Frollini, E. (2008). Cellulose swelling by protic solvents: Which properties of the biopolymer and the solvent matter. Cellulose, 15(3), 371–392.
Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., & Guthrie, J. T. (2010). Cellulose micro bres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852–859.
Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J. L., Heux, L., Dubreuil, F., & Rochas, C. (2008). e shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1), 57–65.
El-Sakhawy, M. & Hassan, M. L. (2007). Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 67(1), 1–10.
Emons, A. M. & Mulder, B. M. (2000). How the deposition of cellulose micro brils builds cell wall architecture. Trends in Plant Science, 5(1), 35– 40.
Emons, A. M. C. & Mulder, B. M. (1998). e making of the architecture of the plant cell wall: How cells exploit geometry. Dalam N. R. Cozzareli (Ed.), Proceeding of the national academy of sciences, 95(12), 7215–7219.
Enerkem starts commercial production of cellulosic ethanol at its biofuels facility in Canada. (2017, 18 September). Diakses pada 8 Mei 2018 dari https://www.waste360.com/waste-energy/enerkem-starts-commercial- production-cellulosic-ethanol-its-biofuels-facility-canada.
Eriksen, Ø., Syverud, K., & Gregersen O. W. (2008). e use of micro brillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp & Paper Research Journal, 23(3), 299–304.
Evans, R., Newman. R. H., Roick, U. C., Suckling, & Wallis, A. F. A. (1995). Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray di raction and solid state NMR results. Holzforschung, 49(6), 498–504.
Eyholzer, Ch., Bordeanu, N., Lopez-Suevos, F., Rentsch, D., Zimmermann, T., & Oksman, K. (2010). Preparation and characterization of water- redispersible nano brillated cellulose in powder form. Cellulose, 17(1), 19–30.
Fahma, F., Iwamoto, S., Hori, N., Iwata, T., & Takemura, A. (2011). E ect of pre-acid hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose, 18(2), 443–450.
Fajriutami, T., Fatriasari, W., & Hermiati E. (2012). Dilute acid hydrolysis of sengon pulp hydrolysis by dilute acid under microwave irradiation. Dalam Proceedings of e 2nd Korea-Indonesia Workshop & International Symposium on Bioenergy from Biomass, 83–85. Serpong: Lembaga Ilmu Pengetahuan Indonesia.
Fajriutami, T., Fatriasari, W., & Hermiati, E. (2016). Pengaruh praperlakuan basa pada ampas tebu terhadap karakterisasi pulp dan produksi gula pereduksi. Jurnal Riset Industri, 10(3), 147–161.
Falah, F., Fatriasari, W., Ermawar, R. A., Nugroho, D. T. A., & Hermiati, E. (2011). E ect of corn steep liquor on bamboo biochemical pulping using Phanerochaete chrysosporium. Jurnal Ilmu dan Teknologi Kayu Tropis, 9(2), 111–125.
Fan, L. T., Lee, Y.-H., & Beardmore, D. H. (1980). Mechanism of the enzymatic hydrolysis of cellulose: e ects of major structural features of cellulose on enzymatic Hydrolysis. Biotechnology and Bioengineering, 22(1), 177–199.
Fatriasari, W. & Anita, S. H. (2012). Evaluation of two-stage fungal pretreatment for the microwave hydrolysis of betung bamboo. Dalam Proceedings of e 2nd Korea-Indonesia workshop and international symposium on bioenergy from biomass, 95–100. Serpong,: Lembaga Ilmu Pengetahuan Indonesia.
Fatriasari, W. & Hermiati, E. (2008). Analisis morfologi serat dan sifat sis- kimia pada enam jenis bambu sebagai bahan baku pulp dan kertas. Jurnal Ilmu dan Teknologi Hasil Hutan, 1(2), 67–72.
Fatriasari, W. & Hermiati, E. (2016). Lignocellulosic biomass for bioproduct: Its potency and technology development. Journal of Lignocellulose Technology, 1(1), 1–14.
Fatriasari, W. & Risanto, L. (2011). Sifat pulp kraft kayu sengon (Paraserianthes falcataria L. Nilsen): Perbedaan konsentrasi bahan pemasak dan tahap pemutihan. Widya Riset, 14(3), 589–597.
Fatriasari, W., Adi, D. T. N., Laksana, R. P. B., Fajriutami, T., Raniya R, Ghozali, M., & Hermiati E. (2018). e e ect of amphipilic lignin derivatives addition on enzymatic hydrolysis performance of kraft pulp from sorghum bagasse. Dalam IOP Conference Series: Earth and Environmental Science, 141, 1–7. Bristol: IOP Publishing.
Fatriasari, W., Fajriutami, T., Laksana, R. P. B., & Wistara, N. (2018). Microwave assisted-acid hydrolysis of jabon kraft pulp. Waste and Biomass Valorization, 9(53), 1–15. DOI: https://doi.org/10.1007/s12649-017-0182-9
Fatriasari, W., Anita, S. H., & Risanto, L. (2017). Microwave assisted acid pretreatment of oil palm empty fruit bunches (EFB) to enhance its fermentable sugar production. Waste and Biomass Valorization, 8(2), 379– 391.
Fatriasari W, Anita, S. H., Falah, F., Adi, D. T. N, & Hermiati, E. (2010). Biopulping bambu betung menggunakan kultur campur jamur pelapuk putih (Trametes versicolor, Pleurotus ostreatus, dan Phanerochaete crysosporium). Berita Selulosa, 45(2), 44–56
Fatriasari, W., Ermawar, R. A., Falah, F., Yanto, D. H. Y., Adi, D. T. N., Anita, S. H., & Hermiati, E. (2011). Kraft and soda pulping of white rot pretreated betung bamboo. Jurnal Ilmu dan Teknologi Kayu Tropis, 9(1), 42–55.
Fatriasari, W., Ermawar, R. A., Falah, F., Yanto, D. H. Y., & Hermiati, E. (2009). Pulping soda panas terbuka bambu betung dengan praperlakuan fungi pelapuk putih (Pleurotus ostreatus dan Trametes versicolor). Jurnal Ilmu dan Teknologi Hasil Hutan, 2(2), 45–50.
Fatriasari, W. & Anita, S. H. (2012). Evaluation of two-stage fungal pretreatment for the microwave hydrolysis of Betung Bamboo. Dalam Proceedings of e 2nd Korea-Indonesia Workshop and International Symposium on Bioenergy from Biomass, 95–100. Serpong: P2 Kimia LIPI.
Fatriasari, W., Lestari, A. S., Prianto, A. H., & Syamani, F. A. (2013). e resistance of polystyrene treated-Sandoricum koetjape and Durio zibethinus woods towards decay fungi and termites. Dalam Proceedings e 2nd International Symposium for Sustainable Humanosphere: Balancing E orts on Environment Usage in Economy and Ecology, 14–22. Bandung: Lembaga Ilmu Pengetahuan Indonesia dan Universitas Kyoto.
Fatriasari, W., Raniya, R., Oktaviani, M., & Hermiati, E. (2018). e improvement of sugar and bioethanol production of oil palm empty fruit bunches (Elaeis guineensis jacq) through microwave-assisted maleic acid pretreatment. BioResources, 13(2), 4378–4403.
Fatriasari, W., Sya i, W., Wistara, N., Syamsu, K., & Prasetya, B. (2016). Lignin and cellulose changes of betung bamboo (Dendrocalamus asper) pretreated by microwave heating. International Journal on Advanced Science Engineering Information Technology, 6(2), 186–195.
Fatriasari, W., Supriyanto, & Iswanto, A. H. (2015). e kraft pulp and paper properties of sweet sorghum bagasse (Sorghum bicolor L Moench). Journal of Engineering and Technological Sciences, 47(2), 149–159.
Fatriasari, W., Sya i W., Wistara, N., Syamsu, K., & Prasetya, B. (2014a). Characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. International Journal of Renewable Energy and Development, 3(2), 133–143.
Fatriasari, W., Sya i, W., Wistara, N., Syamsu, K., Prasetya, B., & Lubis, M. A. R. (2014b). A novel microwave-biological pretreatment e ect on cellulose and lignin changes of betung bamboo (Dendrocalamus asper). Dalam E. Rijanto (Ed.), Proceedings of ASEAN Conference on Science and Technology, 219–230. Jakarta: LIPI Press.
Fatriasari, W., Sya i, W., Wistara, N., Syamsu, K., & Prasetya, B. (2014c). Digestibility of betung bamboo ber following fungal pretreatment. Makara Journal Technology, 18(2), 51–58.
Fatriasari, W., Sya i, W., Wistara, N., Syamsu, K., & Prasetya B. (2014d). Performance of microwave pretreatment on enzymatic and microwave hydrolysis of betung bamboo (Dendrocalamus asper). Teknologi Indonesia, 37(3), 147–153.
Fatriasari, W., Sya i, W., Wistara, N., Syamsu, K., & Prasetya, B. (2015). Hidrolisis enzimatis dan microwave bambu betung (Dendrocalmus asper (Schult.f.)) setelah kombinasi perlakuan pendahuluan secara biologis dan microwave. Jurnal Teknologi Industri Pertanian, 25(2), 164–173.
Fatriasari, W., Sya i, W., Wistara, N., Syamsu, K., Prasetya, B., Anita, S. H., & Risanto, L. (2015). Fiber disruption of betung bamboo (Dendrocalamus asper) by combined fungal and microwave pretreatment. Biotropia, 22(2), 81–94.
Favier, V., Cavaille, J. Y., Canova, G. R., & Shrivastava, S. C. (1997). Mechanical percolation in cellulose whisker nanocomposites. Polymer Engineering and Science, 37(10), 1732–1739.
Fengel, D. & Wegener, G. (1983). Wood chemistry, ultrastructure, reactions. Berlin, Jerman: Walter de Gruyter.
Fernandes, E. M., Pires, R. A., Mano, J. F., & Reis, R. L. (2013). Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical eld. Progress in Polymer Science, 38(10–11), 1415–1441.
Ferreira, S. R., Lima, P. R. L., Silva, F. A., & Toledo, R. D. F. (2014). E ect of sisal ber horni cation on the ber-matrix bonding characteristcs and bending behavior of cement based composites. Key Engineering Materials, 600(2014), 421–432.
Fidale, L. C., Ruiz, N., Heinze, T., & El Seoud, O. A. (2008). Cellulose swelling by aprotic and protic solvents: What are the similarities and di erences? Macromolecular Chemistry and Physics, 209(12), 1240–1254.
Fink, H.-P. & Walenta E. (1994). Rontegenbeugungsuntersuchungen zur ubermolekularen struktur von cellulose im verarbeingtugsprozeb. Das Papier, 48(12), 739–748.
Fitria, Ermawar, R. A., Fatriasari, W., Fajriutami, T., Yanto, D. H. Y, Falah, F., & Hermiati, E. (2013). Biopulping of bamboo using white-rot fungi Schizophyllum commune. Dalam Proceedings e 2nd international symposium for sustainable humanosphere bandung, 8–13.
Flint, E. B., & Suslick, K. S. (1991). e temperature of cavitation. Science, 253(5026), 1397–1399.
Focher, B., Palma, M. T., Canetti, M., Torri, G., Cosentino, C., & Gastaldi G. (2001). Structural di erences between non-wood plant cellulose: Evidence from solid state NMR, vibrational spectroscopy and X-ray di ractometry. Industrial Crops and Products, 13(3), 193–208.
Foo, K. Y. & Hameed, B. H. (2009). Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Advances in Colloid and Interface Science, 152(1–2), 39–47.
Fratzl, P. & Weinkamer, R. (2007). Nature’s hierachical materials. Progress in Material Science, 52(8), 1263–1334.
Fukuzumi, H., Saito, T., Okita, Y., & Isogai A. (2010). ermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation and Stability, 95(9), 1502–1508.
Future Market, Inc. (2012). e global market for nanocellulose 2017–2027. Edinburgh: Future Market, Inc.
Garcia, A., Gandini, A., Labidi, J., Belgacem, N., & Bras, J. (2016). Industrial and crops wastes: A new source for nanocellulose biore nery. Industrial Crops and Products, 93, 26–38.
Gaspard, S., Altenor, S., Dawson, E. A., Barnes, P. A., & Ouensanga, A. (2007). Activated carbon from vetiver roots: Gas and liquid adsorption studies. Journal of Hazardous Materials, 144(1–2), 73–81.
Gha ar, S. H. & Fan, M. (2014). Lignin in straw and its application as an adhesive. International Journal of Adhesion and Adhesives, 48, 92–101.
Gindl, W., Gupta, H. S., Schöberl, T., Lichtenegger, H. C., & Fratzl, P. (2004). Mechanical properties of spruce wood cell walls by nanoindetation. Applied Physics A, 79(8), 2069–2073.
Goda, K., Sreekala, M., Gomes, A., Kaji, T., & Ohgi, J. (2006). Improvement of plant based natural bers for toughening green composites-e ect of load application during mercerization of ramie bers. Composite part A: Applied science manufacturing, 37(12), 2213–2220.
Goldemberg, J. & Lucon, O. (1998). Energy, environment and development. London: Earthscan Publications Ltd.
González, I., Alcalà, M., Chinga-Carrasco, G., Vilaseca, F., Bou , S., & Mutjé, P. (2014). From paper to nanopaper: Evolution of mechanical and physical properties. Cellulose, 21(4), 2599–2609.
Gordon, J. E. (1968). e new science of strong materials: Or why you don’t fall through the oor. New Jersey: Princeton University Press.
Gregg, J. S., Bolwig, S., Hansen, T., Solér, O., Amer-Allam, S. B., Viladecans, J. P., Klitkou, A., & Fevolden, A. (2017). Value chain structures that de ne European cellulosic ethanol production. Sustainability, 9(1), 118.
Guhados, G., Wa, W., & Hutter, J. L. (2005). Measurement of the elastic modulus of single bacterial cellulose bers using atomic force microscopy. Langmuir 21, 6642–6646.
Gümüşkaya, E. & Usta, M. (2002). Crystalline structure properties of bleached and unbleached wheat straw (Triticum aestivum L.) soda-oxygen pulp. Turkish Journal of Agriculture and Forestry, 26(5), 247–252.
Gümüşkaya, E. & Usta, M. (2006). Dependency of chemical and crystalline structure of alkali sul te pulp on cooking temperature and time. Carbohydrate Polymers, 65(4), 461–468.
Gümüşkaya, E., Usta, M., & Kirei, H. (2003). e e ects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polymer Degradation and Stability, 81(3), 559–564.
Haa z, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., & Jawaid, M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 98(1), 139–145.
Haa z, M. K. M., Hassan, A., Zakaria, Z., & Inuwa, I. M. (2014). Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 103, 119–125.
Habibah, R., Nasution, D. Y., & Muis, Y. (2013). Penentuan berat molekul dan derajat polimerisasi α-selulosa yang berasal dari alang-alang (Imperata cyclindrica) dengan metode viskositas. Jurnal Saintia Kimia, 1(2), 1–6.
Habibi, Y., Lucia, L.A., & Rojas, O.J. (2010) Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110 (6), 3480–3500.
Hallac, B. B. & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioproducts and Biore ning, 5(2), 215–225.
Harper, B. J., Clendaniel, A., Sinche, F., Way, D., Hughes, M., Schardt, J., Simonsen, J., (...), & Harper, S. L. (2016). Impacts of chemical modi cation of toxicity of diverse nanocellulose materials to developing zebra sh. Cellulose, 23(3), 1763–1775.
Hartati, S., Sudarmonowati, E., Fatriasari, W., Hermiati, E., Dwianto, W., Kaida, R., Baba, K., (...), & Hayashi, T. (2010). Wood characteristic of superior sengon collection and prospect of wood properties improvement through genetic engeneering. Wood Research Journal, 1(2), 103–105.
Hashim,R.,Nadhari,W.N.A.W.,Sulaiman,O.,Kawamur,F.,Hiziroglu,S.,Sato,M., Sugimoto, T., (...), & Tanaka, R. (2011). Characterization of raw materials and manufactured binderless particleboard from oil palm biomass. Materials and Design, 32(1), 246–254.
Hassan, M. L. & El-Sakhawy, M. (2005). Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues. Makalah disajikan dalam e 8th Arab International Conference on Polymer Science & Technology, 27–30 November 2005, Cairo-Sharm El-Shiekh, Egypt.
Hayashi, N., Sugiyama, J., Okano, T., & Ishihara, M. (1997a). Selective degradation of cellulose Ia component in Cladophora cellulose with Trichoderma viride cellulose. Carbohydrate Research, 305(1), 261–269.
Hayashi, N., Sugiyama, J., Okano, T., & Ishihara, M. (1997b). e enzymatic susceptibility of cellulose micro brils of the algal-bacterial type and cotton- ramie type. Carbohydrate Research, 305(2), 109–116.
Hayashi, N., Kondo, T., & Ishihara, M. (2005). Enzymatically produced nano-ordered short elements containing cellulose I crystalline domains. Carbohydrate Polymers, 61(2), 191–197.
Haygreen, J. G. & Bowyer, J. L. (1996). Forest products and wood science: An introduction. Edisi ketiga. New Jersey: Wiley
He, J., Cui, S., & Wang, S.-Y. (2008). Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. Journal of Applied Polymer and Science, 107(2), 1029–1038.
Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., & Risberg B. (2006). In vivo biocompatibilty of bacterial cellulose. Journal of Biomedical Materials Research A, 76(2), 431–438.
Hermiati, E. (2012). Rekayasa proses hidrolisis ampas tapioka menggunakan pemanasan gelombang mikro untuk produksi etanol. (Disertasi, Sekolah Pasca Sarjana, Institut Pertanian Bogor).
Hermiati, E., Azuma, J., Tsubaki, S., Mangunwidjaja, D., Sunarti, T.C., Suparno, O., & Prasetya, B. (2012). Improvement of microwave-assisted hydrolysis of cassava pulp and tapioca our by addition of activated carbon. Carbohydr. Polym., 87, 939–942.
Henriksson, M. & Berglund, L. A. (2007). Structure and properties of cellulose nanocomposite lms containing melamine formaldehyde. Journal of Applied Polymer and Science, 106(4), 2817–2824.
Henrissat, B., Driguez, H., Viet, C., & Schülein, M. (1985). Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/ Technology, 3(8), 722–726. doi:10.1038/nbt0885-722
Hermiati, E., Anita, S. H., Risanto, L., Styarini, D., Sudiyani, Y., Hana , A., & Abimanyu, H. (2013). Biological pretreatment of oil palm frond ber using white-rot fungi for enzymatic saccari cation. Makara Seri Teknologi, 17(1), 39–43.
Hidaka, H., Kim, U.-J., & Wada, M. (2010). Synchrotron X-ray ber di raction study on the thermal expansion behavior of cellulose crystals in tension wood of Japanese poplar in the low-temperature region. Holzforschung, 64(2), 167–171.
Hinterstoisser, B. & Salmen, L. (1999). Two dimensional steps scan FTIR: A tool to unravel to OH-valency-range of the spectrum of cellulose I. Cellulose, 64(2), 251–263.
Hirai, N., Sobue, N., & Asano, I. (1972). Studies on piezoelectric e ect of wood. IV. E ects of heat treatment on cellulose crystallites and piezoelectric e ect of wood. Mokuzai Gakkaishi, 18, 535–542.
Hollertz R. (2014). Dielectric properties of wood bre components relevant for electrical insulation applications. (Tesis Licentiate, School of Chemical Science and Engineering Department of Fibre and Polymer Technology Division of Fibre Technology RTH Royal Institute of Technology Stockholm, Swedia).
Hon, D. N.-S. & Shiraishi, H. (1991). Wood and cellulosic chemistry. New York City: Marcel Dekker, Inc.
Hooshmand, S., Aitomäki, Y., Skrifvars, M., Mathew, A. P., & Oksman, K. (2014). All-cellulose nanocomposite bers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals. Cellulose, 21(4), 2665–2678.
Howell, C. L. (2008). Understanding wood biodegradation through the characterization of crystalline cellulose nanostructures. ( esis, University of Maine, Amerika Serikat).
Hsieh, Y.-C., Yano, H., Nogi, M., & Eichhorn, S. J. (2008). An estimation of the Young’s modulus of bacterial cellulose laments. Cellulose, 15(4), 507–513.
Hubbell, C. A. & Ragauskas, A. J. (2010). E ect of acid-chlorite deligni cation on cellulose degree of polymerization. Bioresource Technology, 101(19), 7410–7415.
Hult, E.-L., Iversen, T., & Sugiyama, J. (2003). Characterization of the supermolecular structure of cellulose in wood pulp bres. Cellulose, 10(2), 103–110.
Hult, E.-L., Yamanaka, S., Ishihara, M., & Sugiyama, J. (2003). Aggregation of ribbons in bacterial cellulose induced by high pressure incubation. Carbohydrate Polymers, 53(1), 9–14.
Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Review bacterial cellulose: A materpiece of nature’s arts. Journal of Materials Science, 35(2), 261–270.
Imai, T., Boisset, C., Samejima, M., Igarashi, K., & Sugiyama, J. (1998). Unidirectional processive action of cellobiohydrolase Ce17A on Valonia cellulose microcrystals. FEBS Letters, 432, 113–116.
Imai, T. & Sugiyama, J. (1998). Nanodomains of Iα and Iα cellulose in algal micro brils. Macromolecules, 31(18), 6275–6279.
Ioelovich, M. (2008). Cellulose as nanostructured polymer: A short review. BioResources, 3(4), 1403–1418.
Ishikawa, A., Okano, T., & Sugiyama, J. (1994). Fine structure and tensile properties of ramie bers in the crystalline form of cellulose I, II and III. Wood Research, 38(2), 16–18.
Isogai, A. (1994). Allomorphs of cellulose and other polysaccharides. Dalam R. D. Gilbert (Ed.), Cellulosic polymers: Blends and composites. München: Hanser Publishers.
Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nano bers. Nanoscale, 3, 71–85.
Isroi, I., Ishola, M. M., Millati, R., Syamsiah, S., Cahyanto, M. N., Niklasson, C., & Taherzadeh, M. J. (2012). Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules, 17(12), 14995–15012.
Istirokhatun, T., Rokhati, N., Rachmawaty, R., Meriyani, M., Priyanto, S., & Susanto, H. (2015). Cellulose isolation from tropical water hyacinth for membrane preparation. Procedia Environmental Sciences, 23, 274–281.
Iswanto, A.I., Simarmata, J., Fatriasari, W., Azhar, I., Sucipto, T., & Hartono, R. (2017). Physical and mechanical properties of three-layer particleboards bonded with UF and UMF adhesives. Journal of the Korean Wood Science and Technology, 45(6), 787–796.
Iwamoto, S., Kai, W., Isogai, A., & Iwata, T. (2009). Elastic modulus of single cellulose micro brils from tunicate measured by atomic force microscopy. Biomacromolecules, 10(9), 2571–2576.
Iwamoto, S., Nakagaito, A. N., & Yano, H. (2007). Nano- brillation of pulp bers for the processing of transparent nanocomposites. Applied Physics A, 89(2), 461–466.
Jabbour, L., Bongiovanni, R., Chaussy, D., Gerbaldi, C., & Beneventi, D. (2013). Cellulose-based Li-ion batteries: A review. Cellulose, 20(4), 1523– 1545.
Jackson, J. K., Letchford, K., Wasserman, B. Z., Ye, L., Hamad, W. Y., & Burt, H. M. (2011). e use of nanocrystalline cellulose for the binding and controlled release of drugs. International Journal of Nanomedicine, 6, 321– 30.
Jacob, M., Joseph, S., Pothan, L. A., & omas, S. (2005). A study of advances in characterization of interfaces and ber surfaces in lignocellulosic ber- reinforced composites. Composite Interfaces, 12(1–2), 95–124.
Jahan, M. S., Saeed, A., He, Z., & Ni, Y. (2011). Jute as raw material for the preparation of microcrystalline cellulose. Cellulose, 18(2), 451–459.
Jamshaid, A., Hamid, A., Muhammad, N., Naseer, A., Ghauri, M., Iqbal, J., Ra q, S., & Shah, N. S. (2017). Cellulose-based materials for the removal of heavy metals from wastewater: An overview. Chemical BioEngineering Reviews, 4(4), 1–18.
Jayme, G. (1958). e arrangement of micro brils in dried cellulose and the implication of these structural alteration pulp properties. Dalam F. M. Bolam (Ed.), Fundamental of Papermaking Fibers: Transactions of the Symposium, 263–270. London: Technical Section, British Paper and Board Makers Association.
John, M. J. & omas, S. (2008). Bio bres and biocomposites. Carbohydrate Polymers, 71(3), 343–364.
Jonoobi, M., Mathew, A. P., & Oksman, K. (2012). Producing low-cost cellulose nano ber from sludge as new source of raw materials. Industrial Crops and Products, 40, 232–238.
Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., & Davoodi, R. (2015). Di erent preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose, 22(2), 935–969.
Jiang, G.-P., Zhang, J., Qiao, J.-L., Jiang, Y.-M., Zarrin, H., Chen, Z., Hong, F. (2015). Bacterial nanocellulose/Na on composite membranes for low temperature polymer electrolyte fuel cells. Journal of Power Sources, 273, 697–706.
Jiang, Z.-H., Yang, Z., So, C.-L., & Hse, C.-Y. (2007). Rapid prediction of wood crystallinity in Pinus elliotii plantation wood by near-infrared spectroscopy. Journal of Wood Science, 53(5), 449–453.
Joseph, P., Joseph, K., omas, S., Pillai, C., Prasad, V., Groenickx, G., & Saekissova, M. (2003). e thermal and crystallisation studies of short sisal bre reinforces polypropylene composites. Compos. Part A. Appl. Sci. Manuf., 34(3), 253–266.
Ju, X., Bowden, M., Brown, E. E., & Zhang, X. (2015). An improved X-ray di raction method for cellulose crystallinity measurement. Carbohydrate Polymers, 123, 476-481.
Julieta, B. B., Mariza, K. E. T., Maria, O. D. L., Fernando, F. E., Song, P. W., Maria, A.C. (2014). O ce paper recyclability: rst recycling. Papel, 75(7), 54-61.
Kalia, S., Bou , S., Celli, A., & Kango, S. (2014). Nano brillated cellulose: Surface modi cation and potential applications. Colloid and Polymer Science, 292(1), 5–31.
Kalia, S., Kaith, B., & Kaur, I. (2011). Cellulose bers: Bio- and nano-polymer composites: Green chemistry and technology. Berlin: Springer-Verlag Berlin Heidelberg.
Kalita, R. D., Nath, Y., Ochubiojo, M. E., & Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass Setaria glauca (L) P. Beauv and its potential as a drug delivery vehicle for isoniazid, a rst line antituberculosis drug. Colloids and Surfaces B: Biointerfaces, 108, 85–89.
Kamel, S. (2007). Nanotechnology and its applications in lignocellulosic composites: A mini review. eXPRESS Polymer Letters, 1(9), 546–575.
Karlsson, H. (2006). Fibre guide: Fibre analysis and process applications in the pulp and paper industry. Swedia: AB Lorentzen & Wettre.
Kassim, A. S. M., Aripin, A. M., Hatta, Z., & Daud, Z. (2015). Exploring non-wood plants as alternative pulps: from the physical and chemical perspectives. Dalam M. A. Hashim (Ed.), Proceedings of the international conference on global sustainability and chemical engineering 2014, 19–24. Singapura: Springer.
Kementerian Energi dan Sumber Daya Mineral (ESDM). (2006). Blueprint pengelolaan energi nasional 2006–2025 sesuai Peraturan Presiden No. 5 Tahun 2006. Diakses pada 7 Oktober 2017 dari https://www.esdm.go.id/ assets/media/content/Blueprint_PEN_tgl_10_Nop_2007.pdf
Keshwani, D. R. (2009). Microwave pretreatment of switchgrass for bioethanol production. (Disertasi, Biological and Agricultural Engineering, e Graduate Faculty of North Carolina State University, Raleigh, North Carolina).
Khalil, H. S. P. A., Alwani, M. S., & Omar, A. K. M. (2006). Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste bers. BioResources, 1(2): 220–232.
Kim, D.-Y, Nishiyama, Y., Wada, M., Kuga, S., & Okano, T. (2001). ermal decomposition of cellulose crystallites in wood. Holzforschung, 55(5), 521– 524.
Kim, H.-S., Kim, S., Kim, H.-J., & Yang, H.-S. (2006). ermal properties of bio- our- lled polyole n composites with di erent compatibilizing agent type and content. ermochimica Acta, 451(1–2), 181–188.
Kim, J.-H, Shim, B.-S., Kim, H.-S, Lee, Y.-J, Min, S.-K, Jang, D., Abas, Z., & Kim, J. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213.
Kim, U.-J., Eom, S.-H., & Wada, M. (2010). ermal decomposition of native cellulose: In uence on crystallite size. Polymer Degradation and Stability, 95(5), 778–781.
Kimura, S. & Itoh, T. (1996). New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma, 194(3–4), 151–163.
Kimura, S., Ohshima, C., Hirose, E., Nishikawa, J., & Itoh, T. (2001). Cellulose in the house of the appendicularian Oikopleura rufescens. Protoplasma, 216(1–2), 71–74.
Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.
Klemm, D., Philipp, B., Heinze, T., Heinze, U., & Wagenknecht, W. (1998). Comprehensive cellulose chemistry: Fundamentals and analytical methods (volume 1). Weinheim, Jerman: Wiley-VCH Verlag GmbH.
Kondo, T., Kose, R., Naito, H., & Kasai, W. (2014). Aqueous counter collision using paired water jets as a novel means of preparing bio-nano bers. Carbohydrate Polymers, 112, 284–290.
Krässig, H. A. (1993). Cellulose-structure: Accessibility and reactivity (polymer monographs). Philadelphia: Gordon and Breach Science Publisher.
Kroon-Batenburg, L. M. J., Bouma, B., & Kroon, J. (1996). Stability of cellulose structures by MD simulations. Could mercerized cellulose II be parallel? Macromolecules, 29(17), 5695–5699.
Kubojima, Y., Okano, T., & Ohta, M. (1998). Vibration properties of Sitka spruce heat-treated in nitrogen gas. Journal of Wood Science, 44(1), 73–77.
Kuijk, A., Koppert, R., Versluis, P., van Dalen, G., Remijn, C., Hazekamp, J., Nijsse, J., & Velikov, K. P. (2013). Dispersions of attractive semi exible berlike colloidal particles from bacterial cellulose micro brils. Langmuir, 29(47), 14356–14360.
Lane, J. (2014). GranBio starts cellulosic ethanol production at 21 million gallon plant in Alagoas, Brazil. Diakses pada 29 Mei 2018 dari http://www. biofuelsdigest.com/bdigest/2014/09/24/granbio-starts-cellulosic-ethanol- production-at-21-mgy-plant-in-brazil/
Larsson, P. A., Berglund, L. A., & Wagberg, L. (2014). Ductile all-cellulose nanocomposite lms fabricated from core-shell structured cellulose nano brils. Biomacromolecules, 15(6), 2218–2223.
Li, X., Chen, S., Hu, W., Shi, S., Shen, W., Zhang, X., & Wang, H. (2009). In situ synthesis of CdS nanoparticles on bacterial cellulose nano bers. Carbohydrate Polymers, 76(4), 509–512.
Li, Z., Yao, C., Yu, Y., Cai, Z., & Wang, X. (2014). Highly e cient capillary photoelectrochemical water splitting using cellulose nano ber-templated TiO2 photoanodes. Advanced Materials, 26(14), 2262–2267.
Liimatainen, H., Visanko, M., Sirviö, J., Hormi, O., & Niinimäki, J. (2013). Sulfonated cellulose nano brils obtained from wood pulp through regioselective oxidative bisul te pre-treatment. Cellulose, 20(2), 741–749.
Lin, N. & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302–325.
Liu, H., Lynne, S. T., & Edgar, K. J. (2015). e role of polymers in oral bioavailability enhanchement: A review. Polymer, 77, 399–415.
Lu, P. & Hsieh, Y.-L. (2012). Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydrate Polymers, 87(4), 2546–2553.
Lyons, W. J. (1959). eoretical value of the dynamic stretch modulus of cellulose. Journal of Applied Physics, 30, 796.
Lee, C. (1961). Crystallinity of wood cellulose bers studies by x-ray methods. Forest Prod. J. 11, 108–112.
Maftu’ah, E. & Nursyamsi, D. (2015). Potensi berbagai bahan organik rawa sebagai sumber biochar. Dalam A. D. Setyawan dkk. (Ed.), Prosiding seminar nasional masyarakat biodiversitas Indonesia, 1(4), 776–781. Solo: Masyarakat Biodiversitas Indonesia dan Universitas Sebelas Maret Surakarta.
Masruchin, N. & Park, B.-D. (2015). Manipulation of surface carboxyl content on TEMPO-oxidized cellulose brils. Journal of the Korean Wood Science and Technology, 43(5), 613–627.
Masruchin, N., Park, B.-D., & Causin, V. (2015). In uence of sonication treatment on supramolecular cellulose micro bril-based hydrogels induced by ionic interaction. Journal of Industrial Engineering and Chemistry, 29, 265–272.
Masruchin, N., Park, B.-D., Causin, V., & Um, I. C. (2015). Characteristics of TEMPO-oxidized cellulose bril-based hydrogels induced by cationic ions and their properties. Cellulose, 22(3), 1993–2010.
Masruchin, N. & Subyakto. (2012). Investigation characteristics of pulp bers as green potential polymer reinforcing agents. Jurnal Sains Materi Indonesia, 13(2), 9–96.
Mathew, A. P., Oksman, K., Pierron, D., & Harmand, M.-F. (2012). Fibrous cellulose nanocomposite sca olds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydrate Polymers, 87(3), 2291–2298.
Merserisasi. (2016). Dalam Badan Pengembangan dan Pembinaan Bahasa (Ed.), Kamus Besar Bahasa Indonesia Dalam Jaringan. Diakses pada 28 Novemebr 2018 dari https://kbbi.kemdikbud.go.id/entri/merserisasi
Mihranyan, A. (2011). Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. Journal of Applied Polymer Science, 119(4), 2449–2460.
Mihranyan, A., Edsman, K., & Strømme, M. (2007). Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocolloids, 21(2), 267–272.
Mihranyan, A., Nyholm, L., Bennet, A. E. G., & Strømme M. (2008). A novel high speci c surface area conducting paper material composed of polypyrrole and Cladophora cellulose. e Journal of Physical Chemistry B, 112(39), 12249–12255.
Minor, J. L. (1994). Horni cation: Its origin and meaning. Progress in Paper Recycling, 3(2), 93–95.
Mo, Z., Yang, B., & Zhang, H. (1994). e degree of crystallinity of multi component polymers by WAXD. Chinese Journal Polymer Science, 12(4), 296–301.
Mohamed, M. A., Mutalib, M. A., Hir, Z. A. M., Zain, M. F. M., Mohamad, A. B., Minggu, L. J., Awang, N. A., & Salleh, M. N. W. (2017). An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy application. International Journal of Biological Macromolecules, 103, 1232–1256.
Moigne, N. L. (2008). Swelling and dissolution mechanisms of cellulose bres. (Tesis, Ecole Nationale Sup ́erieure des Mines de Paris, Perancis).
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994.
Mosier, N., Wyman, C., Dale, B., Elender, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technololgy, 96(6), 673–686.
Nababan, Y. S. (2016). Produksi bioetanol dari pulp soda kayu jabon (Anthocephalus cadamba miq.) melalui optimasi hidrolisis enzimatik dengan penambahan surfaktan Tween 80. (Tesis, Sekolah Pascasarjana, Institut Pertanian Bogor).
Nada, A. M. A., Kamel, S., & El-Sakhawy, M. (2000). ermal behavior and infrared spectroscopy of cellulose carbamates. Polymer Degradation and Stability, 70(3), 347–355.
Nakagaito, A. N. & Yano, H. (2004). e e ect of morphological changes from pulp ber towards nano-scale brillated cellulose on the mechanical properties of high-strength plant ber based composites. Applied Physics A, 78(4), 547–552.
Nagalakshmaiah, M., El Kissi, N., Mortha, G., & Dufresne, A. (2016). Structural investigation of cellulose nanocrystals extracted from chili leftover and theirreinforcement in cari ex-IR rubber latex. Carbohydrate Polymers, 136, 945–954.
Nazarpour, F., Abdullah, D. K., Abdullah, N., & Zamiri, R. (2013). Evaluation of biological pretreatment of rubberwood with white rot fungi for enzymatic hydrolysis. Materials, 6(5), 2059–2073.
Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nano brils: A review of recent advances. Industrial Crops and Products, 93, 2–25.
Nechyporchuk, O., Pignon, F., & Belgacem, M. N. (2015). Morphological properties of nano brillated cellulose produced using wet grinding as an ultimate brillation process. Journal of Materials Science, 50(2), 531–541.
Nelson, M. L. & O’Connor,T. (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type (part II): A new infrared ratio for estimation of crystallinity in cellululoses I and II. Journal of Applied Polymer Science, 8(3), 1325-1341.
Newman, R. H. (1999). Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nuclear Magnetic Resononance, 15(1), 21–29.
Newman,R.H.(2008).SimulationofX-raydi ractogramsrelevanttothepurported polymorphs cellulose IVI and IVII. Cellulose, 15, 769–778.
Nickerson, R. F. & Habrle, J. A. (1947). Cellulose intercrystalline structure: Study by hydrolytic methods. Journal of Industrial and Engineering Chemistry, 39(11), 1507–1512.
Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen- bonding system in cellulose Iβ from synchrotron x-ray and neutron ber di raction. Journal of the American Chemical Society, 124(31), 9074–9082.
Nyholm, L., Nyström, G., Mihranyan, A., & Strømme, M. (2011). Toward exible polymer and paper-based energy storage devices. Advanced Materials, 23(33), 3751–3769.
Nyström, G., Razaq, A., Strømme, M., Nyholm, L., & Mihranyan, A. (2009). Ultrafast all-polymer paper based batteries. Nano Letters, 9(10), 3635– 3639.
O’Sullivan, A. C. (1997). Cellulose structure slowly unrevels. Cellulose, 4(3), 173–207.
Oh, S. Y., Yoo, D. I., Shin, Y., & Seo, G. (2005). FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3), 417–428.
Oksman, K., Etang, J. A., Mathew, A. P., & Jonoobi M. (2010). Cellulose nanowhisker separated from a bio-residue from wood bioethanol production. Biomass and Bioenergy, 35(1), 146–152.
Orelma, H., Filpponen, I., Johansson, L. S., Osterberg, M., Rojas, O. J., & Laine, J. (2012). Surface functionalized nano brillar cellulose (NFC) lm as a platform for Immunoassays and diagnostics. Biointerphases, 7(1–4), 61.
Osterberg, M. & Cranston, E. D. (2014). Special issue on nanocellulose: Editorial. Nordic Pulp and Paper Research, 29(1), 1–2.
Pääkkö, M., Ankerfors, M., Kosonen, H., Nykäenen, A., Ahola, S., Oesterberg, M., Ruokolainen, J., (...), & Lindström, T. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose brils and strong gels. Biomacromolecules, 8(6), 1934−1941.
Park, S. (2006). Drying Behavior of cellulose bers characterized by thermal analysis. (Disertasi, Wood and Paper Science, e Graduate Faculty of North Carolina State University, Raleigh, North Carolina).
Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3, 1–10.
Park, S., Venditti, R. A., Jameel, H., & Pawlak, J. J. (2006a). Hard to remove water in cellulose bers characterized by high resolution thermogravimetric analysis-methods development. Cellulose, 13(1), 23–30.
Park, S., Venditti, R. A., Jameel, H., & Pawlak, J. J. (2006b). Changes in pore size distribution during the drying of cellulose bers as measured by di erential scanning calorimetry. Carbohydrate Polymers, 66(1), 97–103.
Plackett, D. V., Letchford, K., Jackson, J. K., & Burt, H. M. (2014). A review of nanocelluloses as a novel vehicle for drug delivery. Nordic Pulp and Paper Research, 29(1), 105–118.
Plomion, C., Leprovost, G., & Stokes, A. (2001). Wood formation in trees. Plant Physiology, 127(4), 1513–1523.
Poletto, M., Dettenborn, J., Pistor, V., Zeni, M., & Zattera, A. J. (2010). Materials produced from plant biomass (part I): Evaluation of thermal stability and pyrolysis of wood. Materials Research, 13(3), 375–379.
Poletto, M., Ornaghi, H. L., & Zattera, A. J. (2014). Native cellulose, structure, characterization and thermal properties. Materials, 7(9), 6105–6119.
Poletto, M., Pistor, V., & Zattera, A. J. (2013). Structural characteristics and thermal properties of native cellulose. Dalam T. van de Ven & L. Godbout (Ed.), Cellulose: Fundamental aspects and current trends, 45–68. DOI: 10.5772/50452. https://www.intechopen.com/books/cellulose-fundamen tal-aspects/structural-characteristics-and-thermal-properties-of-native- cellulose.
Poletto, M., Pistor, V., Zeni, M., & Zattera, A. J. (2011). Crystalline properties and decomposition kinetics of cellulose bers in wood pulp obtained by two pulping process. Polymer Degradation and Stability, 96(4), 679–685.
Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). ermal decomposition of wood: In uence of wood components and cellulose crystallite. Bioresource Technology, 109, 148–153.
Ponni, R., Vuorinen, T., & Kontturi, E. (2012). Proposed nano-scale coalesscence of cellulose in chemical pulp bers during technical treatments. BioResources, 7(4), 6077–6108.
Popescu. C.-M., Singurel, G., Popescu, M.-C., Vasile, C., Argyropoulos, D. S., & Willför, S. (2009). Vibrational spectroscopy and X-ray di raction methods to establish the di erences between hardwood and softwood. Carbohydrate Polymers, 77(4), 851–857.
Popescu, M.-C., Popescu, C.-M., Lisa, G., & Sakata, Y. (2011). Evaluation of morphological and chemical aspects of di erent wood species by spectroscopy and thermal methods. Journal of Molecular Structure, 988(1– 3), 65–72.
Porter, B. R. & Rollins, M. L. (1972). Changes in porosity of treated lint cotton bers. I- Puri cation and swelling treatments. Journal of Applied Polymer Science, 16(1), 217–236.
Pracella, M., Chionna, D., Anguillesi, I., Kulinski, Z., & Piorkowska E. (2006). Functionalization, compatibilization and properties of polypropylene composites with hemp bres. Composite Science and Technology, 66(13), 2218–2230.
Pramasari, D. A. (2017). Optimasi praperlakuan alkali hidrotermal dan hidrogen peroksida pada hidrolisis enzimatis bagas sorgum manis (Sorghum bicolor L Moench). (Tesis, Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor).
Putro, J. N., Kurniawan, A., Ismadji, S., & Ju, Y.-H. (2017). Nanocellulose based biosorbents for wastewater treatment: Study of isotherm, kinetic, thermodynamic and reusability. Environmental Nanotechnology, Monitoring & Management, 8, 134–149.
Qu, Z. & Wang, L. (2011). Prediction of the crystallinity of white pine using near infrared spectroscopy. Advanced Materials Research, 183–185, 1215– 1218.
Rambo, M. K. D., Schmidt, F. L., & Ferreira, M. M. C. (2015). Analysis of the lignocellulosic components of biomass residues for biore nery opportunities. Talanta, 144, 696–703.
Ramos, L. A., Assaf, J. M., El Seoud, O. A., & Frollini, E. (2005). In uence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules, 6(5), 2638–2647.
Ranby, B. G. (1949). Aqueous colloidal solutions of cellulose micelles. Acta Chemica Scandinavica, 3(5), 649–650.
Ranby, B. G. (1952). e cellulose micelles. Tappi Journal, 35(2), 53–58.
Rapier, R. (2016, 26 April). A cellulosic ethanol milestone. Forbes. Diakses pada 8 Mei 2018 dari https://www.forbes.com/sites/rrapier/2016/04/26/a- cellulosic-ethanol-milestone/#52d6b9aa1072
Revol, J. F. (1982). On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydrate Polymers, 2(2), 123–134.
Risanto, L,, Anita, S. H., Hermiati, E., & Falah, F. (2011). Microwave irradiation and enzymatic hydrolysis of sengon (Paraserianthes falcataria). Dalam Proceedings of the 3rd International Symposium of IWORS (Indonesia Wood Research Society), 355–361.
Risanto, L., Anita, S. H., Fatriasari, W., & Prasetyo, K. W. (2012). Biological pretreatment of oil palm empty fruit bunch fiber by mixed culture of two white rot fungi. Dalam S. Setyahadi (Ed.), Proceedings of the 5th Indonesian biotechnology conference an international forum, 550–558. Mataram: Indonesian Biotechnology Consortium
Risnasari, I. (2015). Nanokristalin selulosa dari sludge primer untuk penguat dan pengisi komposit plastik. (Disertasi, Sekolah PascaSarjana, Institut Pertanian Bogor).
Rojas, J., Bedoya, M., & Ciro, Y. (2015). Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Dalam M. Poletto (Ed.), Cellulose-Fundamental Aspects and Current Trends, 193–228. DOI: 10.5772/61334. https://www.intechopen.com/ books/cellulose-fundamental-aspects-and-current-trends/current-trends- in-the-production-of-cellulose-nanoparticles-and-nanocomposites-for- biomedical-applic
Roliadi, H., & Fatriasari, W. (2002). Kemungkinan pemanfaatan tandan kosong kelapa sawit sebagai bahan baku pembuatan papan serat berkerapatan sedang (MDF). Jurnal Penelitian Hasil Hutan, 25(2), 101–109.
Rosa, M. F., Chiou, B.-S., Madeiros, E. S., Wood, D. F., Mattoso, L. H., Orts, W. J., & Imam, S. H. (2009). Biodegradable composites based on starch/ EVOH/Glycerol blends and coconut bers. Journal of Applied Polymer Science, 111(2), 612–618.
Rowell, R. M. (Ed.). (2005). Handbook of wood chemistry and wood composites. Boca Raton: CRC Press.
Rozmarin, G. H., Ungureanu, V., & Stoleru, A. (1977). Study of the supramolecular structure of cellulose carried out by means of acid hydrolysis. Cellulose Chemistry and Technology, 11, 52–530.
Rusli, R. & Eichhorn, S. J. (2008). Determination of the sti ness of cellulose nanowhiskers and the ber-matrix interface in a nanocomposite using Raman spectroscopy. Applied Physics Letter, 93(3), 033111–033111-3.
Saelee, K., Yingkamhaeng, N., Nimchua, T., & Sukyai, P. (2014). Extraction and characterization of cellulose from sugarcane bagasse by using environmental friendly method. Dalam Mae Fah Luang University, Proceeding of the 26th annual meeting of the thai society for biotechnology and international conference, 162–168. Chiang Rai: Mae Fah Luang University
Saito, T., Kuramae, R., Wohlert, J., Berglund, L. A., & Isogai, A. (2013). An ultrastrong nano brillar biomaterial: e strength of single cellulose nano brils revealed via sonication-induced fragmentation. Biomacromolecules, 14(1), 248–253.
Saito, T., Nishiyama, Y., Putaux, J.-L., Vignon, M., & Isogai, A. (2006) Homogenous suspensions of individualized micro brils from TEMPO- catalyzedoxidation of native cellulose. Biomacromolecules, 7(6), 1687–1691.
Sakurada, I., Nukushina, Y., & Ito, T. (1962). Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science, 57(165), 651–660.
Salvador, G. P., Pugliese, D., Bella, F., Chiappone, A., Sacco, A., Bianco, A., & Quaglio, M. (2014). New insights in long-term photovoltaic performance characterization of cellulose-based gel electrolytes for stable dye-sensitized solar cells. Electrochimica Acta, 146, 44–51.
Sari, F. P., Ghozali, M., Damayanti, R., & Fatriasari, W. (2018). Potensi serat alang-alang (Imperata cylindrica) sebagai penguat kertas daur ulang. Majalah Polimer Indonesia, 21(1), 1–19
Sari, F. P., Solihat, N. N., Anita, S. H., Fitria, & Hermiati, E. (2016). Peningka tan produksi gula pereduksi dari tandan kosong kelapa sawit dengan praperlakuan asam organik pada reaktor bertekanan. Reaktor, 16(4), 199– 206.
Sassi, J.-F, Tekely, P., & Chanzy, H. (2000). Relative susceptibility of the Iα and Iβ phases of cellulose towards acetylation. Cellulose, 7(2), 119–132.
Schenzel, K., Fischer, S., & Brendler, E. (2005). New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose, 12(3), 223–231.
Schill, S. R. (2014, 17 Desember). Iogen announces startup of Brazilian cellulosic ethanol plant. Biomass Magazine. Diakses pada 29 Mei 2018 dari http://biomassmagazine.com/articles/11347/iogen-announces-startup-of- brazilian-cellulosic-ethanol-plant.
Schill, S. R. & Bailey, A. (2017, 26 Juli). Inside the cellulosic industry. Ethanol Producer Magazine. Diakses pada 29 Mei 2018 dari http://ethanolproducer. com/articles/14479/inside-the-cellulosic-industry.
Segal, L. C., Creely, J. J., Martin, A. E. J., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray di ractometer. Textile Research Journal, 29(10), 786–794.
Sehaqui, H., Zhou, Q., & Berglund, L. A. (2011). High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Composite Science and Technology, 71(13), 1593–1599.
Shatkin, J. A., Wegner, T. H., Bilek, E. M., & Cowie, J. (2014). Market projections of cellulose nanomaterial-enabled products- Part 1: Applications. TAPPI Journal, 13(5), 9–16.
Sheikhi, P., Asadpour, G., Zabihzadeh, S. M., & Amoee, N. (2018). An optimum mixture of virgin bagasse pulp and recycled pulp (OCC) for manufacturing fluting paper. BioResources, 8(4), 5871–5883.
Shimizu, M., Saito, T., & Isogai, A. (2016). Water-resistant and high oxygen- barrier nanocellulose lms with inter brillar cross-linkages formed through multivalent metal ions. Journal of Membrane Science, 500, 1–7.
Shimotoyodome, A., Suzuki, J., Kumamoto, Y., Hase, T., & Isogai, A. (2011). Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nano bers. Biomacromolecules, 12(10), 3812–3818.
Shukla, S. R. & Pai, R. S. (2005). Adsorption of Cu (II), Ni (II) and Zn (II) on modi ed jute bers. Bioresource Technology, 96(13), 1430–1438.
Siagian, R. M., Darmawan, S., & Saepuloh. (1999). Komposisi kimia kayu Acacia mangium dari beberapa tingkat umur hasil tanam rotasi pertama. Buletin Penelitian Hasil Hutan, 17(1), 57–66.
Solihat, N. N., Fajriutami, T., Adi, D. T. N., Fatriasari, W., & Hermiati, E. (2017). Reducing sugar production of sweet sorghum bagasse kraft pulp. Dalam International Symposium on Applied Chemistry (ISAC) 2016 AIP Conference Proceeding, 1803, 020012-1–020012-8.
Solihat, N. N., Sari, F. P., Risanto, L., Anita, S. H., Fitria, Fatriasari, W., & Hermiati, E. (2017). Disruption of oil palm empty fruit bunches by microwave-assisted oxalic acid pretreatment methods. Journal of Mathematical and Fundamental Sciences, 49(3), 1–14.
Stamm, A. J. (1964). Wood and cellulose science. New York: e Ronald Press Company.
Štefelova, J., Slovák, V., Siqueira, G., Olsson, R. T., Tingaut, P., Zimmermann, T., & Sehaqui, H. (2017). Drying and pyrolysis of cellulose nano bers from wood, bacteria and algae for char application in oil absorption and dye adsorption. ACS Sustainable Chemistry & Engineering, 5(3), 2679–2692.
Stone, J. F., & Scallan, A. M. (
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.