Perkembangan Bioetanol G2: Teknologi dan Perspektif

Authors

Yanni Sudiyani, Feni Amriani, Sabar Pangihutan Simanungkalit, Muryanto, Deliana Dahnum, Haznan Abimanyu, Eka Triwahyuni, Dian Burhani, Muryanto, Syahrul Aiman, Dieni Mansur, Joddy Arya Laksmono, Joko Waluyo, Ajeng Arum Sari, Ary Mauliva Hada Puteri, dan Y

Keywords:

Perkembangan, Bioetanol, G2, Teknologi, Perspektif

Synopsis

Pencarian berbagai sumber energi alternatif, baik untuk menggantikan peran minyak bumi untuk keperluan transportasi maupun untuk berbagai keperluan lainnya, menjadi investasi penting yang akan menunjang pembangunan bangsa di masa depan. 
LIPI telah mengeksplorasi berbagai kemungkinan bahan baku yang berasal dari limbah lignoselulosa untuk produksi bioetanol. Beberapa di antaranya telah dan sedang dikaji pada skala pilot. Walaupun tidak mudah, peluang dan tantangan terus dihadapi bersama agar target nasional penggunaan bioetanol sebagai campuran bahan bakar dapat tercapai. 
Diharapkan buku bunga rampai ini dapat menjadi rujukan yang bermanfaat dalam menumbuhkembangkan wawasan, kesadaran, sekaligus mendorong tumbuhnya peran serta masyarakat dalam pemanfaatan bahan bakar nabati sebagai energi alternatif.

 

 

Downloads

Download data is not yet available.

References

Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273–2282. https://doi.org/10.1016/j.apenergy.2009.03.015.

Cardona, C. A., & Sanchez, O. J. (2007). Fuel ethanol production: Process design trends and integration opportunities, Bioresources Technology, 98(12), 2415–2457. https://doi.org/10.1016/j.biortech.2007.01.002.

Lynd, L. R., Cushman, J. H., Nichols, R. J., & Wyman, C. (1991). Fuel etanol from cellulosic biomass ethanol as a fuel. Science, 251, 1318–1323.

Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biore nary concept. Progress in Energy and Combustion Science, 38(4), 522–550. https://doi.org/10.1016/j. pecs.2012.02.002.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025.

Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003.

Pickett, J., Anderson, D., Bowles, D., Bridgwater, T., Jarvis, P., Mortimer, N., & Woods, J. (2008). Sustainable biofuels: prospects and challenges. London, UK: e Royal Society.

Rarbach, M. (2017). Process integrated enzyme production: e cost-e cient way to commercially viable 2G cellulosic ethanol. Retrieved March 28, 2018, from https://www.biofuelsdigest.com/bdigest/2017/01/23/ process-integrated-enzyme-production-the-cost-efficient-way-to- commercially-viable-2g-cellulosic-ethanol/.

Sekretariat Jenderal Dewan Energi Nasional. (2016). Outlook Energi Indonesia 2016.

Sudiyani, Y., Sembiring, C. K., Barlianti, V., Badria, I., Muryanto, M. (2014). e opportunity of bioethanol production from lignocellulosic agricultural waste in Indonesia. Dalam A renewable source of energy. Bioenergy of the Series “Energy & Technology” Vol 7. India: Studium Press LCC.

Sudiyani, Y. (2014). Pengembangan teknologi pengolahan biomassa limbah lignoselulosa untuk pembuatan bioetanol generasi ke dua. Buku Orasi Pengukuhan Profesor Riset. Jakarta: LIPI Press.

Wyman. (1994). Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresource Technology, 50(1), 3–15. https://doi.org/10.1016/0960-8524(94)90214-3.

Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18 SPEC. ISS.), 1959–1966. https://doi.org/10.1016/j.biortech.2005.01.010.

Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71(October 2015), 475–501. https://doi.org/10.1016/j.rser.2016.12.076.

Adams, J. M., Gallagher, J. A., & Donnison, I. S. (2009). Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol., 21, 569–574. https://doi.org/10.1007/ s10811-008-9384-7.

Aradhey, A., & Sindelar, S. (2017). India - Biofuels Annual 2017. Global Agricultural Information Network.

Aro, E. (2016). From rst generation biofuels to advanced solar biofuels. Ambio, 45(1), 24–31. https://doi.org/10.1007/s13280-015-0730-0. Badger, P. (2002). Ethanol from cellulose: A general review. Trends in New

Crops and New Uses, 17–21.

Bailey, B. K. (2012). Fuel quality issues and the US research report. Dipre-

sentasikan pada e Japan Auto/Oil Program (JATOP) Conference. Bajpai, P. (2013). Advances in bioethanol. New Delhi: Springer. https://doi.

org/10.1007/978-81-322-1584-4.

Balki, M. K., Sayin, C., & Canakci, M. (2014). e e ect of di erent alcohol

fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel, 115, 901–906. https://doi.org/10.1016/j. fuel.2012.09.020.

Bansal, S. (2010). Evaluation of di erent agricultural biomass for bioethanol production. (Tesis). Department of Grain Science and Industry College of Agriculture, Kansas State University, Manhattan.

Bioethanol in Brazil. (2009). Sugarcane bioethanol: Our strategy in four generations. Diakses pada 15 januari 2017 dari Https://bioethanolbrazil. wordpress.com/2009/01/28/.

Biopact. (2007). A quick look at ‘fourth generation’ biofuels. (2007). Biopact. Diakses dari https://global.mongabay.com/news/bioenergy/2007/10/ quick-look-at-fourth-generation.html.

Bringezu, S. (Ed.). (2009). Towards sustainable production and use of resources: Assessing biofuels. UNEP/Earthprint.

Bucholc, K., .Szymczak-Z?y?a, M., Lubecki, L., Zamojska, A., Hapter, P., Tjernstro?m, E., & Kowalewska, G. (2014). Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Science of the Total Environment, 473–474, 298–307. https://doi.org/10.1016/j.scitotenv.2013.12.044.

Bustaman, S. (2008). Kebijakan pengembangan bahan bakar nabati (Bioetanol). Ekonomi dan Pembangunan, XVI(1), 39.

Catapano, F., Sementa, P., & Vaglieco, B. M. (2013). Optical characterization of bio-ethanol injection and combustion in a small DISI engine for two wheels vehicles. Fuel, 106, 651–666. https://doi.org/10.1016/j. fuel.2012.11.064.

Chaudhary, L., Pradhan, P., Soni, N., Singh, P., & Tiwari, A. (2014). Algae as a feedstock for bioethanol production: New entrance in biofuel world. International Journal of Chem. Tech. Research, 6(2), 1381–1389.

Chen, H., Zhou, D., Luo, G., Zhang, S., & Chen, J. (2015). Macroalgae for biofuels production: Progress and perspectives. Renewable and Sustainable Energy Reviews, 47, 427–437. https://doi.org/10.1016/j. rser.2015.03.086.

Comprehensive Cellulosic Ethanol Report: A detail report on cellulosic ethanol. (2010).

Corpuz, P., & Verzani W. (2011). Philippines, biofuels annual: Philippine biofuels industry situation and outlook. USDA Foreign Agriculture Service. Diakses dari https://gain.fas.usda.gov/Recent%20GAIN%20 Publications/Biofuels%20Annual_Manila_Philippines_8-15-2011.pdf.

Costello, R., & Chum, H. L. (1998). Biomass, bioenergy and carbon management. Ezpanding BioEnergy Partnership, 11–17.

Daroch, M., Geng, S., & Wang, G. (2013). Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 102, 1371–1381. https://doi.org/10.1016/j.apenergy.2012.07.031.

Darzins, A., Pienkos, P., & Edye, L. (2010). Current status and potential for algal biofuels production. https://doi.org/Report T39-T2.

Demirbas, A. (2009). Biore neries, for biomass upgrading facilities. US: Springer. https://doi.org/10.1007/978-1-84882-721-9.

Deng, M., & Coleman, J. R. (1999). Ethanol synthesis by genetic engineering in cyanobacteria. Applied and Environmental Microbiology, 65(2), 523–528.

Dexter, J., Armshaw, P., Sheahan, C., & Pembroke, J. T. (2015). e state of autotrophic ethanol production in Cyanobacteria. Applied Microbiology, 11–24. https://doi.org/10.1111/jam.12821.

Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A., & Teixeira, J. A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88(10), 3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012.

Dragone, G., Fernandes, B., Vicente, A., & Teixeira, J. (2010). ird generation biofuels from microalgae. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 1355–1366.

Ethanol history-From alcohol to car fuel. (t.t.). Diakses dari http://ethanol- history.com/ pada 14 Mei 2018.

Ethanol plants in troubles as Vietnam’s plan to boost biofuel fails. (2016, 6 April). Tuoi Tre News, Ministry of Information and Communications of the Socialist Republic of Vietnam. Diakses dari https://tuoitrenews. vn/business/34126/ethanol-plants-in-troubles-as-vietnams-plan-to- boost-biofuel-fails.

Eudes, A., George, A., Mukerjee, P., Kim, J. S., Pollet, B., Benke, P. I., ... Loque, D. (2012). Biosynthesis and incorporation of side-chain- truncated lignin monomers to reduce lignin polymerization and enhance sacchari cation. Plant Biotechnology, 10, 609–620. https:// doi.org/10.1111/j.1467-7652.2012.00692.x.

Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'hare, M., & Kammen, D. M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311(5760), 506–508.

Forbes, R. J. (1971). A short history of the art of distillation: From the beginnings up to the death of Cellier Blumenthal (2nd rev. ed). Leiden: Brill.

Fu, C., Mielenz, J. R., Xiao, X., Ge, Y., Hamilton, C. Y., & Rodriguez, M. (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Plant Biology, 108(9), 3803–3808. https://doi.org/10.1073/pnas.1100310108.

Gupta, R. B. (2010). Review of “gasoline, diesel and ethanol biofuels from grasses and plants.” Cambridge: Cambridge University Press. https:// doi.org/10.2514/1.52159.

Harun, R., Yip, J. W. S., iruvenkadam, S., Ghani, W. A. W. A. K., Cherrington, T., & Danquah, M. K. (2014). Algal biomass conversion to bioethanol-a step-by-step assessment. Biotechnology Journal, 9(1), 73–86. https://doi.org/10.1002/biot.201200353.

Hisano, H., Nandakumar, R., & Wang, Z. (2009). Genetic modi cation of lignin biosynthesis for improved biofuel production, 306–313. https:// doi.org/10.1007/s11627-009-9219-5.

John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102(1), 186–193. https://doi.org/10.1016/j. biortech.2010.06.139.

Joseph, K., & Sandoval, L. (2017). Argentina - biofuels annual. Global Agricultural Information Network.

Jung, J. H., Fouad, W. M., Vermerris, W., Gallo, M., & Altpeter, F. (2012). RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnology, 10, 1067–1076. https://doi.org/10.1111/j.1467- 7652.2012.00734.x.

Kalluri, U. C., Yin, H., Yang, X., & Davison, B. H. (2014). Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. Plant Biotechnology, 12, 1207–1216. https:// doi.org/10.1111/pbi.12283.

Kavitha, C., Ashokkumar, V., Chinnasamy, S., Bhaskar, S., & Rengasamy, R. (2014). Pretreatment of lipid extracted Botryococcus braunii spent biomass for bio ethanol production. International Journal of Current Biotechnology, 2(1), 11–18.

Kraan, S. (2013). Pigments and minor compounds in Algae. Dalam Functional ingredients from algae for foods and nutraceuticals (205–251). Woodhead

Publishing Limited. https://doi.org/10.1533/9780857098689.1.205. Krido, S., Tau ka, V., Darsih, C., & Pratiwi, D. (2015). Optimization of simultaneous sacchari cation and fermentation incubation time using cellulose enzyme for sugarcane bagasse on the second-generation bioethanol production technology. Energy Procedia, 65, 331–336.

https://doi.org/10.1016/j.egypro.2015.01.061.

Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., & Yang, J. W. (2015).

Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51, 875–885. https://doi. org/10.1016/j.rser.2015.06.033.

Lewis, D. E. (2002). e beginnings of synthetic organic chemistry : Zinc alkyls and the kazan ’ School. Bull. Hist. Chem. 27(1), 37.

Li, K., Liu, S., & Liu, X. (2014). An overview of algae bioethanol production. International Journal of Energy Research, 38(8). https://doi.org/10.1002/ er.3164.

Li, P., Song, Y., & Yu, S. (2014). Removal of Microcystis aeruginosa using hydrodynamic cavitation: Performance and mechanisms. Water Research, 62, 241–248. https://doi.org/10.1016/j.watres.2014.05.052.

Liska, A. J., Yang, H. S., Bremer, V. R., Klopfenstein, T. J., Walters, D. T., Erickson, G. E., & Cassman, K. G. (2009). Improvements in life cycle energy e ciency and greenhouse gas emissions of corn-ethanol. Journal of Industrial Ecology, 13(1), 58–74. DOI: 10.1111/j.1530-9290.2008. 00105.x.

Lu, J., Sheahan, Co., & Fu, P. (2011). Metabolic engineering of algae for fourth generation biofuels production energy & metabolic engineering of algae for fourth generation biofuels production. Energy & Environmental Science, 4(July), 2451. https://doi.org/10.1039/ C0EE00593B.

Luan, G., Qi, Y., Wang, M., Li, Z., Duan, Y., Tan, X., & Lu, X. (2015). Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories. Biotechnology for Biofuels, 8(189), 1–12. https://doi.org/10.1186/s13068-015-0367-z.

Macke, Y., & Ward, M. (2017). People Republic of China, Biofuels Annual: Growing interest for ethanol brightens prospects. USDA Foreign Agriculture Service. Diakses dari https://apps.fas.usda.gov/newgainapi/ api/report/downloadreportby lename? lename=Biofuels%20Annual_ Beijing_China%20-%20Peoples%20Republic%20of_10-20-2017.pdf.

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j. rser.2009.07.020.

Milledge, J. J., Smith, B., Dyer, P. W., & Harvey, P. (2014). Macroalgae- derived biofuel: A review of methods of energy extraction from seaweed biomass, Energies, 7(11), 7194–7222. https://doi.org/10.3390/ en7117194.

Monceaux, D. (2009). Alternative feedstocks for fuel ethanol production. Dalam W. . Ingledew, D. Kelsall, G. Austin, & C. Kluhspies (Eds.), e Alcohol Textbook (Fi h, 47–71). London: Nottingham University Press.

Mussatto, S. I., Dragone, G., Guimaraes, P. M. R., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., ... Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28(6), 817–830. https://doi.org/10.1016/j. biotechadv.2010.07.001.

Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of rst and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https:// doi.org/10.1016/j.rser.2009.10.003.

Ozcimen, D., & Inan, B. (2015). An overview of bioethanol production from algae. Dalam Biofuels-Status and Perspective, 141–162. IntechOpen. https://doi.org/10.5772/59305.

Pikunas, A., Pukalskas, S., & Grabys, J. (2003). In uence of composition of gasoline – ethanol blends on parameters of internal combustion engine. Journal of KONES Internal Combustion Engines, 10, 3–4.

Preechajarn, S., & Prasertsri, P. (2017). ailand Biofuels Annual 2017. Global Agricultural Information Network (Vol. TH9047).

PT Pertamina. (2011). Revitalisasi program bioenergi: Implementasi komersialisasi BBN.

Purwanto, Heru. (2017, 19 Desember). Indonesia to Experiment Use of Bioethanol Fuel. Antara News. Diakses dari https://en.antaranews. com/news/113943/indonesia-to-experiment-use-of-bioethanol-fuel.

Renewable Fuels Association (RFA). (2016). Fueling a High Octane Future: 2016 Ethanol Industry Outlook. Washington, DC: RFA.

Ritslaid, K., Ku?u?t, A., & Olt, J. (2010). State of the art in bioethanol production. Agronomy Research, 8(1), 236–254.

Saha, B. C., Yoshida, T., Cotta, M. A., & Sonomoto, K. (2013). Hydrothermal pretreatment and enzymatic sacchari cation of corn stover for e cient ethanol production. Industrial Crops & Products, 44, 367–372. https:// doi.org/10.1016/j.indcrop.2012.11.025.

Sementa, P., Maria Vaglieco, B., & Catapano, F. (2012). ermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and strati ed charge mixture conditions fueled with gasoline and bio-ethanol. Fuel, 96, 204–219. https://doi.org/10.1016/j. fuel.2011.12.068.

Science and Islam. (2002). London: Al-Khilafah Publications Suite 298. Sheil, D., Casson, A., Meijaard, E., Van Noordwijk, M., Gaskell, J., Sunderland-Groves, J., ... & Kanninen, M. (2009). e impacts and opportunities of oil palm in Southeast Asia: What do we know and

what do we need to know? (Vol. 51). Bogor, Indonesia: Center for

International Forestry Research. https://doi.org/10.17528/cifor/002792. Shen, H., Poovaiah, C. R., Ziebell, A., Tschaplinski, T. J., Pattathil, S., Gjersing, E., ...Chen, F. (2013). Enhanced characteristics of genetically modi ed switchgrass (Panicum virgatum L.) for high biofuel pro-

duction. Biotechnology for Biofuels, 6(1), 71.

Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges

in commercialisation of algal biofuels. Bioresource Technology, 102(1),

–34. https://doi.org/10.1016/j.biortech.2010.06.057.

Sudiyani, Y. (2015, March). Pengolahan limbah lignoselulosa. Info Sawit. Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016).

Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biore nery approach. Renewable and Sustainable Energy Reviews, 55, 909–941. https://doi. org/10.1016/j.rser.2015.11.026.

Szulczyk, K. R. (2010). Which is a better transportation fuel – butanol or ethanol ? International Journal of Energy and Environment, 1(1), 1–12. u, P., & Trang, H. (2017). Removing RON 92 petrol, the consumption

of E5 bio-fuel will be sharply increase.

Turner, D., Xu, H., Cracknell, R. F., Natarajan, V., & Chen, X. (2011).

Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine. Fuel, 90(5), 1999–2006. https://doi. org/10.1016/j.fuel.2010.12.025.

Ulum, M. (2014, 2 Juli). Energi agro kantongi izin ekspor bioetanol 20.000 KL. Bisnis.com. Diakses dari https://bali.bisnis.com/read/20140702/ 44/240522/energi-agro-kantongi-izin-ekspor-bioetanol-20.000-kl.

Velazquez-lucio, J., Rodri?guez-jasso, R. M., Colla, L. M., Sa?enz-galindo, A., Cervantes-, D. E., Aguilar, C. N., ... Ruiz, H. A. (2018). Microalgal biomass pretreatment for bioethanol production: A review. Biofuel Research Journal, 17, 780–791. https://doi.org/10.18331/BRJ2018.5.1.5.

Voloshin, R. A., Rodionova, M. V., Zharmukhamedov, S. K., Nejat Veziroglu, T., & Allakhverdiev, S. I. (2016). Review: Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy, 41(39), 17257–17273. https://doi.org/10.1016/j.ijhydene.2016.07.084.

Wahono, S. K., Rosyida, V. T., Darsih, C., Pratiwi, D., Frediansyah, A., & Hernawan. (2015). Optimization of simultaneous sacchari cation and fermentation incubation time using cellulose enzyme for sugarcane bagasse on the second-generation boethanol production technology.

Energy Procedia, 65, 331–336. https://doi.org/https://doi.org/10.1016/j.

egypro.2015.01.061.

Wan, C., Alam, A., Zhao, X., Zhang, X., Guo, S., Ho, S., ... Bai, F.

(2014). Bioresource technology current progress and future prospect of microalgal biomass harvest using various occulation technologies. Bioresource Technology, 1–7. https://doi.org/10.1016/j. biortech.2014.11.081.

Wright, T., & Rahmanulloh, A. (2016). Indonesia biofuels annual 2016. Jakarta: United States Department of Agriculture.

Wu, M. (2008). Analysis of the e ciency of the US ethanol industry 2007. Center for Transportation Research, Argonne National Laboratory.

Zhang, W., & Geng, A. (2012). Improved ethanol production by a xylose- fermenting recombinant yeast strain constructed through a modi ed genome shu ing method. Biotechnology for Biofuels, 5(46), 1–11.

Zheng, X., Leaver, M. J., & Tocher, D. R. (2009). Long-chain polyunsaturated fatty acid synthesis in sh: Comparative analysis of Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) ?6 fatty acyl desaturase gene promoters. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 154(3), 255–263.

Al-Zuhair, S. (2008). e e ect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresource Technology, 99(10), 4078–4085. https://doi.org/10.1016/j. biortech.2007.09.003.

Badger, P. (2002). Ethanol from cellulose: A general review. Trends in New Crops and New Uses, 17–21.

Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273–2282. https://doi.org/10.1016/j.apenergy.2009.03.015.

Barlianti, V., Dahnum, D., Hendarsyah, H., & Abimanyu, H. (2015). E ect of alkaline pretreatment on properties of lignocellulosic oil palm waste. Procedia Chemistry, 16, 195–201. https://doi.org/10.1016/j. proche.2015.12.036.

BPS. (2015). Statistik pertanian 2014. Jakarta: Badan Pusat Statistik.

BPS. (2017). Statistik Indonesia 2017. Jakarta: Badan Pusat Statistik. Dahnum, D., Styarini, D., Sudiarmanto, Muryanto, & Abimanyu, H.

(2013). Utilization of frond palm oil as second generation bioethanol production using alkaline pretreatment and separated hydrolysis and fermentation method. Proceeding of International Seminar on Sciences, 21–26.

Dowe, N., & Mcmillan, J. (2008). SSF experimental protocols— lignocellulosic biomass hydrolysis and fermentation laboratory analytical procedure (LAP). Dalam Technical Report NREL.

Fengel, D., & Wegener, G. (1995). Kayu: Kimia, ultrastruktur, reaksi-reaksi (Terjemahan Hardjono Sastrohamidjojo). Yogyakarta: Gadjah Mada University Press.

Gerardi, V., Minelli, F., & Viggiano, D. (1998). Steam treated rice industry residues as an alternative feedstock for the wood based particle board industry in Italy. Biomass and Bioenergy, 14(3), 295–299.

Glassner, D., Hettenhaus, J., & Schechinger, T. (1999). Corn stover potential: Recasting the corn sweetener industry. Dalam Perspective on new crops and uses (74–82).

Gong, C.-S., Chen, L. F., Flickinger, M. C., & Tsao, G. T. (1981). Conversion of hemicellulose carbohydrates. Dalam Bioenergy. Advances in biochemical engineering, vol 20, 93–118. Berlin, Heidelberg: Springer.

Gonza?lez, G., Lo?pez?Santi?n, J., Caminal, G., & Sola?, C. (1985). Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: A simpli ed kinetic model. Biotechnology and Bioengineering, 28, 288–293. https://doi.org/10.1002/bit.260280219.

Hambali, E., ahar, A., Nisyaw, F. N., Biladi, D. B. C., & Haryanto, D. (2015). Sumber bahan bakar nabati. Dalam T. H. Soerawidjaya & D. Kusdiana (Eds.), Peta jalan litbang bahan bakar nabati: Menuju mandiri energi (15–90). Bogor: IPB Press.

Higuchi, T. (2004). Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase. Proceedings of the Japan Academy, Series B, 80(5), 204–214. https://doi.org/10.2183/ pjab.80.204.

Jalaludin, & Rizal, S. (2005). Pembuatan pulp dari jerami padi dengan menggunakan natrium hidroksida. Jurnal Sistem Teknik Industri, 6 (5), 53–56.

Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1, 119–134. https://doi. org/10.1002/bbb.4.

Judoamidjojo, R. M., Said, E. G., & Hartoto, L. (1989). Biokonversi. Departemen Pendidikan dan Kebudayaan, Direktorat Pendidikan Tinggi. Pusat Antar Universitas Bioteknologi, Institut Pertanian Bogor.

Kang, Q., Appels, L., Tan, T., & Dewil, R. (2014). Bioethanol from lignocellulosic biomass: Current ndings determine research priorities. e Scienti c World Journal. (Article ID 298153).

Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R., & Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35(11), 5692–5701. https://doi.org/10.1016/j. enpol.2007.06.017.

Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26(4), 361–375. https://doi.org/10.1016/j.biombioe.2003.08.002.

Klemm, D., Philipp, B., Heinze, T., Heinze, U., & Wagenknecht, W. (1998). General considerations on structure and reactivity of cellulose: Section 2.1–2.1. 4. Dalam D. Klemm, B. Philipp, T. Heinze, U. Heinze, & W. Wagenknecht (Eds.), Comprehensive cellulose chemistry: Fundamentals and analytical methods. Wiley Online Library. (hlm. 70), Weinheim.

Knauf, M., & Moniruzzaman, M. (2004). Lignocellulosic biomass processing: A perspective. International Sugar Journal, 106(1263), 147–150. Kosugi, A., Tanaka, R., Magara, K., Murata, Y., Arai, T., Sulaiman, O., ...

Mori, Y. (2010). Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting. Journal of Bioscience and Bioengineering, 110(3), 322–325. https://doi.org/10.1016/j. jbiosc.2010.03.001.

Kristiani, A., E endi, N., Aristiawan, Y., Aulia, F., & Sudiyani, Y. (2015). E ect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia, 68(Supplement C), 195–204. https://doi.org/10.1016/j.egypro.2015.03.248.

Lai, L. W., & Idris, A. (2013). Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. BioResources, 8(2), 2792–2804.

Leiva, P., Ciannamea, E., Ruseckaite, R. A., & Stefani, P. M. (2007). Medium-density particleboards from rice husks and soybean protein concentrate. Journal of Applied Polymer Science, 106, 1301–1306. https://doi.org/10.1002/app.26545.

Lim, J. S., Manan, Z. A., Wan Alwi, S. R., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16(5), 3084–3094. https://doi.org/10.1016/j.rser.2012.02.051.

Lloyd, T. A., & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology, 96(18), 1967–1977. https://doi.org/10.1016/j.biortech.2005.01.011.

Mabee, W. E., McFarlane, P. N., & Saddler, J. N. (2011). Biomass availability for lignocellulosic ethanol production. Biomass and Bioenergy, 35(11), 4519–4529. https://doi.org/10.1016/j.biombioe.2011.06.026.

McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46. https://doi.org/10.1016/ S0960-8524(01)00118-3.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi. org/10.1021/ac60147a030.

Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxi cation of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresource Technology, 93(1), 1–10. https://doi. org/10.1016/j.biortech.2003.10.005.

Novikova, L. N., Medvedeva, S.., Volchatova, I. V., & Bogatyreva, S. A. (2002). Changes in macromolecular characteristics and biological activity of hydrolytic lignin in the course of composting. Applied Biochemistry and Microbiology, 38(2), 181–185.

Quispe, I., Navia, R., & Kahhat, R. (2017). Energy potential from rice husk through direct combustion and fast pyrolysis: A review. Waste Management, 59, 200–210. https://doi.org/10.1016/j.wasman.2016. 10.001.

Rainey, T. J., Doherty, W. O. S., Martinez, M. D., Brown, R. J., & Kelson, N. A. (2009). An experimental study of Australian sugarcane bagasse pulp permeability. Appita Journal, 62(4), 296–302.

Rubin, E. M. (2008). Genomics of cellulosic biofuels. Nature, 454, 841. Ruiz, R., & Ehrman, T. (1996). Determination of carbohydrates in biomass by high performance liquid chromatography, Laboratory Analytical

Procedure (LAP) No. 002. Dalam Technical Report NREL.

Santos, R. B., Hart, P. W., Jameel, H., & Chang, H. M. (2013). Wood based lignin reactions important to the biore nery and pulp and paper

industries. BioResources, 8(1), 1456–1477.

Schwietzke, S., Kim, Y., Ximenes, E., Mosier, N., & Ladisch, M. (2009). Ethanol production from Maize BT. Dalam A. L. Kriz & B. A. Larkins (Eds.). Molecular genetic approaches to maize improvement (347– 364). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi. org/10.1007/978-3-540-68922-5_23.

Sheeba, K. N., & Prakash, P. (2015). Biomass-potential sustainable source of energy. Dalam R. Prasad, S. Sivakumar, & U. C. Sharma (Eds.), Energy science and technology vol 7 Bioenergy (54–57). Studium Press LLC.

Sheil, D., Casson, A., Meijaard, E., Van Noordwijk, M., Gaskell, J., Sunderland-Groves, J., ... Kanninen, M. (2009). e impacts and opportunities of oil palm in Southeast Asia What do we know and what do we need to know? Center for International Forestry Research (CIFOR), Bogor, Indonesia. https://doi.org/10.17528/cifor/002792.

Sjo?stro?m, E. (1993a). Chapter 5 -Extractives BT - wood chemistry (second edition) (90–108). San Diego: Academic Press. https://doi.org/10.1016/ B978-0-08-092589-9.50009-7.

Sjo?stro?m, E. (1993b). Wood chemistry - fundamental and application (second edition). San Diego: Academic Press. https://doi.org/10.1016/B978-0- 08-092589-9.50003-6.

SNI 7390 :2012. (2012). Bioetanol terdenaturasi untuk gasohol.

Somogyi, M. (1951). Notes on sugar determination. e Journal of Biological

Chemistry, 195, 19–24.

Stefani, P. M., Garcia, D., Lopez, J., & Jimenez, A. (2005). ermogravimetric

analysis of composites obtained from sintering of rice husk-scrap tire

mixtures. Journal of ermal Analysis and Calorymetry, 81, 315–320. Styarini, D., Risanto, L., Aristiawan, Y., & Sudiyani, Y. (2012). Comparison of two analytical methods for compositional analysis of lignocellulosic biomass for bioethanol production, International Journal of

Environment and Bioenergy, 3(2), 88–97.

Sudiyani, Y., Styarini, D., Triwahyuni, E., Sembiring, K. C., Aristiawan, Y.,

Abimanyu, H., & Han, M. H. (2013). Utilization of biomass waste empty fruit bunch ber of palm oil for bioethanol production using pilot-scale unit. Energy Procedia, 32, 31–38. https://doi.org/10.1016/j. egypro.2013.05.005.

Sumathi, S., Chai, S. P., & Mohamed, A. R. A?. (2008). Utilization of oil palm as a source of renewable energy in Malaysia. Renewable & Sustainable Energy Reviews, 12(9), 2404–2421. https://doi.org/10.1016/j. rser.2007.06.006.

Tester, R. F., & Karkalas, J. (2003). Carbohydrates classi cation and properties. Dalam B. Caballero (Ed.), Encyclopedia of food sciences and nutrition (second edition) (862–875). Oxford: Academic Press. https://doi.org/10.1016/B0-12-227055-X/00166-8.

Wiloso, E. I., Triwahyuni, E., Barlianti, V., & Muryanto, M. (2010). Review on the development of bioethanol from lignocellulosic biomass. Journal Lingkungan Tropis, 339–352.

Wyman, C. E. (1999). Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24(1), 189–226. https://doi.org/10.1146/annurev. energy.24.1.189.

Yamada, H., Tanaka, R., Sulaiman, O., Hashim, R., Hamid, Z. A. A., Yahya, M. K. A., ... Mori, Y. (2010). Old oil palm trunk: A promising source of sugars for bioethanol production. Biomass and Bioenergy, 34(11), 1608–1613. https://doi.org/10.1016/j.biombioe.2010.06.011.

Yoswathana, N., Phuriphipat, P., Treyawutthiwat, P., & Eshtiaghi, M. N. (2010). Bioethanol production from rice straw. Energy Research Journal, 1(1), 26–31.

Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. (2010). e catalytic valorization of ligning for the production of renewable chemicals. Chem. Rev., 110(6), 3552–3599. https://doi. org/10.1021/cr900354u.

Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. https://doi.org/10.1016/j. biotechadv.2011.05.005.

Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia ber explosion (AFEX). Applied Biochemistry and Biotechnology, 121, 1133–1134.

Alvarez-vasco, C., & Zhang, X. (2013). Bioresource technology alkaline hydrogen peroxide pretreatment of softwood: Hemicellulose degradation pathways. Bioresource Technology, 150, 321–327. https:// doi.org/10.1016/j.biortech.2013.10.020.

Alvira, P., Ballesteros, M., & Negro, M. J. (2010). Bioresource technology pretreatment technologies for an e cient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093.

Amriani, F., Barlianti, V., Muryanto, & Sari, A. A. (2015). Activated carbon from lignin-based black liquor coagulated by polyaluminium chloride. Procedia Chemistry, 16, 134–140. https://doi.org/10.1016/j. proche.2015.12.041.

Amriani, F., Salim, F. A., Iskandinata, I., Khumsupan, D., & Barta, Z. (2016). Physical and biophysical pretreatment of water hyacinth biomass

for cellulase enzyme production. Chemical Biochemical Engineering

Quarterly, 30(2), 237–244. https://doi.org/10.15255/CABEQ.2015.2284. An, Y., Zong, M., Wu, H., & Li, N. (2015). Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresource Technology,

, 165–171. https://doi.org/10.1016/j.biortech.2015.05.064. Anastas, P., & Eghbali, N. (2010). Green chemistry: Principles and practice.

Chem. Soc. Rev., 39, 301–312. https://doi.org/10.1039/b918763b. Bak, J. S. (2014). Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass. Bio- technology Reports, 4, 30–33. https://doi.org/10.1016/j.btre.2014.07.006. Balan, V., Bals, B., Chundawat, S. P. S., Marshall, D., & Dale, B.E. (2009). Lignocellulosic biomass pretreatment using AFEX. Dalam Jonathan R. Mielenz (ed.), Biofuels: Methods and protocols, 581, 61–77. https://

doi.org/10.1007/978-1-60761-214-8.

Ballesteros, I., Negro, M. J., Oliva, J. M., Cabanas, A., Manzanares, P.,

& Ballesteros, M. (2006). Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology, 129, 496–508.

Bals, B., Wedding, C., Balan, V., Sendich, E., & Dale, B. (2011). Evaluating the impact of ammonia ber expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresource Technology, 102(2), 1277–1283. https://doi.org/10.1016/j.biortech.2010.08.058.

Brandt-Talbot, A., Gschwend, F. J. V., Fennell, P. S., Lammens, T. M., Tan, B., Weale, J., & Hallett, J. P. (2017). An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry, 19, 3078–3102. https://doi.org/ 10.1039/C7GC00705A.

Brandt, A., Grasvik, J., Hallet, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 2 (15), 550–583.

Brosse, N., Sannigrahi, P., & Ragauskas, A. (2009). Pretreatment of miscanthus x giganteus using the ethanol organosolv process for ethanol production. Industrial & Engineering Chemistry Research, 48(18), 8328–8334. https://doi.org/10.1021/ie9006672.

Bukhari, N. A., Abu Bakar, N., Soh, K. L., & Choo, Y. M. (2014). Bioethanol production by fermentation of oil palm empty fruit bunches pretreated with combined chemicals. Journal Applied Environmental and Biological Sciences, 4(10), 234–242.

Bule, M. V., Gao, A. H., Hiscox, B., & Chen, S. (2013). Structural modi cation of lignin and characterization of pretreated wheat straw by ozonation. Journal of Agricultural and Food Chemistry, 61, 3916– 3925.

Bussemaker, M. J., & Zhang, D. (2013). E ect of ultrasound on lignocellulosic biomass as a pretreatment for biore nery and biofuel applications. Industrial and Engineering Chemistry Research, 52, 3563–3580.

Campbell, T. J., Teymouri, F., Bals, B., Glassbrook, J., Nielson, C. D., & Videto, J. (2014). A packed bed ammonia ber expansion reactor system for pretreatment of agricultural residues at regional depots. Biofuels, 4(1), 23–34. https://doi.org/10.4155/bfs.12.71.

Capolupo, L., & Faraco, V. (2016). Green methods of lignocellulose pretreatment for biore nery development. Applied Microbiology and Biotechnology, 100(22), 9451–9467. https://doi.org/10.1007/s00253- 016-7884-y.

Chang, V. S., & Holtzapple, M. T. (2000). Fundamental factors a ecting biomass enzymatic reactivity. Applied Biochemistry And Biotechnology, 84, 5–6.

Chang, V. S., Nagwani, M., Kim, C. H., & Holtzapple, M. T. (2001). Oxidative lime pretreatment of high-lignin biomas. Applied Biochemistry and Biotechnology, 94, 1–28.

Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech., 3(5), 415–431. https:// doi.org/10.1007/s13205-013-0167-8.

Choi, W.-I., Park, J.-Y., Lee, J.-P., Oh, Y.-K., Park, Y. C., Kim, J. S., ... Lee, J.-S. (2013). Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnology for Biofuels, 6, 170. https://doi. org/10.1186/1754-6834-6-170.

Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2, 121–145. https://doi.org/10.1146/annurev-chembioeng-061010-114205.

Da Costa Sousa, L., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). “Cradle-to-grave” assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20(3), 339–347. https:// doi.org/10.1016/j.copbio.2009.05.003.

Dahnum, D., Barlianti, V., Sembiring, K. C., Kristiani, A., Muryanto, M., & Sudiyani, Y. (2017). E ect of combining electron beam irradiation

and alkaline pretreatments of OPEFB for enzymatic hydrolysis and fermentation of ethanol. Jurnal Kimia Terapan Indonesia (JKTI), 19(1), 1–10.

Danu, S., & Kardha, M. S. (2012). Electron beam degradation of oil palm empty fruit bunch. Journal of Environment and Bioenergy, 3(3), 168– 179.

Ethaib, S., Omar, R., Kamal, S. M., & Biak, D. R. A. (2015). Microwave- assisted pretreatment of lignocellulosic biomass: A review. Journal of Engineering Science and Technology, 97–109.

Garci?a-Cubero, M. T., Gonza?lez-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). E ect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology, 100(4), 1608–1613. https://doi.org/10.1016/j.biortech.2008.09.012.

Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Liden, G., & Zacchi, G. (2006). Bio-ethanol the fuel of tomorrow from the residues of today. Trends in Biotechnology, 24(12), 549–556. https:// doi.org/10.1016/j.tibtech.2006.10.004.

Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. https://doi.org/10.1016/j.biortech.2008.05.027.

Hermiati, E., Anita, S. H., Risanto, L., Styarini, D., Sudiyani, Y., Hana , A., & Abimanyu, H. (2013). Biological pretreatment of oil palm frond ber using white-rot fungi for enzymatic sacchari cation. Makara Seri Teknologi, 17(1), 39–43. https://doi.org/10.7454/mst.v17i1.1926.

Higuchi, T. (2004). Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase. Proceedings of the Japan Academy, Series B, 80(5), 204–214. https://doi.org/10.2183/ pjab.80.204.

Hsu, T. A., Ladisch, M. R., Tsao, G. T. (1980). Alcohol from cellulose. Chemical Technology 10(5), 315–319.

Jibouri, A. K. H. Al, Turcotte, G., Wu, J., & Cheng, C. (2015). Ozone pretreatment of humid wheat straw for biofuel production. Energy Science and Engineering, 3, 541–548. https://doi.org/10.1002/ese3.93.

Jo?nsson, L. J., Alriksson, B., & Nilvebrant, N. (2013). Bioconversion of lignocellulose: Inhibitors and detoxi cation, Biotechnology for Biofuuels 6(1), 1–10.

Jo?nsson, L. J., & Marti?n, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their e ects.

Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.

biortech.2015.10.009.

Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis:

A review of product properties and e ects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi. org/10.1016/j.rser.2015.12.185.

Kelin, H., Rui, W., Yan, C., Huiquan, L., & Wang, J. (2013). Recycling and reuse of ionic liquid in homogeneous cellulose acetylation. Chinese Journal of Chemical Engineering, 21(5), 577–584. https://doi. org/10.1016/S1004-9541(13)60524-8.

Keshwani, D. R., Cheng, J. J., Burns, J. C., & Chiang, V. (2007). Microwave pretreatment of switchgrass to enhance enzymatic hydrolysis. Conference Presentations and White Papers: Biological Systems Engineering.

Kim, K. H., & Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77, 139–144.

Kim, Y., Hendrickson, R., Mosier, N. S., & Ladisch, M. R. (2009). Liquid hot water pretreatment of cellulosic biomass. Dalam J. R. Mielenz (Ed.), Biofuels: Methods and protocols. Totowa, NJ: Humana Press.

Koppram, R., Tomas-Pejo, E., Xiros, C., & Olsson, L. (2014). Lignocellulosic ethanol production at high-gravity: Challenges and perspectives. Trends in Biotechnology, 32(1), 46–53. https://doi.org/10.1016/j. tibtech.2013.10.003.

Kristiani, A., E endi, N., Aristiawan, Y., Aulia, F., & Sudiyani, Y. (2015). E ect of combining chemical and irradiation pretreatment process to characteristic of oil palm’s empty fruit bunches as raw material for second generation bioethanol. Energy Procedia, 68 (Supplement C), 195–204. https://doi.org/10.1016/j.egypro.2015.03.248.

Kristiani, A., E endi, N., Styarini, D., Aulia, F., & Sudiyani, Y. (2016). e e ect of pretreatment by using electron beam irradiation on oil palm empty fruit bunch. Atom Indonesia, 42(1), 9–12. https://doi. org/10.17146/aij.2016.472.

Kullander, S. (2010). Food security: Crops for people not for cars. Ambio, 39(3), 249–256. https://doi.org/10.1007/s13280-010-0032-5.

Kumar, A. K., & Sharma, S. (2017). Recent updates on di erent methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4(1), 7. https://doi.org/10.1186/s40643-017-0137-9.

Lee, Y. ., Iyer, P., & Torget, R. W. (1999). Dilute-acid hydrolysis of lignocellulosic biomass. Advances in Biochemical Engineering and Biotechnology, 65, 93–115.

Liu, X., Xu, W., Mao, L., Zhang, C., Yan, P., Xu, Z., & Zhang, Z. C. (2016). Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxi cation. Scienti c Reports, 6, 20361–20371. https:// doi.org/10.1038/srep20361.

Lloyd, T. A., & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology, 96(18), 1967–1977. https://doi.org/10.1016/j.biortech.2005.01.011.

Macquarrie, D. J., Clark, J. H., & Fitzpatrick, E. (2012). e microwave pyrolysis of biomass. Biofuels Bioproducts & Biore ning, 6(5), 549–560. https://doi.org/10.1002/bbb.1344.

Macrelli, S., Mogensen, J., & Zacchi, G. (2012). Techno economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar based ethanol process. Biotechnology for Biofuels, 5, 22.

Mantanis, G. I., Young, R. A., & Rowell, R. M. (1995). Swelling of compressed cellulose ber webs in organic liquids. Cellulose, 2, 1–22. https://doi.org/10.1007/BF00812768.

Martin, C., Galbe, M., Nilvebrant, N. O., & Jonsson, L. J. (2002). Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using di erent impregnating agents. Applied Biochemistry and Biotechnology, 98, 699–716.

Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5(5), 597–609. https://doi.org/10.1007/s13205- 015-0279-4.

McMillan, J. D. (1997). Bioethanol production: Status and prospects. Renewable Energy, 10(2), 295–302.

Mesa, L., Gonza?lez, E., Cara, C., Gonza?lez, M., Castro, E., & Mussatto, S. I. (2011). e e ect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168(3), 1157–1162. https://doi.org/10.1016/j.cej.2011.02.003.

Moller, M., Nilges, P., Harnisch, F., & Schrc?der, U. (2011). Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. Chem. Sus. Chem., 4, 566–579. https://doi.org/10.1002/ cssc.201000341.

Moreno, A. D., Ibarra, D., Alvira, P., Toma, E., & Ballesteros, M. (2015). A review of biological deligni cation and detoxi cation methods for lignocellulosic bioethanol production. Critical Reviews in Biotechnology, 35(3), 342–354. https://doi.org/10.3109/07388551.2013.878896.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025.

Moutta, R. O., Chandel, A. K., Rodrigues, R. C. L. B., Silva, M. B., Rocha, G. J. M., & Silva, S. S. (2011). Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Tech. 14(1), 53–60. https://doi.org/10.1007/s12355-011-0116-y.

Muryanto, M., Hanifah, U., Amriani, F., Ibadurrahman, A. F., & Sari, A. A. (2017). Fenton process combined with coagulation for the treatment of black liquor from bioethanol wastewater. AIP Conference Proceedings, 1904 (1). https://doi.org/10.1063/1.5011934.

Muryanto, M., Sudiyani, Y., & Abimanyu, H. (2016). Optimization of NaOH alkali pretreatment of oil palm empty fruit bunch for bioethanol. InaJAC, 18(1), 27–35.

O’Sullivan, A. C. (1997). Cellulose: e structure slowly unravels. Cellulose, 4(3), 173–207. https://doi.org/Chemistry and Materials Science. O?hgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). E ect of hemicellulose

and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98, 2503–2510. https://doi.org/10.1016/j. biortech.2006.09.003.

Ohgren, K., Galbe, M., & Zacchi, G. (2005). Optimization of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production. Applied Biochemistry and Biotechnology, 121, 1055–1067.

Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I., Chamorro, M.A?., Felicia, S., ... Moreno, A.D. (2017). A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biore nery perspective. Fermentation, 3(2), 15. https://doi.org/10.3390/fermentation3020015.

Quesada, J., Rubio, M., & Gomez, D. (1999). Ozonation of lignin rich solid fractions from corn stalks. Journal of Wood Chemistry and Technology, 19(1–2), 115–137. https://doi.org/10.1080/02773819909349603.

Ramos, L.P. (2003). e chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova, 26(6), 863–871.

Rocha-Meneses, L., Raud, M., Orupo?ld, K., & Kikas, T. (2017). Second- generation bioethanol production: A review of strategies for waste valorisation. Agronomy Research, 15(3), 830–847.

Sabiha-hanim, S., Azemi, M., Noor, M., & Rosma, A. (2011). Bioresource technology e ect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond bres for xylose and xylo- oligosaccharides production. Bioresource Technology, 102(2), 1234– 1239. https://doi.org/10.1016/j.biortech.2010.08.017.

Sahadevan, L. D. M., Misra, C. S., & ankamani, V. (2013). Ligninolytic enzymes for application in treatment of e uent from pulp and paper industries. Universal Journal of Environmental Research and Technology, 3(1), 14–26.

Sari, A. A., Amriani, F., & Anggraini, R. I. F. (2016). Performance of Ceriporiopsis sp. in the treatment of black liquor wastewater. Jurnal Teknologi Lingkungan, 17(2), 58–65.

Sasmal, S., Goud, V. V, & Mohanty, K. (2012). Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production. Energy and Fuels, 26, 3777–3784.

Schacht, C., Zetzl, C., & Brunner, G. (2009). From plant materials to ethanol by means of supercritical uid technology. Journal of Supercritical Fluids, 46, 299–321.

Shirkavand, E., Baroutian, S., Gapes, D. J., & Young, B. R. (2016). Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment—A review. Renewable and Sustainable Energy Reviews, 54, 217–234. https://doi.org/10.1016/j.rser.2015.10.003.

Sidiras, D. K., & Salapa, I. S. (2015). Organosolv pretreatment as a major step of lignocellulosic biomass re ning. Engineering Conferences International.

Simanungkalit, S. P., Mansur, D., Nurhakim, B., Agustin, A., Rinaldi, N., Muryanto, & Fitriady, M. (2016). Hydrothermal pretreatment of palm oil empty fruit bunch. AIP Conference Proceedings (Vol. 1803).

Singh, J. K., Vyas, P., Dubey, A., Upadhyaya, C. P., & Kothari, R. (2018). Assessment of di erent pretreatment technologies for e cient

bioconversion of lignocellulose to ethanol. Frontiers in Bioscience,

Scholar, 10, 350-371.

Sjo?stro?m, E. (1993). Wood chemistry - fundamental and application (second

edition). San Diego: Academic Press. https://doi.org/10.1016/B978-0-

-092589-9.50003-6.

Stephanidis, S., Nitsos, C., Kalogiannis, K., Iliopoulou, E. F., Lappas, A. A.,

& Triantafyllidis, K. S. (2011). Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: E ect of hydrothermal pre-treatment of biomass. Catalysis Today, 167(1), 37–45. https://doi.org/10.1016/j. cattod.2010.12.049.

Subhedar, P. B., & Gogate, P. R. (2016). Use of utrasound for pretreatment of biomass and subsequent hydrolysis and fermentation. Dalam Biomass fractionation technologies for a lignocellulosic feedstock based biore nery (127–146).

Sudiyani, Y., & Hermiati, E. (2010). Utilization of oil palm empty fruit bunch for bioethanol production through alkali and dilute acid pretreatment and sacchari cation and fermentation. Indonesian J. of Chemistry, 10(2), 261–267.

Sudiyani, Y., Triwahyuni, E., Burhani, D., & Waluyo, J. (2016). Alkaline pretreatment of sweet sorghum bagasse for bioethanol production. Int. Journal of Renewable Energy Development, 5(2), 113–118. http:// dx.doi.org/10.14710/ijred.5.2.113-118.

Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodri?guez, H., & Rogers, R. D. (2009). Complete dissolution and partial deligni cation of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 11(5), 646–655. https://doi.org/10.1039/b822702k.

Sun, X., Sun, X., & Zhang, F. (2016). RSC advances by solid base (calcined Na 2 SiO 3 ) and ionic liquid for enhanced enzymatic sacchari cation. RSC Advances, 101, 99455–99466. https://doi.org/10.1039/C6RA22055J.

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7.

Tabka, M. G., Herpo, I., Monod, F., Asther, M., & Sigoillot, J.C. (2006). Enzymatic sacchari cation of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39(4), 897–902. https://doi.org/10.1016/j. enzmictec.2006.01.021.

Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651. https:// doi.org/10.3390/ijms9091621.

Tanahashi, M. (1990). Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood Research: Bulletin of the Wood Research Institute Kyoto University, 77, 49–117.

Timilsena, Y. P. (2012). E ect of di erent pretreatment methods in combination with the organosolv deligni cation process and enzymatic hydrolysability of three feedstocks in correlation with lignin structure. Asian Institute of Technology.

Travaini, R., Marti?n-jua?rez, J., Lorenzo-hernando, A., & Rodriguez, S. B. (2016). Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology, 199, 2–12. https://doi. org/10.1016/j.biortech.2015.08.143.

Triwahyuni, E., Muryanto, M., Fitria, I., & Sudiyani, Y. (2013). Pengaruh perlakuan awal irradiasi berkas elektron terhadap proses hidrolisis enzimatis pada pembuatan bioetanol dari tandan kosong kelapa sawit. Seminar Nasional Kimia Terapan Indonesia, 4, 79–84.

Valentine, J., Cli on-Brown, J., Hastings, A., Robson, P., Allison, G., & Smith, P. (2012). Food vs. fuel: e use of land for lignocellulosic “next generation” energy crops that minimize competition with primary food production. GCB Bioenergy, 4, 1–19. https://doi.org/10.1111/ j.1757-1707.2011.01111.x.

Verdia, P., Brandt, A., Hallet, J. ., Ray, M. J., & Welton, T. (2014). Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chemistry, 16, 1617–1627. https://doi.org/ 10.1039/c3gc41742e.

Weerasai, K., Suriyachai, N., Poonsrisawat, A., Arnthong, J., Unrean, P., ... Champreda, V. (2014). Sequential acid and alkaline pretreatment of rice straw for bioethanol fermentation. Bioresources, 9(4), 5988–6001.

Wilkes, J. S., & Zawarotko, M. J. (1992). Air and water stable i-ethyl- 3-methylimidazolium based ionic liquids. Journal of the Chemicals Society, Chemical Communications, 965–967.

Wong, D. W. S. (2009). Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 157(2), 174–209. https://doi.org/10.1007/s12010-008-8279-z.

Wooley, R., Ruth, M., Glassner, D., & Sheehan, J. (1999). Process design and costing of bioethanol technology: A tool for determining the status and direction of research and development. Biotechnology Progress, 15, 794–803.

Wyman, C. E. (2007). What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 25(4), 153–157. https://doi.org/10.1016/ j.tibtech.2007.02.009.

Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technology, 96(18), 2026–2032. https://doi.org/10.1016/j. biortech.2005.01.018.

Zhan, X., Wang, D., Bean, S. R., Mo, X., Sun, X. S., & Boyle, D. (2006). Ethanol production from supercritical- uid-extrusion cooked sorghum. Industrial Crops and Products, 23(3), 304–310. https://doi.org/10.1016/j. indcrop.2005.09.001.

Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815–827. https://doi.org/10.1007/s00253- 009-1883-1.

Zhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance. Part II: Fundamentals of di erent pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels, Bioproducts and Biore ning, 6(3), 246–256. https://doi.org/10.1002/bbb.1350.

Zheng, J., Choo, K., Bradt, C., Lehoux, R., & Rehmann, L. (2014). Enzymatic hydrolysis of steam exploded corncob residues a er pretreatment in a twin-screw extruder. Biotechnology Reports, 3, 99–107. https://doi. org/10.1016/j.btre.2014.06.008.

Zheng, J., & Rehmann, L. (2014). Extrusion pretreatment of lignocellulosic biomass: A review. International Journal of Molecular Sciences, 15(10), 18967–18984. https://doi.org/10.3390/ijms151018967.

Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2(3), 51–68. https://doi.org/10.3965/j. issn.1934-6344.2009.03.051-068.

Zhu, J. Y., & Pan, X. J. (2010). Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology, 101(13), 4992–5002. https://doi.org/10.1016/j. biortech.2009.11.007.

Zhu, J. Y., Wang, G. S., Pan, X. J., & Gleisner, R. (2009). Speci c surface to evaluate the e ciencies of milling and pretreatment of wood for enzymatic sacchari cation. Chemical Engineering Science, 64(3), 474– 485. https://doi.org/10.1016/j.ces.2008.09.026.

Zhu, Z., Macquarrie, D. J., Simister, R., Gomez, L. D., & Mason, S. J. M. (2015). Microwave assisted chemical pretreatment of Miscanthus under di erent temperature regimes. Sustainable Chemical Processes, 3(15), 1–13. https://doi.org/10.1186/s40508-015-0041-6.

Zhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., ... Yuan, Z. (2016). Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresource Technology, 199, 68–75. https://doi.org/10.1016/j.biortech.2015.08.051.

Adney, B., & Baker, J. (1996). Measurement of cellulase activities. National Renewable Energy Laboratory.

Antunes, F. A. F., Santos, J. C., Chandel, A. K., Milessi, T. S. S., Peres, G. F. D., & da Silva, S. S. (2016). Hemicellulosic ethanol production by immobilized wild brazilian yeast Sche ersomyces shehatae UFMG- HM 52.2: E ects of Cell Concentration and Stirring Rate. Current Microbiology, 72(2), 133–138. https://doi.org/10.1007/s00284-015- 0923-6.

Bachruddin, Z. (2014). Teknologi Fermentasi pada industri peternakan. Yogyakarta: Gadjah Mada University Press.

Baek, S.-C., & Kwon, Y.-J. (2007). Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Bioetechnology and Bioprocessing, 12(4), 404–409. https://doi. org/10.1007/BF02931063.

Binod, P., Janu, K., Sindhu, R., & Pandey, A. (2011). Hydrolysis of lignocellulosic biomass for bioethanol production. Dalam S. C. Ricke & E. Gnansounou (Eds.), Biofuels: Alternative Feedsctock and conversion process (229–250). Burlington: Academic Press.

Bisswanger, H. (2014). Enzyme assays. Perspectives in Science, 1(1–6), 41–55. https://doi.org/10.1016/j.pisc.2014.02.005.

Cao, G., Ren, N., Wang, A., Lee, D. J., Guo, W., Liu, B., ... Zhao, Q. (2009). Acid hydrolysis of corn stover for biohydrogen production using ermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy, 34(17), 7182–7188. https://doi.org/10.1016/ j.ijhydene.2009.07.009.

Chalal, D. S. (1983). Growth characteristic of microorganism in solid state fermentation for upgrading of protein values of lignocelluloses and cellulose production. Foundation of biochemical engineering, 20, 421–442. American Chemical Society. https://doi.org/10.1021/bk-1983- 0207.ch020.

Chandel, A. K., Antunes, F. A. F., Arruda, P. V., Millesi, T. S., da Silva, S., & Felipe, M. G. A. (2012). Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: State-of-the-art. Dalam S. S. da Silva, S. Silverion, & A. K. Chandel (Eds.), D-Xylitol fermentative production, application and commercialization (39–61). https://doi. org/10.1007/978-3-642-31887-0_2. Berlin: Springer.

Chandel, A. K., Antures, F. A. F., Tera?n-Hilares, R., Cota, J., Ellilla?, S. ... da Silva, S. S. (2018). Bioconversion of hemicellulose into ethanol and value-added products: Commercialization, Trends, and future opportunities. Advances in Surgane Biore nery, 97–134. Elsevier. https://doi.org/10.1016/B978-0-12-804534-3.00005-7.

Chandel, A. K., Kapoor, R. K., Singh, A., & Kuhad, R. C. (2007). Detoxi cation of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947–1950. https://doi.org/10.1016/j.biortech.2006.07.047.

Chen, Y. (2011). Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: A systematic review. Journal of Industrial Microbiology and Biotechnology, 38(5), 581–597. https://doi.org/10.1007/s10295-010-0894-3.

Cheng, K., Cai, B., Zhang, J., & Ling, H. (2008). Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal, 38, 105–109. https://doi. org/10.1016/j.bej.2007.07.012.

Dahnum, D., Tasum, S. O., Triwahyuni, E., Nurdin, M., & Abimanyu, H. (2015). Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia, 68(October), 107–116. https://doi. org/10.1016/j.egypro.2015.03.238.

De Bari, I., De Canio, P., Cuna, D., Liuzzi, F., Capece, A., & Romano, P. (2013). Bioethanol production from mixed sugars by Sche ersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae. New Biotechnology, 30(6), 592–597. https://doi.org/10.1016/j. nbt.2013.02.003.

Dos Santos, V. C., Braganca, C. R. S., Passos, F. J. V., & Passos, F. M. L. (2013). Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus. Antonie van Leeuwenhoek, 103, 153–161. https://doi.org/10.1007/s10482-012- 9794-z.

Du , S. J. B., & Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosic to fuel ethanol: A review. Bioresource Technology, 55, 1–33. https://doi.org/10.1016/0960-8524(95)00122-0.

Galbe, M., & Zacchi, G. (2002). A review of the production of ethanol from so wood. Applied Microbiology and Biotechnology, 59(6), 618–628. https://doi.org/10.1007/s00253-002-1058-9.

Ghose, T. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268. https://doi.org/10.1351/pac198759020257. Gnansounou, E., & Dauriat, A. (2010). Techno-economic analysis of lignocellulosic ethanol: A review. Bioresource Technology, 101(13),

–4991. https://doi.org/10.1016/j.biortech.2010.02.009.

Gu?nan Yu?cel, H., & Aksu, Z. (2015). Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxi cation methods. Fuel, 158, 793–799. https://doi.org/10.1016/j.

fuel.2015.06.016.

Harris, E. E. (1949). Wood sachari cation. Dalam W. Pigm & M. Wolfro

(Eds.), Advances in carbohydrate chemistry (153–188). Elsevier. https://

doi.org/https://doi.org/10.1016/S0096-5332(08)60048-X.

Hasunuma, T., & Kondo, A. (2012). Consolidated bioprocessing and simultaneous sacchari cation and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry, 47(9),

–1294. https://doi.org/10.1016/j.procbio.2012.05.004. Judoamidjojo, M., Darwia, A., & Said, E. (1992). Teknologi Fermentasi (1st

ed.). Jakarta: Rajawali Press.

Kang, Q., Appels, L., Tan, T., & Dewil, R. (2014). Bioethanol from

lignocellulosic biomass: Current ndings determine research priorities.

Scienti c World Journal. https://doi.org/10.1155/2014/298153. Khuong, L. D., Kondo, R., De Leon, R., Kim Anh, T., Shimizu, K., & Kamei, I. (2014). Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. International Biodeterioration and Biodegradation, 88, 62–68.

https://doi.org/10.1016/j.ibiod.2013.12.008.

Kim, S., & Kim, C. H. (2014). Evaluation of whole Jerusalem artichoke

(Helianthus tuberosus L.) for consolidated bioprocessing ethanol production. Renewable Energy, 65, 83–91. https://doi.org/10.1016/j. renene.2013.07.025.

Krishnan, M., Ho, N., & Tsao, G. (1999). Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl. Biochem. Biotechnol. 373–388.

Kumar, A., Singh, L. K., & Ghosh, S. (2009). Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresource Technology, 100(13), 3293–3297. https://doi.org/10.1016/j.biortech.2009.02.023.

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for e cient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729. https://doi.org/10.1021/ie801542g.

Laplace, J., Delgenes, J., Moletta, R., & Navarro, J. (1992). Alcoholic glucose and xylose fermentations by the coculture process: Compatibility and typing of associated strains. Canadian Journal of Microbiology, 38(7), 654–658. https://doi.org/10.1139/m92-106.

Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69, 627–642. https://doi.org/10.1007/s00253-005-0229-x.

Liu, Z., & Chen, H. (2016). Simultaneous sacchari cation and co- fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresource Technology, 201, 15–26. https://doi.org/10.1016/j.biortech.2015.11.023.

Lynd, L. R., Van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnolo

Downloads

Published

December 4, 2019

Categories

Details about this monograph

ISBN-13 (15)

978-602-496-071-1