Sifat dan Pengelolaan Tanah Sulfat Masam dan Gambut

Authors

Arifin Fahmi, Badan Riset dan Inovasi Nasional; Muhammad Noor, Badan Riset dan Inovasi Nasional; Dedi Nursyamsi, Kementerian Pertanian Republik Indonesia; Ani Susilawati, Kementerian Pertanian Republik Indonesia; Izhar Khairullah, Badan Riset dan Inovasi Nasional; Muhrizal Syarwani, Kementerian Pertanian Republik Indonesia; Muhammad Saleh, Badan Riset dan Inovasi Nasional

Keywords:

Pengelolaan lahan rawa, Tanah sulfat masam, Tanah gambut, Budi daya tanaman, Ilmu tanah

Synopsis

Tanah sulfat masam dan tanah gambut, dua jenis tanah bermasalah yang berada pada ekosistem lahan basah (wetland). Kedua jenis tanah ini baru populer sejak 1970-an dengan adanya pembukaan persawahan pasang surut bersamaan dengan program transmigrasi, tetapi selalu diperbincangkan sampai sekarang karena belum memberikan kepuasan dalam pemanfaatannya. Pada awalnya, dilaporkan produksi padi dan komoditas lainnya yang diusahakan oleh para transmigran, bahkan beberapa tanaman yang dibudidayakan, gagal tumbuh. Buku Sifat dan Pengelolaan Tanah Sulfat Masam dan Gambut ini mencoba mengupas lebih detail tentang sifat kedua jenis tanah bermasalah terkait dengan pemanfaatannya untuk pertanian. Buku ini dapat dimanfaatkan peneliti, penyuluh, sivitas akademika, termasuk penyusun kebijakan dan pemangku kepentingan (stakeholder) yang terkait dengan bidang pertanian, perkebunan, kehutanan, perikanan, peternakan, dan lingkungan hidup sebagai pengetahuan sekaligus menambahkan khazanah pustaka tentang lahan basah secara umum dan lahan rawa khususnya. Selamat membaca!

Downloads

Download data is not yet available.

Author Biographies

Arifin Fahmi, Badan Riset dan Inovasi Nasional

Ia lahir di ­Banjarmasin, Kalimantan Selatan pada November 1976. Ia menyelesaikan pendidikan S-1 di Jurusan Ilmu Tanah, Fakultas Pertanian, Universitas Lambung Mangkurat (2000), S-2 Ilmu Tanah pada Program
Pascasarjana Fakultas Pertanian Universitas Gadjah Mada (2008), dan S-3 Ilmu Pertanian pada Program Doktoral Universitas Gadjah Mada (2012). Ia pernah bekerja sebagai peneliti di Balai Penelitian Pertanian Lahan Rawa (Balittra) Banjarbaru, Kalimantan Selatan, pada tahun 2001 sampai 2021. Selanjutnya, mulai tahun 2022 hingga saat ini, ia bekerja sebagai peneliti di Badan Riset dan Inovasi Nasional (BRIN).

Selama berkarier, ia telah menghasilkan berbagai karya tulis ilmiah yang tersebar di berbagai jurnal, prosiding, dan sebagai bagian dari buku teks. Bebe­rapa karya tulis ilmiah yang sudah diterbitkan dalam 5 tahun terakhir, antara lain “Indigenous Technology of Banjarese-Local Rice Cultivation System: A Lesson Learned for Acid Sulphate Soils ­Management”; “Coastal Acid-Sulfate Soils of Kalimantan, Indonesia, for Food ­Security: Characteristics, Management, and Future Directions”; “Fe-P Pools as ­Phosphorus Source for Rice in Acid Sulfate Soils”; “A Century of Traditional Rice Farming in Tidal Swamplands of South Kalimantan, Indonesia: Its Impact on Breeding and Conservation Program”; “Natural Wet Ponds’ Role as Fresh Water Storage in Tropical Environment” (Clean Water and Sanitation - Encyclopedia of the UN Sustainable Development Goals, Springer Book); “Ameliorasi Tanah Sulfat Masam untuk Budidaya Padi” dalam buku Inovasi Teknologi Lahan Rawa; “Karakteristik Lahan Rawa” dalam buku Agroekologi Rawa; "The Role of Peat Decomposition Stage on Iron Solubility and Distribution in Tidal Swamps”; “The Influence of Peat Layer Above Sulphidic Material on Iron Dynamic in Wetland”; “Peran Sifat Tanah Awal dalam Perubahan Sifat Kimia Tanah Sulfat Masam Akibat Aplikasi Jerami Padi”; “Impact of Land Reclamation on Acid Sulphate Soil and Its Mitigation”; “The Utilization of Agricultural Waste for Peatland Management”; “In Case Chili Cultivation”; “The Interaction of Peat and Sulphidic Material as Substratum in Wetland: Ash Content and Electrical Conductivity Dynamic”; “The Role of Land Inundation Type of Tidal Swamp Land on The Chemical Properties of Potential Acid Sulphate Soils Under Fertilizer and Lime Application”; “Peranan Lapisan Gambut pada Dinamika Fraksi Besi di Lahan Pasang Surut”; “Environmental Friendly Management of Acid Sulphate Soils, The Interaction of Peat Layer and Sulphidic Materials as Substratum”; “A Natural Equilibrium for Nutrients and Metals in Wetland”; “Pengaruh Lapisan Gambut di Atas Bahan Sulfidik Terhadap Dinamika Kelarutan Fe di Lahan Gambut”; dan “Fraksi Besi dan Pengaruhnya Terhadap Kelarutan Fosfor di Lahan Rawa”.

Dalam melaksanakan tugasnya sebagai peneliti, ia aktif menjalin kerja sama penelitian dengan berbagai instansi/lembaga, baik dari dalam maupun luar negeri, antara lain proyek penelitian Tropical Peat Biochemical Interaction with Acid Sulphate Soil (TROPEAS) bersama University of Helsinsky (Finlandia), Universitas Gadjah Mada (Indonesia), Cantho University (Vietnam), dan Universitas Palangka Raya (Indonesia). Ia juga menjalankan proyek kerja sama penelitian berjudul "Study of Ecohydrology Approach on Peatland in Ex-Mega Rice Project Location in Central Kalimantan" bersama Asia-Pacific Centre for Ecohydrology (APCE)-UNESCO tahun 2017. Selain itu, ia juga mengikuti Scientific Exchange di Thailand pada tahun 2015 dan 2018, serta Vietnam pada tahun 2010, dan Training Analytical Instrument di Singapore pada tahun 2016.

Muhammad Noor, Badan Riset dan Inovasi Nasional

Ia lahir di Banjarmasin, Kalimantan Selatan pada November 1957. Ia menyelesaikan pen­didikan S-1 Jurusan Ilmu Tanah, Fakultas Pertanian, Universitas Gadjah Mada (1984), S-2 Fakultas/Program Pascasarjana Institut Pertanian Bogor (1989), dan S-3 pada Program Doktoral Universitas Gadjah Mada (2004). Ia dikukuhkan sebagai Profesor Riset bidang Kesuburan Tanah Dan Biologi Tanah oleh Lembaga Ilmu Pengetahuan Indonesia (LIPI) pada tahun 2014 sebagai Profesor Riset ke-451. Ia bekerja sebagai peneliti di Balai Penelitian Pertanian Lahan Rawa (Balittra) Banjarbaru, Kalimantan Selatan. Sejak tahun 2022, ia bekerja sebagai peneliti di Badan Riset dan Inovasi Nasional (BRIN).

Selama berkarier, ia telah menghasilkan berbagai karya tulis ilmiah yang tersebar pada berbagai jurnal, prosiding, buletin ilmiah, dan majalah ilmiah. Ia juga menulis dalam bentuk buku teks yang telah diterbitkan dalam 5 tahun terakhir, antara lain (1) Debat
Gambut: Ekonomi, Ekologi, Politik dan Kebijakan
(Penerbit Gadjah Mada University Press [GMUP], 2016); (2) Kebakaran Lahan Gambut: Dari Asap sampai Kanalisasi (Penerbit GMUP, 2019); (3) Pemanfaatan dan Pengelolaan Lahan Rawa: Kearifan, Kebijakan, dan Keberlanjutan (Penerbit GMUP, 2021) yang ditulis bersama Yiyi Sulaeman; dan (4) Trivia Rawa: Serba-Serbi Sumber Daya Lahan Rawa yang ditulis bersama Destika Cahyana dan Muhrizal Sarwani. 

Penghargaan yang telah ia raih, antara lain anugerah Agro Inovasi sebagai Inovator Luar Biasa Bidang Hak Cipta dan Merek oleh Menteri Pertanian pada tahun 2011 dan tanda jasa Karya Satya Lencana 30 tahun dari Pemerintah RI pada tahun 2016. Selain kerap menjadi narasumber pada berbagai lembaga pemerintah, swasta, LSM (NGO),  ia juga mengajar dan membimbing mahasiswa tingkat sarjana (S-1) dan pascasarjana (S-2 dan S-3) di beberapa perguruan tinggi negeri dan swasta. Selain itu, ia juga aktif sebagai editor atau penyunting buku, dewan redaksi, dan mitra bestari pada beberapa jurnal dan majalah ilmiah nasional.

Dedi Nursyamsi, Kementerian Pertanian Republik Indonesia

Ia lahir di Ciamis, Jawa Barat pada Juni 1964 sebagai anak ke-2 dari 5 bersaudara. Ia menyelesaikan S-1 Jurusan Tanah, Fakultas Pertanian, Institut Pertanian Bogor (1987), S-2 bidang nutrisi tanaman di Laboratory of Plant Nutrition, Graduate School of Agriculture, Hokkaido University, Jepang (2000), dan S-3 program studi ilmu tanah yang ditempuhnya di Sekolah Pascasarjana Institut Pertanian Bogor (2008). Ia menerima anugerah Profesor Riset di bidang Ilmu Tanah, Agroklimatologi, dan Hidrologi (2017) dan tanda kehormatan Satyalancana Karya Satya XX (2015) serta XXX (2020).

Ia menjabat sebagai Kepala Subbidang Program Puslitbang Tanah dan Agroklimat (2001–2003), Kepala Balai Penelitian Lingkungan Pertanian (2008–2012), Kepala Balai Penelitian Pertanian Lahan Rawa (2012–2014), Kepala Balai Besar Litbang Sumber Daya Lahan
Pertanian (2014–2019), Staf Ahli Menteri Pertanian Bidang
Infrastruktur (2019), dan Kepala Badan Penyuluhan dan
Pengembangan Sumber Daya Manusia Pertanian (BPPSDMP) sejak tahun 2019 sampai sekarang.

Dalam melaksanakan tugasnya sebagai peneliti, ia aktif menjalin kerja sama penelitian dengan berbagai instansi swasta dan pemerintah, baik dari dalam maupun luar negeri. Instansi dari dalam negeri, antara lain kementerian, lembaga riset, dan perguruan tinggi, serta swasta. Adapun instansi dari luar negeri, antara lain IFDC, IMPHOS, OCP, Chiba University, Hokkaido University, IRRI, JICA, dan NIAES. Selain itu, ia juga aktif membimbing mahasiswa S-1, S-2, dan S-3 dari berbagai perguruan tinggi di tanah air, baik negeri maupun swasta.Ia juga menghasilkan banyak karya tulis ilmiah yang terbit dalam jurnal, prosiding, dan buletin ilmiah, baik skala nasional maupun internasional. Beberapa karya tulis dalam bentuk buku teks, antara lain Pedoman Pengelolaan Lahan Sulfat Masam untuk Pertanian Berkelanjutan (Penerbit IAARD Press Jakarta-GMU Press, 2014); Pedoman Pengelolaan Lahan Gambut untuk Pertanian Berkelanjutan (Penerbit IAARD Press Jakarta-GMU Press, 2014); Pedoman Pengelolaan Lahan Rawa Lebak untuk Pertanian Berkelanjutan (Penerbit IAARD Press Jakarta-GMU Press, 2014); dan Sistem Surjan: Model Pertanian Adaptif Perubahan Iklim (IAARD Press, 2014).

Ani Susilawati, Kementerian Pertanian Republik Indonesia

Ia lahir di Kuala Kapuas pada November 1977. Ia menyelesaikan pendidikan S-1 di Fakultas Pertanian Universitas Lambung Mangkurat (2000) dan S-2 di Fakultas/Program Pascasarjana Universitas Gadjah Mada (2012). Ia menjabat sebagai Peneliti Ahli Madya bidang Ilmu Tanah, Agro­klimatologi, dan Hidrologi di Balai ­Penelitian Pertanian Lahan Rawa dan sebagai Sekretaris Himpunan Peneliti Indonesia (HIMPENINDO) wilayah Kalimantan Selatan.

Ia aktif dalam berbagai kegiatan seminar/workshop/FGD/temu teknis dan pelatihan skala daerah, nasional, dan internasional. Selama berkarier, ia telah menghasilkan berbagai karya tulis ilmiah yang tersebar dalam berbagai jurnal, prosiding, buletin ilmiah, dan majalah ilmiah populer. Ia merupakan penulis salah satu buku teks yang berjudul Tanah Rawa: Pembentukan, Karakteristik, dan Pemanfaatannya untuk Pertanian (IAARD Press, 2017) dan turut menulis bagian buku bunga rampai dengan judul “Teknologi Inovasi Lahan Rawa Pasang Surut Mendukung Kedaulatan Pangan Nasional” (IAARD Press, 2014); “Pengelolaan Air untuk Budidaya Padi di Lahan Rawa Pasang Surut” (IAARD Press, 2014); “Lahan Rawa Lebak: Sistem Pertanian dan Pengembangannya” (IAARD Press, 2017); “Agroekologi Rawa” (PT. RajaGrafindo Persada, 2017); “Inovasi Teknologi Lahan Rawa: Mendukung Kedaulatan Pangan” (Rajawali Press, 2018); “Sumber Daya Lahan Rawa: Dukungan Teknologi Menuju Lumbung Pangan Dunia” (IAARD Press, 2019); dan “Optimasi Lahan Rawa: Akselerasi Menuju Lumbung Pangan Dunia 2045” (IAARD Press, 2020). Selain itu, ia juga menulis salah satu bagian dari buku Tropical Peatland Eco-management (Springer, 2021). Sejak tahun 2022, ia bekerja sebagai Penyuluh Pertanian Ahli Madya pada Badan Standarisasi Instrumen Pertanian Lahan Rawa (BSIP), Kementrian Pertanian.

Izhar Khairullah, Badan Riset dan Inovasi Nasional

Ia lahir di Kabupaten Banjar, Kalimantan Selatan pada Desember 1968. Ia menye­lesaikan pendidikan S-1 jurusan Budidaya Pertanian pada Fakultas Pertanian Universitas Lambung Mangkurat Banjarbaru (1992), S-2 program studi Agronomi pada Universitas Lambung Mangkurat Banjarbaru (2005), dan S-3 program studi Ilmu Pertanian minat Agronomi, Universitas Gadjah Mada Yogyakarta (2012).

Pada tahun 1996, ia mengikuti pelatihan “Introduction to New Developments in GXE Analysis and Interpretation of Results” di Bogor yang dilaksanakan oleh Pusat Penelitian dan Pengembangan Tanaman Pangan (Puslitbangtan) bekerja sama dengan International Rice Research Institute (IRRI). Pada Agustus 2003, ia ditugaskan untuk mengikuti pelatihan “Rice Breeding Course: Planning Rice Breeding Program for Impact” yang diselenggarakan oleh IRRI di Los Banos, Laguna, Filipina. Pada tahun 1994, ia mengikuti pelatihan “Synthetic Aperture Radar MAP RIICE Training” ICALRD, Bogor; dan pada tahun 2015 mengikuti pelatihan “Synthetic Aperture Radar: Theory and Applications” di Vancouver, Kanada.

Ia aktif menulis karya tulis ilmiah pada jurnal internasional dan nasional, prosiding internasional dan nasional, serta bagian buku dan bunga rampai. Selain itu, ia juga aktif mengikuti seminar/simposium international dan nasional. Ia berpengalaman mengajar mata kuliah Pengantar Ilmu Pemuliaan Tanaman pada program studi Agroteknologi, Faperta Universitas Lambung Mangkurat (ULM). Selain itu, ia pernah membimbing mahasiswa S-1 pada program studi Biologi Fakultas MIPA ULM serta menguji mahasiswa S-1 FMIPA ULM dan S-3 Faperta Universitas Gadjah Mada Yogyakarta.

Ia turut serta dalam melepas varietas unggul Margasari, Martapura, dan Inpara-3, serta varietas unggul lokal Siam Mutiara dan Siam Saba. Ia tercatat sebagai anggota Perhimpunan Agronomi Indonesia (PERAGI), Perhimpunan Ilmu Pemuliaan Indonesia (PERIPI), Himpunan Ilmu Tanah Indonesia (HITI), Perhimpunan Meteorologi Indonesia (PERHIMPI), dan Himpunan Peneliti
Indonesia (HIMPENINDO). Ia pernah bekerja di Balai Penelitian Pertanian Lahan Rawa (Balittra) dengan peran sebagai Koordinator Program dan Evaluasi (2013–2019) dan Ketua Kelti Pengelolaan Hara dan Tanaman Balittra (2021–2022). Setelah itu, ia bekerja dengan jabatan fungsional Peneliti Ahli Utama bidang Budidaya Tanaman di Badan Riset dan Inovasi nasional (BRIN).

Muhrizal Syarwani, Kementerian Pertanian Republik Indonesia

Ia lahir di Banjarmasin pada Maret 1960. Ia adalah Peneliti Ahli Utama pada Balai Besar Penelitian dan Pengembang ­Sumber daya Lahan Pertanian (BBSDLP) di Bogor. Sebelumnya, sejak tahun 1983, ia bekerja sebagai peneliti pada Balai Penelitian Pertanian Lahan Rawa (Balittra), ­Kalimantan Selatan. Ia mendapatkan gelar Sarjana Pertanian (Ir., S-1) dari Jurusan Ilmu Tanah Fakultas Pertanian IPB tahun 1983, gelar Master of Science (M.Sc.) dari jurusan Soil and Water, Wageningen Agricultural ­University (sekarang Wageningen University Research) di Belanda pada tahun 1987. Gelar PhD dirahinya dari University Putra Malaysia (UPM), Serdang, Malaysia, pada tahun 2001 dengan bidang kajian Land Management. Tahun 1988–1990, ia terlibat dalam kerja sama penelitian Indonesia-Belanda terkait lahan rawa sulfat masam di Kalimantan (LAWOO Project). Tahun 1990, ia menerima research grant dari Badan Litbang Pertanian untuk kegiatan Penelitian Pengembangan Lahan Rawa Pasang Surut di Kabupaten Batola, Kalimantan Selatan. Ia juga telah mendapat anugerah Satyalancana Karya Satya 30 tahun dari Pemerintah RI diterima pada tahun 2016.

Ia kerap menjadi narasumber di berbagai seminar/pelatihan pada lingkup kementerian, perguruan tinggi, dan masyarakat serta sering menjalin interaksi dengan lembaga swadaya masyarakat (LSM), khususnya di Kalimantan Tengah, yaitu CARE International dan World Education. Ia juga didaulat untuk menjadi pembimbing dan penguji mahasiswa S-2 dan S-3 di ULM dan IPB. Ia sering diundang sebagai delegasi Indonesia pada beberapa pertemuan internasional, antara lain The Second Senior Officials Meeting of the Global Research Alliance on Agricultural Green House Gases Governance Working Group di Paris, Prancis; The 19th Session of the Commission on Sustainable Development (CSD-19) di New York, Amerika Serikat; dan The Conference of the Parties (COP) to the Basel Convention, the Rotterdam Convention, and the Stockholm Convention 2019 di Jenewa, Swiss.

Adapun karya tulis ilmiah yang ditulisnya terbit di jurnal dan prosiding, baik nasional maupun international. Ia juga telah menulis beberapa buku teks yang sudah diterbitkan, antara lain Lahan Rawa:
Penelitian dan Pengembangan
(Penerbit AARD Press, 2012) dan Trivia Rawa: Serba-Serbi Sumber Daya Lahan Rawa (Penerbit Gadjah Mada University Press [GMUP], 2021).

Selain sebagai peneliti, ia juga diberi amanah sebagai pejabat struktural di beberapa tempat, yaitu Kepala BPTP Kalimantan Tengah di Palangkaraya (2004–2006); Kepala Balai Besar Pengkajian dan Pengembangan Teknologi Pertanian di Bogor (2006–2010); Kepala Balai Besar LitBang Sumber daya Lahan Pertanian di Bogor (2010–2014); dan Direktur Pupuk dan Pestisida, Ditjen Prasarana dan Sarana Pertanian, Kementan (2014–2019). Sejak tahun 2022, ia bekerja sebagai Analis Kebijakan Utama pada Badan Standarisasi Instrumen Pertanian (BSIP), Kementrian Pertanian.

Muhammad Saleh, Badan Riset dan Inovasi Nasional

Ia lahir di ­kabupten Hulu Sungai Tengah pada Mei 1960. Ia menyelesaikan pen­didik­an S-1 di Jurusan Produksi dan Pengelolaan Tanaman, Fakultas Pertanian Universitas Lambung Mangkurat dan S-2 pada prog­ram pas­casarjana Fakultas Pertanian Universitas Gajah Mada. Ia menjabat sebagai Peneliti Ahli Utama bidang Genetika dan Pemuliaan Tanaman pada Balittra. Selanjutnya, sejak tahun 2022, ia bekerja sebagai peneliti di Badan Riset dan Inovasi Nasional (BRIN).

References

AARD (Agency for Agricultural Research and Development) and LAWOO (The Land Water Research Group). (1992). Acid sulfate soils in the humid tropics: Simulation model and chemical processes to evaluate water management strategies.

Acero, P., Ayora, C., Torrento, C., & Nieto, J. M. (2006). The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica et Cosmochimica Acta, 70, 4130–4139.

Adimihardja, A., Subagyono, K., & Al-Jabri, M. (2006). Konservasi dan rehabilitasi lahan rawa. Dalam D. S. Ardi, U. Kurnia, H. S. Mamat, W. Hartatik, & D. Setyorini (Ed.), Karakteristik dan pengelolaan lahan rawa (229–274). Balai Besar Penelitian dan Pengembangan Sumber daya Lahan Pertanian.

Adji, F. F., Kertonegoro, B. D., & Maas, A. (2005). Relationship between the depth of ground water table dynamics and peats degradation in Kalampangan Central Kalimantan. Dalam H. Wosten & B. Radjagukguk (Ed.), Proceeding of the session on the role of tropical peatlands in global change processes (21–30). ALTERRA–EU INCO–STRAPEAT dan RESTROPEAT.

Aggenbach, C. J. S., Back, H., Emsens, W. J., Grootjans, A. P., Lamers, L. P. M., Smolders, A. J. P., Stuyfzand, P. J., Wolejko, L., & Van Diggelen, R. (2013). Do high iron concentrations in rewetted rich fens hamper restoration? Preslia, 85, 405–420.

Agus, F., & Subiksa, I. G. M. (2008). Lahan gambut: Potensi untuk pertanian dan aspek lingkungan. Balai Penelitian Tanah dan World Agroforestry Centre (ICRAF). 36 p.

Agus, F., Hairiah, K., & Mulyani, A. (2011). Measuring carbon stock in peat soils: Practical guidelines. World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Indonesian Centre for Agricultural Land Resources Research and Development. 60 p.

Ahern, C. R., McElnea, A. E., & Sullivan, L. A. (2004). Acid sulfate soils laboratory methods guidelines. Queensland Department of Natural Resources, Mine and Energy, Indooroopilly.

Alihamsyah, T., Prayudi, B., Sulaiman, S., Ar–Riza, I., Noor M., & Sarwani, M. (2004). 40 tahun BALITTRA: Perkembangan dan program penelitian ke depan. Edisi Kedua. Badan Litbang Departemen Pertanian.

Allison, F. E. (1973). Formation and characteristics of peats and mucks. Dalam Developments in Soil Science (585–602). Vol. 3. Elsevier.

Alwi, M. Saragih, S., & Lestari, Y., (2004). Komponen teknologi pengelolaan lahan terpadu untuk peningatan produktivitas dan konservasi lahan gambut [Laporan Akhir]. Balittra, Balitbangtan.

Alwi, M. Hairani, A., Noor, M., & Surataman. (2022). Perspectives on the changing properties of peat soils used for agriculture: the case of Talio Hulu Village. IOP Conf. Series: Earth and Environmental Science. doi:10.1088/1755-1315/1025/1/012036. 9 p

Amaleviciute, K., Liaudanskiene, I., Slepetiene, A., Slepetys, J., Jokubauskaite, I., & Volungevicius, J. (2015). Carbon and important macroelements of terric histosol after 12 years renaturalization. Eurasian Journal of Soil Science, 4(4), 272–278.

Amukelar, & Kardin, M.K. (1991). Pengendalian penyakit jamur. Balai Penelitian Tanaman Pangan.

Ananto, E. E., Supriyo, A., Soentoro, Hermanto, Soelaeman, Y., Suastika, I. W., & Nuryanto, B. (2000). Pengembangan usaha pertanian lahan pasang surut Sumatra Selatan: Mendukung ketahanan pangan dan pengembangan agribisnis. P2SLPS2. Badan Litbang Pertanian.

Anda, M., Siswanto, A. B., & Subandiono, R. E. (2009). Properties of organic and acid sulfate soils and water of a ‘reclaimed’ tidal backswamp in Central Kalimantan, Indonesia. Geoderma, 149, 54–65.

Anda, M., & Subardja, D. (2013). Assessing soil properties and tidal behaviors as a strategy to avoid environmental degradation in developing new paddy fields in tidal areas. Agriculture, Ecosystems and Environment, 181, 90–100.

Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R. E., Suratman, & Husnain. (2021). Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma, 402, 115235

Andersen, R., Wells, C., Macrae, M., & Price, J. (2013). Nutrient mineralisation and microbial functional diversity in a restored bog approach natural conditions 10 years post restoration. Soil Biology and Biochemistry, 64, 37–47.

Anderson, J. A. R. (1983). The tropical peat swamp of western Malaysia. Dalam A. J. P. Gore (Ed.), Ecosystems of the World 4 B, Mire: Swamp, Bog, Fen and Moor (181–199). Elsevier.

Andriesse, J. P. (1988). Nature and management of tropical peat soils. FAO Soil Bulletin 59.

Andriesse, W., & Van Meensvoort, M. E. F. (2006). Acid sulfate soils: distribution and extent, Dalam R. Lal (Ed.), Encyclopedia of Soil Science (14–19). Vol. 1, 2nd edition. Taylor & Francis,.

Anshari, G., Rianto, F., Mirjaya, A., & Nelly, F. (2004). Promoting best agriculture practices peatlands conservation and income generation activities. Proceeding workshop on wise use and sustainable peatlands management pratices. Wetlands International – Indonesia Programme dan Wildlife Habitat Canada.

Anshari, G. Z. (2010). A preliminary assessment of peat degradation in West Kalimantan. Biogeosciences Discussion, 7, 3503–3520.

Antarlina, S. S., Hidayat, D., Izzuddin, & Raihan, S. (2005). Teknologi peningkatan produktivitas lahan dan kualitas tanaman jeruk di lahan rawa [Laporan Hasil Penelitian]. Balai Penelitian Pertanian Lahan Rawa.

Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (1990). Handbook of Mineralogy, Vol. I. Elements, sulfides, sulfosalts: Tucson, Arizona, Mineral Data Publishing.

Anwar, K., Sarwani, M., & Itjin, R. (1994). Pengembangan pengelolaan air di lahan pasang surut: Pengalaman dari Kalimantan Selatan. Dalam M. Sarwani, M. Noor, & M. Y. Maamun (Ed.), Pengelolaan air dan peningkatan produktivitas lahan rawa pasang surut: Pengalaman di Kaliamantan Selatan dan Tengah. Balittan.

Anwar, K., Susilawati, A., & Noor, M. (2012). Laporan hasil penelitian. Balai Penelitian Pertanian Lahan Rawa. Balai Besar Sumber daya Lahan Pertanian. Badan Penelitian dan Pengembangan Pertanian.

Anwar, K., & Alwi, M. (2000). Pengeloalan hara untuk meningkatkan hasil jagung di lahan gambut dangkal. Prosiding Seminar Nasional Penelitian dan Pengembangan Pertanian di Lahan Rawa. Puslitbangtan, Balitbangtan.

Anwar, S. (2012). Pola tanam tumpang sari. Agroekoteknologi Litbang Deptan.

Ar_Riza, I., Saragih, S., & Nazemi, D. (2007). Pengelolaan lahan dalam sistem budidaya padi di lahan rawa pasang surut. Dalam Prosiding simposium dan seminar PERAGI (92–96).

Arth, I., & Frenzel, P. (2000). Nitrification and denitrifìcation in the rhizosphere of rice: the detection of processes by a new multi-channel electrode. Biology and Fertility of Soils, 31, 427–435.

Asmono, D., Purba, A. R., Yenni, M., Kohar, Y., Zaelanie, H., Liwang, T., & Beng, A.B. (2005). Peta dan prospek pemuliaan dan industri perbenihan kelapa sawit Indonesia. Dalam K. Diwyanto, T. Agung, D. H. Muladno, S. Sujiprihati, & P. H. Siagian. (Ed.), Simposium Nasional dan Kongres V PERIPI. Pemuliaan Sebagai Pendukung Kemandirian dan Ketahanan Pangan (189–192).

Astrom, M., Osterholm, P., Barlund, I., & Tattari, S. (2007). Hydrochemical effects of surface liming, controlled drainage and lime-filter drainage on boreal acid sulfate soils. Water, Air and Soil Pollution, 179, 107–116.

Attanandana, T., & Vacharotayan, S. (1986). Acid sulfate soils: their characteristics, genesis, amelioration and utilization. Southeast Asian Studies, 24(2), 154–180.

Baken, S., Verbeeck, M., Verheyen, D., Diels, J., & Smolders, E. (2015). Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron–rich sediments of drainage ditches. Water Research, 71, 160–170.

Baldwin, D. S., & Fraser, M. (2009). Rehabilitation options for inland waterways impacted by sulfidic sediments - a synthesis. Journal Environmental Management, 91(2), 311–319.

Baldwin, D. (2011). National guidance for the management of acid sulfate soils in inland aquatic ecosystems. Environment Protection and Heritage Council and the Natural Resource Management Ministerial Council.

Balitkabi. (2011). Laporan tahunan penelitian aneka kacang dan umbi. Balai Penelitian Tanaman Kacang-Kacangan dan Umbi-Umbian.

Balittanah. (2012). PUGAM. Pupuk rendah emisi untuk lahan gambut. Warta Penelitian dan Pengembangan Pertanian, 34(2), 73–88.

Balittra. (2011). Setengah abad balittra: Rawa lumbung pangan menghadapi perubahan iklim. Balai Penelitian Pertanian Lahan Rawa.

Balittra. (2013). Kajian penerapan paket alat mesin budidaya padi di lahan rawa. Balittra dan Balai Besar Mektan.

Balittra. (2016). Pedoman umum pengelolaan lahan sulfat masam berke­lanjutan. Balai Penelitian Pertanian Lahan Rawa.

Banach, A. M., Banach, K., Peters, R. C. J. H., Jansen, R. H. M., Visser, E. J. W., Stepniewska, Z., Roelofs, J. G. M., & Lamers, L. P. M. (2009). Effects of long–term flooding on biogeochemistry and vegetation development in floodplains: a mesocosm experiment to study inter­acting effects of land use and water quality. Biogeosciences, 6, 1325–1339.

Barani, A. M. (2012). Karet alam sebagai ATM petani dan sumber devisa negara. Media Perkebunan.

Barber, S. A. & Adams, F. (1984). Liming materials and practices. Dalam F. Adams (Ed.), Soil acidity and liming (171–209). Vol. 12, 2nd edition. The American Society of Agronomy, Inc. Crop Science Society of America, Inc. Monograph series no. 12.

BBSDLP (Balai Besar Litbang Sumber daya Lahan Pertanian). (2011). Peta lahan gambut indonesia skala 1:250.000. Balai Besar Litbang Sumber daya Lahan Pertanian/ICALRRD.

BBSDLP. (2014). Sumber daya lahan pertanian Indonesia: Luas, penyebaran dan potensi ketersediaan. Laporan Teknis 1/BBSDLP/10/2014.

BBSDLP. (2015). Sumber daya lahan pertanian indonesia: luas, penyebaran dan potensi ketersediaan. IAARD Press.

BBSDLP. (2020). Sosialisasi peta lahan rawa dan gambut Indonesia. Badan Penelitian dan Pengembangan Pertanian. Kementerian Pertanian.

Bechteler, A., & Siegert, F. 2004. Recurrent fires in tropical peatlands Central Kalimantan. Dalam J. Paivanen. (Ed.), Wise Use of Peatlands. Proceedings of the 12 International Peat Congress (607–613). Tampere.

Beek, K. J., Blokhois, W. A., Driessen, P. M., Breemen, N. V., & Pons, L. J. (1980). Problem soils: reclamation and management. ILRI. Publ. 27.

Beek, C. L. V., Droogers, P., Van Hardeveld, H. A., Van den Eertwegh, G. A. P. H., Velthof, G. L., & Oenema, O. (2007). Leaching of solutes from an intensively managed peat soil to surface water. Water, Air and Soil Pollution, 182, 291–301.

Beers, W. F. J. V. (1962). Acid sulphate soils. ILRI Bulletin No. 3.

Berner, R. A. (1964). An idealized model of dissolves sulfate distribution in recent sediments. Geochimica et Cosmochimica Acta, 28, 1497–1503.

Berner, R. A. (1970). Sedimentary pyrite formation: an update. American Journal of Science, 268, 1–23.

Bigham, J. M., Schwertmann, U., Carlson, L., Murad, E. (1990). A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 54, 2743–2758.

Bigham, J. M., Schwertmann, U., Traina, S. J., Winland, R. L., & Wolf, M. (1996). Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111–2121.

Bigham, J. M., & Nordstrom, D. K. (2000). Iron and aluminium hydroxysulfates from acid sulfate waters. Dalam C. N. Alpers, J. L. Jambor, & D. K. Nordstrom (Ed.), Sulfate minerals: crystallography, geochemistry, and environmental significance (351–393). Mineralogical Society of America.

Bijak, S. (2017). Selected properties of organic soils under boreal mire spruce forest in the Romincka Forest, NE Polan. Soil Science Annual, 68(4), 182–188.

Blodau, C. (2006). A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Science and Total Environment, 369, 307–332.

Bloomfield, C. (1973). Acidification and ochre formation in pyritic soils. Dalam H. Dost (Ed.), Proceedings of the international symposium on acid sulphate soils (131–139), Publication 18–II. International Institute for Land Reclamation and Improvement.

Bloomfield, C., & Coulter, J. K. (1973). Genesis and management of acid sulfate soils. Advance in Agronomy, 25, 239–265.

Bloomfield, C., & Powlson, D. S. (1977). The improvement of acid sulfate soils for crops other than padi. Malaysia Agricultural Journal, 51(1), 62–76.

Blunden, G. F. (2000). Management of acid sulfate soils by groundwater manipulation [Disertasi tidak diterbitkan]. Wollongong University.

BNPB (Badan Nasional Penanggulangan Bencana). (2019). 99% Penyebab kebakaran hutan dan lahan adalah ulah manusia. Diakses pada 14 Maret, 2024, dari https://bnpb.go.id/berita/99-penyebab-kebakaran-hutan-dan-lahan-adalah-ulah-manusia.

Bodegom, P. M. V., Scholten, J. C. M., & Stams, A. J. M. (2004). Direct inhibition of methanogenesis by ferric iron. FEMS Microbiology Ecology, 49(2), 261–268, https://doi.org/10.1016/j.femsec.2004.03.017

Boehm, H. D. V., & Siegert, F. (2002). Land use and (il)–legal logging in Central Kalimantan, Indonesia. Dalam J. O. Rieley & S. E. Page (Ed.), Peatlands for people, natural resources function, and sustainable management. BPPT dan Indonesian Peat Association.

Boelter, D. H. (1969). Physical properties of peat as related to degree of decomposition. Soil Science Society of America Proceeding, 33, 606–609.

Bohn, H. L., McNeal, B. L., & O’Connor, G. A. (2001). Soil chemistry. 3rd edition. John Wiley and Sons.

Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy, 78, 215–272.

Boman, A., Aström, M. E., & Fröjdö, S. (2008). Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide—The role of artificial drainage. Chemical Geology, 255, 68–77.

Boman, A., Fröjdö, S., Backlund, K., & Aström, M. E. (2010). Impact of isostatic land uplift and artificial drainage on oxidation of brackish–water sediments rich in metastable iron sulfide. Geochimica et Cosmochimica Acta, 74(4), 1268–1281.

Bonneville, S., Behrends, T., & Van Cappellen, P. (2009). Solubility and dissimilatory reduction kinetics of iron (III) oxyhydroxides: A linear free energy relationship. Geochimica Cosmochimica Acta, 73, 5273–5282.

Bonnissel–Gissinger, P., Alnot, M., Jean–Jacque, S., & Behra, P. (1998). Surface oxidation of pyrite as a function of pH. Environmental Science Technology, 32, 2839–2845.

Borch, T., Masue, Y., Kukudapu, R. K., & Fendorf, S. (2007). Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environmental Science Technology, 41, 166–172

Borda, M. J. (2006). Pyrite. Dalam R. Lal (Ed.), Encyclopedia of soil science (1385–1387). Vol. 1, 2nd edition. Taylor & Francis.

Bouman, S. A. M., & Driessen, P. M. (1985). Physical properties of peat soils affecting rice–based croping system. Dalam Soil Physics and Rice (71–84). IRRI.

Brady, N. C. (1974). Nature and Properties of Soils. 8th edition. The Macmillan Company.

Breemen, N. V. (1973). Soil forming processes in acid sulphate soils. Dalam H. Dost (Ed.), Proceedings of the international symposium on acid sulphate soils (66–130), Publication 18–II. International Institute for Land Reclamation and Improvement.

Breemen, N. V. (1975). Acidification and deacidification of coastal plain soils as a result of periodic flooding. Soil Science Society of America Journal, 39, 1153–1157.

Breemen, N. V. (1976). Genesis and Solution Chemistry of Acid Sulphate Soils in Thailand. Centre for Agricultural Publishing and Documentation.

Breemen, N. V., & Pons, L. J. (1978). Acid sulphate and rice. Dalam Soils and rice (739–761). IRRI.

Breemen, N. V. (1993). Environmental aspects of acid sulfate soils. Dalam D. L. Dent & M. E. F. Van Mensvoort (Ed.), Selected papers of the Ho Chi Minh City symposium on acid sulfate soils (391–402). Publication No. 53. ILRI.

Breemen, N. V., & Buurman, P. (2002). Soil Formation, 2nd edition. Kluwer Academic Publisher.

Bridgham, S., & Richardson, C. J. (2003). Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands. Biogeochemistry, 65, 151–178.

Bronswijk, J. J. B., Nugroho, K., & Aribawa, I. B. (1993). Modeling of oxygen–transport and pyrite oxidation in acid sulfate soils. Journal of Environmental Quality, 22(3), 544–554.

Bronswijk, J. J. B., Gronenberg, J., Ritsema, C., van Wijk, A., & Nugroho, K. (1995). Evaluation of water management strategies using a simulation model: A case study in Indonesia. Agricultural Water Management, 27, 125–142.

Brown, A. D., & Jurinak, J. J. (1989). Mechanism of pyrite oxidation in aqueous mixtures. Journal of Environmental Quality,18, 545–550.

Buckman, H. O., & Brady, N. C. (1982). Ilmu Tanah. Bhratara Karya Aksara.

Burton, E. D., Bush, R. T., Sullivan, L. A., & Mitchell, D. R. G. (2007). Reductive transformation of iron and sulfur in schwertmannite–rich accumulations associated with acidified coastal lowlands. Geochimica et Cosmochimica Acta, 71, 4456–4473.

Burton, E. D., Bush, R. T., Sullivan, L. A., & Mitchell, D. R. G. (2008). Schwertmannite transformation to goethite via the Fe(II) pathway: Reaction rates and implications for iron–sulfide formation. Geochimica et Cosmochimica Acta, 72, 4551–4564.

Burton, E. D., Bush, R. T., Johnston, S. G., Sullivan, L. A., & Keene, A. F. (2011). Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re–flooded wetland. Geochimica et Cosmochimica Acta, 75, 3434–3451.

Bush R. T. (2000). Iron sulfide micromorphology and mineralogy in acid sulfate soils: their formation and behaviour [Disertasi tidak diterbitkan]. University of NSW.

Bush, R. T., & Sullivan, L. A. (1997). Morphology and behaviour of greigite from a Holocene sediment in eastern Australia. Australian Journal of Soil Research, 35, 853–861.

Bush, R. T., Sullivan, L. A., & Lin, C. (2000). Iron monosulfide distribution in three coastal floodplain acid sulfate soils, eastern Australia. Pedosphere, 10, 237–245.

Bush, R. T., McGrath, R., & Sullivan, L. A. (2004). Occurrence of marcasite in an organic–rich Holocene estuarine mud. Australian Journal of Soil Research, 42(6), 617–621.

Butler, I. B., & Rickard, D. (2000). Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 64(15), 2665–2672.

Butterly, C. R., Baldock, J., & Tang. C. (2010). Chemical mechanisms of soil pH change by agricultural residues Clayton. Dalam R. J. Gilkes & N. Prakongkep (Ed.), Soil solutions for a changing world. Soil minerals and contaminants (43–46), 19th World Congress of Soil Science.

Cabezas, A., Gelbrecht, J., Zwirnmann, E., Barth, M., & Zak, D. (2012). Effects of degree of peat decomposition, loading rate and temperature on dissolved nitrogen turnover in rewetted fens. Soil Biology and Biochemistry, 48, 182–191.

Carson, C. D., Fanning, D. S., & Dixon, J. B. (1982). Alfisols and ultisols with acid sulfate weathering features in Texas. Dalam J. A. Kittrick, D. S. Fanning, & L. R. Hossner (Ed.), Acid sulfate weathering (127–146). Soil Science Society of America. Special Publication No. 10.

Catrouillet, C., Davranche, M., Dia, A., Bouhnik–Le Coz, R., Marsac, Pourret, O., & Gruau, G. (2014). Geochemical modeling of Fe(II) binding to humic and fulvic acids. Chemical Geology, 372, 109–118.

Cayuela, M. L., Sinicco, T., & Mondini, C. (2009). Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil. Applied Soil Ecology, 41, 118–127.

Cheesman, A. W., Turner, B. L., & Reddy, K. R. (2012). Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland. Soil Science Society of America Journal, 76, 1496–1506.

Cheesman, A. W., Turner, B. L., & Reddy, K. R. (2014). Forms of organic phosphorus in wetland soils. Biogeosciences, 11, 6697–6710.

Chimner, R. A. & Ewel, K. C. (2005). A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecology and Management, 13, 671–684. DOI: 10.1007/s11273-005-0965.

Chimner, R. A., Pypker, T. G., Hribljan, J. A., Moore, P. A., & Waddingto, J. M. (2016). Multi-decadal changes in water table levels alter peatland carbon cycling. Ecosystems, 20, 1042-1057. DOI: 10.1007/s10021–016–0092–x

Chen, C., Dynes, J. J., Wang, J., & Sparks, D. L. (2014). Properties of Fe–organic matter associations via coprecipitation versus adsorption. Environmental Science and Technology, 8(23), 13751–13759.

Chu, C., Lin, C., Wu, Y., Wenzhou, L., & Long, L. (2006). Organic matter increase jarosite dissolution in acid sulfate soils under inundation conditions. Australian Journal of Soil Research, 44, 11–16.

Clarkson, B. & Peters, M. (2010). Wetland types. Dalam B. Clarkson, & M. Peters (Ed.), Wetland restoration: A handbook for New Zaeland freshwater system (26–37). Manaaki Whenua Press.

Cle´ment, J. C., Shrestha, J., Ehrenfeld, J. G., & Jaffe, P. R. (2005). Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology and Biochemistry, 37, 2323–2328.

Clymo, R. S. (1983). Peat. Dalam A. J. P. Gore (Ed.), Ecosystems of the world 4A. Mires: swamps, bog, fen and moor (159–224). Elsevier.

Cook, F. J., Dobos, S. K., Carlin, G. D., & Millar, G. E. (2004). Oxidation rate of pyrite in acid sulfate soils: Insitu measurements and modelling. Australian Journal of Soil Research, 42, 499–507.

Cook, F. J., Hicks, W. S., Gardner, E. A, Carlinà G. D., & Froggatt, D. W. (2000). Export of acidity in drainage water from acid sulphate soils. Marine Pollution Bulletin, 41(7–12), 319–326.

Costello, L. K. (2012). Effects of water level fluctuations on phosphorus, iron, sulfur, and nitrogen cycling in shallow freshwater ecosystems [Disertasi tidak diterbitkan]. Michigan State University.

Creeper, N. L., Hicks, W. S., Shand, P., & Fitzpatrick, R. W. (2015). Geochemical processes following freshwater reflooding of acidified inland acid sulfate soils: An in situ mesocosm experiment. Chemical Geology, 411, 200–214.

Cruells, M., & Roca, A. (2022). Jarosites: formation, structure, reactivity and environmental. Metals, 12(5), 802.

Cusell, C., Kooijman, A., Van Wirdum, G., Geurts, J. J. M., Van Loon, E. E., Kalbitz, K., & Lamers, L. P. M. (2014). Filtering fens: Mechanisms explaining phosphorus limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas. Science of the Total Environment, 481, 129–141.

Dang, T., Mosley, L. M., Fitzpatrick, R. W., & Marschner, P. (2015). Organic materials differ in ability to remove protons, iron and aluminium acid sulfate soil drainage water. Water, Air and Soil Pollution, 226, 357.

Dang, T., Mosley, L. M., Fitzpatrick, R. W., & Marschner, P. (2016). Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release. Environmental Science Pollution Research, 23, 23582–23592. DOI 10.1007/s11356–016–7597–x.

Daoud, J., & Karamanev, D., (2006). Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering, 19(9), 960–967.

Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the Central Congo Basin peatland complex. Nature, 542, 86–90.

Dariah, A, Marwanto, S., & Agus, F. (2013). Root and peat based CO2 emission from oil palm plantations. Mitigation and Adaptation Strategies for Global Change, 19, 831–843.

Das, A., Layek, J., Ramkrushna, G. I., Patel, D. P., Choudhury, B. U., Chowdhury, S., & Ngachan, S. V. (2014). Raised and sunken bed land configuration for crop diversification and crop and water productivity enhancement in rice paddies of the north eastern region of India. Paddy Water Environ. DOI 10.1007/s10333-014-0472-9

Das, S. K., & Das, S. K. (2015). Acid sulphate soil: management strategy for soil health and productivity. Pop. Kheti, 3(2), 2–7.

Davison, W., Lishman, J. P., & Hilton, J. (1985). Formation of pyrite in freshwater sediments; implication for C/S ratios. Geochimica et Cosmochimica Acta, 49, 1615–1620.

Davranche, M., Dia, V., Fakih, M., Nowack, B., Gruau, G., Ona–nguema, G., Petitjean, P., Martin, S., & Hochreutener, R. (2013). Organic matter control on the reactivity of Fe(III)–oxyhydroxides and associated As in wetland soils: A kinetic modeling study. Chemical Geology, 335, 24–35.

Dear, S. E., Ahern, C. R., O’Brien L. E., Dobos, S. K., McElnea, A., E., Moore, N. G., & Watling, K. M. (2014). Queensland acid sulfate soil technical manual: Soil management guidelines. Brisbane: Department of Science, Information Technology, Innovation and the Arts, Queensland Government.

De–Campos, A. B., Mamedov, A. I., & Huang, C. H. (2009). Short–term reducing conditions decrease soil aggregation. Soil Science Society of America Journal, 73, 550–559.

De Datta, S. K. (1981). Principles and practices of rice production. John Wiley & Sons. Inc. New York.

Dent, D. L. (1986). Acid sulphate soils. A baseline for research and development. ILRI. Wageningen. Publ. No. 39.

Dent, D. L. (1992). Reclamation of acid sulphate soils. Dalam R. Lal, & B.A. Stewart. (Ed.) Soil Restoration. Advances in Soil Science, vol 17. Springer. https://doi.org/10.1007/978-1-4612-2820-2_4

Dent, D. L. & Pons, L. J. (1995). A world perspective on acid sulphate soils. Geoderma, 67, 263–276.

Department of Environment Regulation, Australia. (2015a). Identification and investigation of acid sulfate soils and acidic landscapes. Department of Environment Regulation 168 St Georges Terrace, Perth, Western Australia.

Department of Environment Regulation, Australia. (2015b). Treatment and management of soil and water in acid sulfate soil landscapes. Department of Environment Regulation 168 St Georges Terrace, Perth, Western Australia.

Departemen Permukiman dan Pengembangan Wilayah–Dirjen. (2000). Pengembangan perdesaan proyek irigasi Jawa Tengah, Sistem irigasi – seri modul IR 1, Semarang.

Departemen Pertanian. (1998). Pengembangan daerah rawa. Direktorat Jenderal Perkebunan, Departemen Pertanian.

De–Yin, H., Zhuang, L., Wei–Dong, C., Xu, Z., Shun–Gui, W., & Fang–Bai, L. (2010). Comparison of dissolved organic matter from sewage sludge and sludge compost as electron shuttles for enhancing Fe(III) bioreduction. Journal of Soils and Sediments, 1, 722–729.

Dhanya, K. R., & Gladis, R. (2017). Acid sulfate soils–Its characteristics and nutrient dynamics. An Asian Journal of Soil Science, 12(1), 221–227.

Diemont, W. H., & Soepardi. (1987). Genesis of Indonesian lowland peats and possibilities for development. Dalam Symposium Lowland development in Indonesia (463–468). ILRI.

Diemont, W. H., & Pons, L. J. (1992). A preliminary note on peat formation and gleying in the Mahakam inland floodplain, East Kalimantan, Indonesia. Dalam B. Y. Aminuddin, S. L. Tan, B. Aziz, J. Samy, Z. Salmah, H. S. Petimah, & S. T. Choo (Ed.), Tropical Peat. Proceedings of the International Symposium on Tropical Peatland (74–81). MARDI.

Diemont, W. H., Rijksen, H. D., & Silvius, M. J. (1992). Development and conservation of lowland peat areas in Indonesia: How and where? Dalam B. Y. Aminuddin, S. L. Tan, B. Aziz, J. Samy, Z. Salmah, H. Siti Petimah, & S. T. Choo (Ed.), Tropical Peat. Proceedings of the International Symposium on Tropical Peatland (169–176). MARDI.

Dijk, J. V., Didden, W. A. M., Kuenen, F., Bodegom, P .M. V., Verhoef, H. A., & Aerts, R. (2009). Can differences in soil community composition after peat meadow restoration lead to different decomposition and mineralization rates? Soil Biology and Biochemistry, 41, 1717–1725.

Dimitriu, P. A., Lee, D., & Grayston, S. J. (2010). An evaluation of the functional significance of peat microorganisms using a reciprocal transplant approach. Soil Biology and Biochemistry, 42, 65–71.

Dinas Pertanian Tanaman Pangan dan Hortikultura Provinsi KalSel. (2013). Laporan tahunan dinas pertanian TPH tahun 2013. Pemprov Kalimantan Selatan. Dinas Pertanian Tanaman Pangan dan Hortikultura.

Direktorat Jenderal Bina Produksi Hortikultura. (2001). Buku deskripsi varietas tanaman hortikultura. Ditjen Bina Produksi Hortikultura.

Direktorat Pembinaan SMK. (2008). Pembibitan tanaman perkebunan seri, agribisnis tanaman perkebunan. Kementerian Pendidikan dan Kebudayaan Republik Indonesia.

Direktorat Rawa & Pantai. (2009). Buku Pengelolaan Rawa di Indonesia. Dirjen Sumber Daya Air, Dir Rawa dan Pantai. Kementerian Pekerjaan Umum.

Dobermann, A., & Fairhurst, T. (2000). Rice; nutrient disorders and nutrient management. IRRI.

Dohong, S. (1999). Peningkatan produktivitas tanah gambut yang disawahkan dengan pemberian bahan amelioran tanah mineral berkadar besi tinggi [Disertasi tidak diterbitkan]. Institut Pertanian Bogor.

Dohong, A. (2003). Pemanfaatan lahan gambut untuk kegiatan pertanian holtikuktura: belajar dari pengalaman petani Desa Kalampangan, Kalimantan Tengah. Warta Konservasi Lahan basah.

Dommain, R., Couwenberg, J., & Joosten, H. (2010). Hydrological self–regulation of domed peatlands in south–east Asia and consequences for conservation and restoration. Mires and Peat, 6(5), 1–17.

Dong, N. M., Brandt, K. K., Sørensen, J., Hung, N. N., Hach, C. V., Tan, P. S., & Dalsgaard, T. (2012). Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biology and Biochemistry, 47,166–174.

Doye, I., & Duchesne, J. (2003). Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch–leaching tests. Applied Geochemistry, 18(8), 1197–1213.

Driessen, P. M., & Rochimah, L. (1976). The physical of lowland peats from Kalimantan. Dalam Peat and Podsolik Soils and Their Potential for Agriculture in Indonesia (56–73). Proceeding ATA 106 Midterm Seminar, Soil Research Institute, Bogor.

Driessen, P. M. (1978). Peat soils. Dalam Soil and Rice (763–779). IRRI.

Dugan, P. J. (1990). Wetland Conservation. The World Conservation Union.

Dwiyono, A., & Rachman, S. (1996). Management and conservation of the tropical peat forest of Indonesia. Dalam E. Maltby, C. P. Immirzi, & R. J. Safford (Ed.), Proceedings of a Workshop on integrated planning and management of tropical lowland peatlands; Tropical lowland peatlands of Southeast Asia (103–118). IUCN.

Eftekhari, N., Kargar, M., Zamin, F. R., Rastakhiz, N., & Manafi, Z. (2020). A review on various aspects of jarosite and its utilization potentials. Annales de Chimie Science des Materiaux, 44(1), 43–52. https://doi.org/10.18280/acsm.440106

Eltantawy, M., & Baverez, M. (1978). Structural study of humic acids by X–ray, electron spin resonance, and infrared spektroscopy. Soil Science Society of America Journa, 42, 903– 905.

Emsens, W. J., Aggenbach, C. J. S., Smolders, A. J. P., Zak, D., & van Diggelen, R. (2017). Restoration of endangered fen communities: the ambiguity of iron phosphorus binding and phosphorus limitation. Journal of Applied Ecology, 54(6), 1755–1764. DOI: 10.1111/1365–2664.12915.

Euroconsult. (1984). Preliminary assessment of peat development potential final report Kingdom of Netherlands. Affairs-Development Co-operation (Asia) Departement, The Netherlands.

Euroconsult (1986). Nation-wide study of coastal and near-coastal swamps land in Sumatra, Kalimantan and Irian Jaya. Executive Report Dir. Gen. Of Water Res. Dev. Min of Public Work, Jakarta and Euroconsult. Arnhem/BIEC.

EPA (Environmental Protection Agency). (2012). A citizen’s guide to permeable reactive barriers. https://www.epa.gov/remedytech/citizens-guide-permeable-reactive barriers. United States Environmental Protection Agency. EPA 542-F-12-015.

Essington, M. E. (2015). Soil and Water Chemistry: An Integrative Approach. 2nd edition. CRC Press.

Fageria, N. K., Carvalho, G. D., Santos, A. B., Ferreira, E. P. B., & Knupp, A. M. (2011). Chemistry of lowland rice soils and nutrient availability. Communications in Soil Science and Plant Analysis, 42, 1913–1933.

Fahmi, A., Nurzakiah, S., & Purnomo, E. (2005). Evaluasi teknik persiapan contoh tanah dan metode analisis tanah untuk pengukuran fosfat di lahan pasang surut. Jurnal Tanah Tropika, 10(1), 85–90.

Fahmi, A. (2008). Pengaruh pemberian bahan organik jerami padi terhadap kehilangan fosfat dan ferro di tanah sulfat masam [Tesis tidak diterbitkan]. Universitas Gadjah Mada.

Fahmi, A., Radjagukguk, B., & Purwanto, B. H. (2009). Kelarutan fosfat dan ferro pada tanah sulfat masam yang diberi bahan organik jerami padi. Jurnal Tanah Tropika, 14(2), 119–125.

Fahmi, A., Radjagukguk, B., Purwanto, B. H., & Hanudin, E. (2010). The role of peat layers on iron dynamics in peatlands. Jurnal Tanah Tropika, 15(3), 195–201.

Fahmi, A. (2011). Dinamika jerapan permukaan kompleks Fe oksida–senyawa humat. Jurnal Sumber daya Lahan, 5(2), 75–82.

Fahmi, A. (2012). Saling tindak tanah gambut dan substratum bahan sulfidik serta pengaruhnya terhadap sifat kimia tanah [Disertasi tidak diterbitkan]. Universitas Gadjah Mada.

Fahmi, A., Radjagukguk, B., & Purwanto, B. H. (2012). The Leaching of iron and loss of phosphate in acid sulphate soil due to rice straw and phosphate fertilizer application. Jurnal Tanah Tropika, 17(1), 19–24.

Fahmi, A. & Sarwani, M. (2013). Does rice straw application reduce iron concentration and increase rice yield in acid sulphate soil. Dalam E. Husen, D. Nursyamsi, M. Noor, A. Fahmi, Irawan, & I. G. P. Wigena (Eds.), Proceeding of international workshop on sustainable management of lowland for rice production (107–114). Badan Penelitian dan Pengembangan Pertanian.

Fahmi, A., Radjagukguk, B., Purwanto, B. H., & Hanudin, E. (2013). Peran gambut bagi kandungan nitrogeN-total tanah di lahan rawa. Jurnal Berita Biologi, 12(2), 223–229.

Fahmi, A., Alwi, M. Hairani, A. Ramadhani, F., & Nurita. (2013). Validasi decision support system pemupukan padi lahan rawa pasang surut. Laporan Akhir Penelitian. Balai Penelitian Pertanian Lahan Rawa.

Fahmi, A., Radjagukguk, B., & Purwanto, B. H. (2014). Interaction of peat soil and sulphidic material substratum: role of peat layer and groundwater level fluctuations on phosphorus concentration, Jurnal Tanah Tropika, 19(3), 161–169.

Fahmi, A., Susilawati, A., & Rachman, A. (2014). Influence of height waterlogging on soil physical properties of potential and actual acid sulphate soils. Jurnal Tanah Tropika, 19(2), 56–61.

Fahmi, A., Ramadhani, F., & Alwi, M. (2015). Decission support system (DSS) pemupukan padi lahan rawa pasang surut. Dalam P. Rejekiningrum, C. Tapakresnanto, E. Suryani, I. Khairullah, A. Wihardjaka, L. R. Widowati, & I. W. Suastika (Ed.), Prosiding seminar nasional sistem informasi dan pemetaan sumber daya lahan mendukung swasembada pangan (21–30). Buku III–Teknologi Pengelolaan Lahan. Balai Besar Litbang Sumber daya Lahan Pertanian, Bogor.

Fahmi, A. (2017). Penelitian perbaikan teknologi peningkatan produktivitas lahan gambut untuk meningkatkan produksi tanaman cabai dan bawang merah [Laporan Tahunan]. Balai Penelitian Pertanian Lahan Rawa.

Fahmi, A., & Radjagukguk, B. (2018). Peranan lapisan gambut pada dinamika fraksi besi di lahan pasang surut. Dalam S. Sabiham, Y. Sulistyanto, S. Dohong, I. P. Kulu, Y. A. Nion, K. Kusin, E. Murni, & N. Wulandari (Ed.), Prosiding seminar nasional HGI 2017 “Harmonisasi pemanfaatan dan konservasi gambut indonesia melalui pengelolaan lahan secara bertanggung jawab” (127–131).

Fahmi, A., & Khairullah, I. (2018). Ameliorasi tanah sulfat masam untuk budidaya padi. Dalam Masganti, R. S. Simatupang, M. Alwi, E. Maftuah, M. Noor, Mukhlis, H. Sosiawan, & M. A. Susanti (Ed.), Inovasi teknologi lahan rawa: mendukung kedaulatan pangan (36–59). Rajawali Press.

Fahmi, A., Alwi, M., & Nursyamsi, D. (2018). The role of land inundation type of tidal swamp land on the chemical properties of potential acid sulphate soils under fertilizer and lime application. Jurnal Tanah Tropika, 23(2), 55–64.

Fahmi, A., Nurzakiah, S., & Susilawati, A. (2019). The interaction of peat and sulphidic material as substratum in wetland: ash content and electrical conductivity dynamic. International Seminar and Congress of Indonesian Soil Science Society 2019, IOP Conf. Series: Earth and Environmental Science 393 (2019) 012045. IOP Publishing doi:10.1088/1755–1315/393/1/012045

Fanning, D. S. (2006). Acid sulfate soils. Dalam R. Lal (Ed.), Encyclopedia of soil science (11–13). Vol. 1, 2nd edition. Taylor & Francis.

Fanning, D. S., & Burch, S. N. (1997). Acid sulphate soils and some associated environmental problems. Advances Geoecology, 30, 145–158.

Fanning, D. S., Rabenhorst, M. C., Burch, S. N., Islam, K. R., & Tangren, S. A. (2002). Sulfides and sulfates. Dalam J. B. Dixon, & D. G. Schulze (Ed.), Soil mineralogy with environmental implications (229–260). Soil Science Society of America Book series 7.

Fanning, D. S., & Burch, S. N. (2006). Sulfate and sulfide minerals. Dalam R. Lal (Ed.), Encyclopedia of Soil Science (1714–1716). Vol. 1, 2nd edition. Taylor & Francis.

Fanning, D. S., Rabenhorst, M. C., Balduff, D. M., Wagner, D. P., Orr, R. S., & Zurheide, P. K. (2010). An acid sulfate perspective on landscape/seascape soil mineralogy in the U.S. Mid–Atlantic region. Geoderma, 154, 457–464.

Fanning, D. S., Rabenhorst, M. C., & Fitzpatrick, R. W. (2017). Historical developments in the understanding of acid sulfate soils. Geoderma, 308, 191–206.

FAO. (2014). Towards climate–responsible peatlands management. Dalam R. Biancalani & A. Avagyan (Ed.), Mitigation of climate change in agriculture series 9. Food and Agiculture Organization of the United Nations.

Fauzi, Y., Widyastuti, Y. E., Satyawibawa, I., & Hartono, R. (2006). Kelapa sawit: Budidaya, pemanfaatan hasil dan limbah, analisis usaha dan pemasaran. Penebar Swadaya.

Fiedler, S., Vepraskas, M. J., & Richardson, J. L. (2007). Soil redox potential: Importance, field measurements, and observations. Dalam D. L. Sparks (Ed.), Advances in agronomy (1–54). Vol. 94. Elsevier.

Firmansyah, M. A., Yuliani, N., Nugroho, W. A., & Bhermana, A. (2012). Kesesuaian lahan pasang surut untuk tanaman karet di tiga desa eks. PLG. Kabupaten Pulang Pisau, Kalimantan Tengah. Jurnal Lahan Suboptimal, 1(2), 159–167.

Fitzpatrick, R. W., Fritsch, E., & Self, P. G. (1996). Interpretation of soil features produced by ancient and modern processes in degraded landscapes: V. Development of saline sulfidic features in non–tidal seepage areas. Geoderma, 69, 1–29.

Fitzpatrick, R. W., Merry, R. H., Williams, J., White, I., Bowman G., & Taylor. G. (1998). Acid sulfate soil assessment: Coastal, inland and minespoil conditions. National Land and Water Resources Audit. Methods Paper, 18 p.

Fitzpatrick, R. W., Thomas, B. P., Merry, R. H., & S. Marvanek. (2008). Acid sulfate soils in barker inlet and gulf st. vincent priority region. CSIRO Land and Water Science Report 35/08. 22 p.

Fitzpatrick, R. W. & Shand, P. (2008). Inland acid sulfate soils: Overview and conceptual models. Dalam R. W. Fitzpatrick, & P. Shand (Ed.), Inland acid sulfate soil systems across Australia (6–74). CRCLEME (Corporate Research Centre for Landscape Environments and Mineral Exploration).

Fitzpatrick, R. W., Shand, P., &. Merry, R. H. (2009). Acid sulfate soils. Dalam J. T. Jennings (Ed.), Natural history of the Riverland and Murraylands (65–111). Royal Society of South Australia (Inc.).

Fitzpatrick, R. W., Grealish, G. P., Shand, B., Thomas, P., R., Merry, H., & Creeper, N. L. (2009). Preliminary risk assessment of acid sulfate soil materials in the currency creek, Finniss River, Tookayerta Creek and Black Swamp region, South Australia. CSIRO Land and Water. Science Report 01/09. 45 p.

Fitzpatrick, R. W., Shand, P., & Mosley, L. M. (2017). Acid sulfate soil evolution models and pedogenic pathways during drought and reflooding cycles in irrigated areas and adjacent natural wetlands. Geoderma, 308, 270–290.

Fraser, C. J. D., Roulet, M. T., & Lafteur, M. (2001). Ground water flow patterns in a large peatland. Hydrology Journal, 242, 142–154.

Freese, D., Van der Zee, S. E. A. T. M., & Van Riemsdijk, W. H. (1992). Comparison of different models for phosphate sorption as a function of the iron and aluminium oxides of soils. Journal Soil Science, 43, 729–738.

Gao, S., Tanji, K. K., Scardaci, S. C., & Chow, A. T. (2002). Comparison of redox indicators in a paddy soil during rice–growing season. Soil Science Society of America Journal, 66, 805–817.

Gasparatos, D., Massas, I., & Godelitsasm, A. (2019). Fe-Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: Current knowledge and gaps. Catena, 182, 104106.

Golab, A. N., Peterson, M. A., & Indraratna, B. (2009). Selection of permeable reactive barrier materials for treating acidic groundwater in acid sulphate soil terrains based on laboratory column tests. Environmental Earth Sciences, 59, 241–254. DOI 10.1007/s12665-009-0022-8

Gotoh, S., & Patrick, Jr. W. H. (1976). Transformation of iron in a waterlogged soil as influenced by redox potential and pH. Soil Science Society of America Proceedings, 38, 66–71.

Graham, S. A., Craft, C. B., McCormick, P. V., & Aldous, A. (2005). Forms and accumulation of soil P in natural and recently restored peatlands-Upper Klamath Lake, Oregon, USA. Wetlands, 25(3), 594–606.

Grave, M., Eick, M. J., & Grossl, P. R. (2001). Adsorption of arsenate (V) and arsenite (III) on geotite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal, 65, 1680–1687.

Gruba, P., & Mulder, J. (2015). Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Science of the Total Environment, 511, 655–662.

Gu, S., Gruau, G., Dupas, R., Petitjean, P., Lic, Q., & Pinay, G. (2019). Respective roles of Fe–oxyhydroxide dissolution, pH changes and sediment inputs in dissolved phosphorus release from wetland soils under anoxic conditions. Geoderma, 338, 365–374.

Guzman, G., Alcantara, E., & Barro´n, V. (1994). Phytoavailability of phosphate adsorbed on ferrihydrite, hematite, and goethite. Plant and Soil, 159, 219–225.

Hairani, A., & Susilawati, A. (2013). Changes of soil chemical properties during rice straw decomposition in different type of acid sulphate soil. Jurnal Tanah Tropika, 18(2), 99–103.

Hairani, A., & Noor, M. (2021). Water management for increase rice production in the tidal swampland of Kalimantan, Indonesia: constraints, limitedness and opportunities. IOP Conference Series: Earth and Environmental Science 724 (2021) 012021 IOP Publishing doi:10.1088/1755-1315/724/1/012021. 8 pp

Halim, A. (1987). Pengaruh pencampuran tanah mineral dan basa dengan tanah gambut pedalaman Kalimantan Tengah dalam budidaya tanaman kedelai [Disertasi tidak diterbitkan]. Institut Pertanian Bogor.

Hall, S. J., & Silver, W. L. (2013). Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Global Change Biology, 19(9), 2804–2813.

Hanhart, K., & Ni, D. V. (1993). Water management of the rice field at Hoa An, Mekong Delta, Vietnam. Dalam D. L. Dent & M. E. F. Van Mesvoort (Ed.), Selected papers of the Ho Chi Minh City symposium on acid sulphate soils (161–176). ILRI, Publication No. 53.

Haraguchi, A., Kojima, H., Hasegawa, C., Takahashi, Y., & Iyobe, T. (2002). Decomposition of organic matter in peat soil in a minerotrophic mire. European Journal of Soil Biology, 38, 89–95.

Haraguchi, A. (2007). Effect of sulphuric acid discharge on the river water chemistry in peat swamp forests in Central Kalimantan, Indonesia. Limnology, 8, 175–182.

Haraguchi, A., Yulintine, L. Wulandari, L., Liana, T., & Welsiana, S. (2008). Acid discharge from the tropical peat swamp forest and its impact on local people–A review. Dalam C. Farrel & J. Feehan (Ed.), Proceedings of the 13th International Peat Congress, After wise use–the future of peatlands (199–201). Vol. I. Tullamore, Ireland.

Hardjowigeno, S. (1986). Sumber daya fisik wilayah dan tata guna lahan: Histosol. Fakultas Pertanian Institut Pertanian Bogor.

Harmsen, K., & van Breemen, N. (1975). Translocation of iron in acid sulfate soils: II. production and diffusion of dissolved ferrous iron. Soil Science Society of America Journal, 39, 1148–1153.

Harsono, E. (2010). Optimalisasi pemanfaatan lahan arwa pasang surut dengan implementasi pola aliran satu arah. Kuliah Umum Program Magister Teknik. Fakultas Teknik Sipil. Univ. Lambung Mangkurat. Banjarmasin, 12 Juni 2010.

Hartatik, W., Suriadikarta, D. A., & Widjaja-Adhi, I. P. G. (1995). Pengaruh ameliorasi dan pemupukan terhadap tanaman kedelai pada lahan gambut Kalimantan Barat. Risalah Seminar Hasil Penelitian Tanah dan Agroklimat No.2. Puslittanak. Litbang Pertanian, Deptan.

Hartsock, J. A., House, M., & Vit, D. H. (2016). Net nitrogen mineralization in boreal fens: a potential performance indicator for Peatland. Botany, 1–45.

Hartatik, W., Idris, K., Sabiham, S., Djuniwati, S., & Adiningsih, J. S. (2004). Pengaruh pemberian fosfat alam dan SP–36 pada tanah gambut yang diberi bahan amelioran tanah mineral terhadap serapan P dan efisiensi pemupukan P. Dalam Prosiding Kongres Nasional VIII HITI. Universitas Andalas.

Hartatik, W., & Suriadikarta, D. A. (2006). Teknologi pengelolaan hara lahan gambut. Dalam D. S. Ardi, U. Kurnia, H. S. Mamat, W. Hartatik, & D. Setyorini (Ed.), Karakteristik dan pengelolaan lahan rawa (151–180). Balai Besar Penelitian dan Pengembangan Sumber daya Lahan Pertanian.

Hartatik, W., Subiksa, I. G. M., & Dariah, A. (2011). Sifat kimia dan fisik tanah gambut. Sifat kimia dan fisika lahan gambut. Dalam N. L. Nurida, A. Mulyani, & F. Agus (Ed.), Pengelolaan lahan gambut berkelanjutan (45–56). Balai Penelitian Tanah.

Harter, R. D., & Naidu, R. (1995). Role of metal–organic complexation in metal sorption by soils. Advance in Agronomy, 55, 210–263.

Hashidoko, Y., Hayashi, H., Hasegawa, T., Purnomo, E., Osaki, M., & Tahara, S. (2006). Frequent isolation of sphingomonads from local rice varieties and other weeds grown on acid sulfate soil in South Kalimantan, Indonesia. Tropics, 15(4), 391–395.

Henneberry, Y. K., Kraus, P. T. E. C., Nico, S., & Horwath, W. R. (2012). Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Organic Geochemistry, 48, 81–89.

Herndon, E. M., Kinsman–Costello L., Duroe, K. A., Mills, J., Kane, E. S., Sebestyen, S. D., Thompson, A. A., & Wullschleger, S. D. (2019). Iron (oxyhydr)oxides serve as phosphate traps in tundra and boreal peat soils. Journal of Geophysical Research: Biogeosciences, 227–245. 10.1029/2018JG004776

Heuscher, S. A., Brandt, C. C., & Jardine, P. M. (2005). Using soil physical and chemical properties to estimate bulk density. Soil Science Society of America Journal, 69, 51–56.

Hicks, W. S., Bowman, G. M., & Fitzpatrick, R. W. (1999). East Trinity Acid Sulfate Soils Part 1: Environmental Hazards, CSIRO Land and Water.

Hicks, W. S., Bowman, G. M., & Fitzpatrick, R. W. (2009). Effect of season and landscape position on the aluminium geochemistry of tropical acid sulfate soil leachate. Australian Journal of Soil Research, 47, 137–153.

Hooijer, A, Page. S., Cadadell, J. G., Silavius, M., Kwadijk, J., Wosten, H., & Jauhiainen, J. (2010). Current and future CO2 emission from drianed peatland in Southeast Asia. Biogiosciences, 7, 1505–1514.

Holden, J., Chapman, P. J., & Labadz, J. C. (2004). Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography, 28(1), 95–123.

Högfors-Rönnholm, E., Christel, S., Dalhem, K., Lillhonga, T., Engblom, S., Österholm, P., & Dopson, M. (2018). Chemical and microbiological evaluation of novel chemical treatment methods for acid sulfate soils. Science of the Total Environment, 625, 39–49.

Husson, O., Hanhart, K., Phung, M. T., & Bouma, J. (2000). Water management for rice cultivation on acid sulphate soils in the Plain of Reeds, Vietnam. Agricultural Water Management, 46, 91–109.

Idak, H. (1982). Perkembangan dan Sejarah Persawahan di Kalimantan Selatan. Pemerintah Daerah Tingkat I, Kalimantan Selatan.

Imelda, H., & Soejachmoen, M. H. (2023). Mengenal nationally determined contribution (NDC). Indonesia Research Institute for Carbonization.

Indraratna, B., Blunden, B., & Nethery, A. (1999). Nature and properties of acid sulphate soils in drained coastal lowland in NSW. Australian Geomechanics Journal, 34(1), 61–78.

Indraratna, B., Golab, A., Glamore, W., & Blunden, B. (2005). Acid sulphate soil remediation techniques on the Shoalhaven River floodplain, Australia. Quarterly Journal of Engineering Geology and Hydrogeology, 38, 129–142.

Indraratna, B., Regmi, G., Nghiem, L. D., Golab, A., & Banasiak, L. J. (2011). Geo-environmental approaches for the remediation of acid sulphate soil in low-lying floodplains. Dalam J. Han, & D. E. Alzamora (Ed.), Geo-Frontiers: Advances in Geotechnical Engineering (856–865).

Ingvorsen, K., Zehnder, A. J. B., & Jorgensen, B. B. (1984). Kinetic of sulfate and acetate uptake by delulfobacter postgatei. Applied Environmental Microbiology, 47, 403–408.

International Union of Soil Sciences (IUSS) Working Group WRB. (2006). World reference base for soil resources. World Soil Resources Reports No. 103. Food and Agriculture Organization of the United Nations (FAO) and International Soil Reference and Information Centre (ISRIC).

International Union of Soil Sciences (IUSS) Working Group WRB. (2014). World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations (FAO) and International Soil Reference and Information Centre (ISRIC).

Instruksi Presiden (Inpres) Nomor 5 Tahun 2019 tentang Penghentian Pemberian Izin Baru dan Penyempurnaan Tata Kelola Hutan Alam Primer dan Lahan Gambut. (2019). https://peraturan.bpk.go.id/Details/116964/inpres-no-5-tahun-2019

Irianto, G. (2006). Kebijakan dan pengelolaan air dalam pengembangan lahan rawa lebak. Prosiding Seminar Nasional Pengelolaan Lahan Rawa Lebak Terpadu, (9–20). 28–29 Juli 2006. Balittra.

Ismail, G. I., Alihamsyah, T., Widjaja-Adhi, I. P. G., Suwarno, Herawati, T., Tahir, R., & Sianturi, D. E. (1993). Sewindu Penelitian Pertanian di lahan rawa. 1985–1993. Proyek SWAMPS II. Badan Litbang Pertanian. Deptan.

Ismawi, S. M., Gandaseca, S., & Ahmed, O. H. (2012). Effects of deforestation on soil major macro-nutrient and other selected chemical properties of secondary tropical peat swamp forest. International Journal of Physical Sciences, 7(14), 2225–2228.

Iyobe, T., & Haraguchi, A. (2008). Soil chemical properties of peat sediments polluted by sulphuric acid in tropical peatland, Central Kalimantan, Indonesia. Dalam C. Farrel & J. Feehan (Ed.), Proceedings of the 13th International Peat Congress, After wise use–the future of peatlands (100–103). Vol. I.

James, J., Littke, K., Bonassi, T., & Harrison, R. (2016). Exchangeable cations in deep forest soils: Separating climate and chemical controls on spatial and vertical distribution and cycling. Geoderma, 279, 109–121.

Janjirawuttikul, N., Umitsu, M., & Vijarnsorn, P. (2010). Paleoenvironment of acid sulphate soil formation in the Lower Central Plain of Thailand. Research Journal of Environmental Science, 4(4), 336–358.

Jaenicke, J. (2010). 3D modelling and monitoring of Indonesian peatlands aiming at global climate change mitigation. Dissertasi. Fakultät für Biologie, Ludwig–Maximilians–Universität München. 91 p.

Janssen, J. A. M., Andriesse, W., Prasetyo, H., & Bregt, A. K. (1992). Guidelines for soil survey in acid sulphate soils in the Humid Tropics. Dalam The main problems considered. AARD and LAWOO, ILRI.

Jayakumar, S. V. S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A review. Proceedings of the international academy of ecology and environmental sciences, 2(3), 168–176.

Jayalath, N., Mosley, L., Fitzpatrick, R. W., & Marschner, P. (2016). Type of organic carbon amendment influences pH changes in acid sulfate soils in flooded and dry conditions. Journal of Soils and Sediments, 16(2), 518–526.

Jayalath, N., Fitzpatrick, R. W., Mosley, L. M., & Marschner, P. (2016). Addition of organic matter influences pH changes in reduced and oxidised acid sulfate soils. Geoderma, 262, 125–132.

Johnson, D. B. (2000). Biological removal of sulfurous compounds from inorganic wastewaters. Dalam P. Lens & P. L. Hulshoff (Ed.), Environmental technologies to treat sulfur pollution: principles and engineering (175–206). International Association on Water Quality.

Johnson, D. B. (2003). Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water, Air and Soil Pollution: Focus, 3, 47– 66.

Johnston, S. G., Keene, A. F., Bush, R. T., Burton, E. D., Sullivan, L. A., Smith, D., McElnea, A. E., Martens, M. A., & Wilbraham, S. (2009). Contemporary pedogenesis of severely degraded tropical acid sulfate soils after introduction of regular tidal inundation. Geoderma, 149, 335–346.

Johnston, S. G., Bush, R. T., Sullivan, L. A., Burton, E. D., Smith, D., Martens, M. A., McElnea, A. E., Ahern, C. R., Powel, B., Stephens, L. P., Wilbraham, S. T., & Van Heel, S. (2009). Changes in water quality following tidal inundation of coastal lowland acid sulfate soil landscapes. Estuarine, Coastal and Shelf Science, 81, 257–266.

Johnston, S. G., Burton, E. D., Bush, R. T., Keene, A. F., Sullivan, L. A., Smith, D., McElnea, A. E., Ahern, C. R., & Powel, B. (2010). Abundance and fractionation of Al, Fe and trace metals following tidal inundation of a tropical acid sulfate soil. Applied Geochemistry, 25, 323–335.

Johnston, S. G., Keene, A. F., Bush, R. T., Burton, E. D., Sullivan, L. A., Isaacson, L. S., McElnea, A. E., Ahern, C. R., Smith, D., & Powell, B. (2011). Iron geochemical zonation in a tidally inundated acid sulfate soil wetland. Chemical Geology, 280, 257–270.

Johnston, S. G., Burton, E. D., Aaso, T., & Tuckerman, G. (2014). Sulfur, iron and carbon cycling following hydrological restoration of acidic freshwater wetlands. Chemical Geology, 371, 9–26.

Jordan, S., Velty, S., & Zeitz, J. (2007). The influence of degree of peat decomposition on phosphorus binding forms in fens. Mires and Peat, 2, 1–10.

Joosten, H., & Clarke, D. (2002). Wise Use of Mires and Peatlands; Background and principles including framework for decision–making. International Mires Conservations Group– International Peat Society.

Joosten, H. (2007). Peatland and carbon. Dalam F. Paris (Ed.), Assesman on peatlands, biodiversity, and climate change. Global Environ. Centr. Kuala Lumpur and Wetland Intern.

Jumberi, A., Sarwani, M., & Koesrini. (2003). Komponen teknologi pengelolaan lahan dan tanaman untuk meningkatkan produksi dan efisiensi produksi di lahan sulfat masam. Laporan Akhir. Proyek Pengkajian Teknologi Pertanian Partisipatif. Balai Penelitian Pertanian Lahan Rawa.

Jumberi, A., Fahmi, A., & Susilawati, A. (2007). Potensi pengelolaan jerami dan penggunaan varietas unggul adaptif sebagai komponen teknologi peningkatan produktivitas tanah sulfat masam. Prosiding Seminar Nasional Sumber Daya Lahan Pertanian (305 – 314). Balai Besar Sumber daya Lahan Pertanian. Badan Litbang Pertanian.

Kaczorek, D., Brümmer, G. W., & Sommer, M. (2009). Content and binding forms of heavy metals, aluminium and phosphorus in bog iron ores from Poland. Journal Environmental Quality, 38, 1109–1119.

Kaila, A., Asam, Z., Koskinen, M., Uusitalo, R., Smolander, A., Kiikkilä, O., Sarkkola, S., O’Driscoll, C., Kitunen, V., Fritze, H., Nousiainen, H., Tervahauta, A., Xiao, L., & Nieminen, M. (2016). Impact of re-wetting of forestry-drained peatlands on water quality-a laboratory approach assessing the release of P, N, Fe, and dissolved organic carbon. Water, Air and Soil Pollution. 227–292. DOI 10.1007/s11270–016–2994–9

Kappler, A., Benz, M., Schink, B., & Brune, A. (2004). Electron shuttling via humic acid in mirobial iron (III) reduction in a freshwater sediment. Microbiology Ecology Journal, 47, 85–92.

Karimian, N., Johnston, S. G., & Burton, E. D. (2017). Acidity generation accompanying iron and sulfur transformations during drought simulation of freshwater re–flooded acid sulfate soils. Geoderma, 285, 117–131.

Karimian, N., Johnston, S. G., & Burton, E. D. (2018). Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere, 197, 803–816.

Karlsson, T. & Persson, P. (2012). Complexes with aquatic organic matter suppress hydrolysis and precipitation of Fe(III). Chemical Geology, 322–323, 19–27.

Keene, A., Johnston, S. G., Bush, R. T., Sullivan, L. A., & Burton, E. D. (2010). Reductive dissolution of natural jarosite in a tidally inundated acid sulfate soil: geochemical implications. Dalam R. J. Gilkes & N. Prakongkep (Ed.), Soil solutions for a changing world. Soil minerals and contaminants (100–103), 19th World Congress of Soil Science.

Keene, A. F., Johnston, S. G., Bush, R. T., Sullivan, L. A., Burton, E. D., McElnea, A. E., Ahern, C. R., & Powell. B. (2011). Effects of hyper–enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland. Biogeochemistry, 103, 263–279.

Kendall, M. R., Madden, A. S., Madden, M. E. E., & Hu, Q. (2013). Effects of arsenic incorporation on jarosite dissolution rates and reaction products. Geochimica et Cosmochimica Acta, 112, 192–207.

KEPAS. (1985). Tidal swamp agro-ecosistem of Southern Kalimantan: Worskshop report on the sustainable intensification of tidal swamplands in Indonesia, The Ford Fondation in Callaoraion with the AARD. Ministry of Agriculture.

Khairullah, I., Koesrini, William, E., Fatimah, A., Sutami, Suhaimi, S., Roesmini, H., & Murijani, I. 2003. Daya toleransi genotipe tanaman di lahan sulfat masam. Laporan Hasil Penelitian. Balittra.

Khairullah, I. (2007). Keunggulan dan kekurangan varietas lokal padi pasang surut ditinjau dari aspek budidaya dan genetik. Dalam Mukhlis, M. Noor, A. Supriyo, I. Noor, & R. S. Simatupang (Ed.), Proseding seminar nasional pertanian lahan rawa: revitalisasi kawasan plg dan lahan rawa lainnya untuk membangun lumbung pangan nasional. Kuala Kapuas.

Khairullah, I. (2016). Urgensi pemilihan varietas untuk meningkatkan produktivitas padi di lahan rawa [Presentasi Makalah] Seminar Nasional BBP2TP, BPTP Kalimantan Selatan, Banjarbaru.

Khairullah, I. (2017). Urgensi pemilihan varietas untuk meningkatkan produktivitas padi di lahan rawa. Prosiding semnas inovasi teknologi spesifik lokasi; inovasi pertanian spesifik lokasi mendung kedaulatan pangan berkelanjutan (234–240). Balai Besar Pengkajian dan Pengembangan Teknologi Pertanian, Balitbangtan.

Khairullah, I. (2018). Varietas lokal padi pasang surut: adaptabilitas dan akseptabilitas. Dalam Yusriadi (Ed.), Prosiding Semnas Pemanfaatan Potensi Lokal Spesifik untuk Pertanian Berkelanjutan (95–106). Lambung Mangkurat University Press.

Khairullah, I., & Fahmi, A. (2018). Efektivitas pola tanam untuk meningkatkan produktivitas padi di lahan rawa pasang surut. Dalam Masganti, R. S. Simatupang, M. Alwi, E. Maftuah, M. Noor, Mukhlis, H. Sosiawan, & M. A. Susanti (Ed.), Inovasi teknologi lahan rawa: mendukung kedaulatan pangan (84–111). Rajawali Press.

Khan, H. R., Rahman, S., Hussain, M. S., & Adachi, T. (1993). Morphology and characterization of an acid sulfate soil from mangrove floodplain area of Bangladesh. Soil Physical Condition and Plant Growth, 68, 25–36.

Khan, M. H. R., Kabir, S. M., & Bhuiyan, M. M. A. (2016). Effects of selected treatments and techniques for the reclamation and improvement of cheringa acid sulfate soil under rice production in the coastal plain of Cox’s Bazar. Journal of the Asiatic Society of Bangladesh, Science, 42(1), 29–40.

Khan, M. H. R. (2017). Nutrition of rice as influenced by reclamation techniques for acid sulfate soil in Cox’s Bazar. Bangladesh Journal of Scientific and Industrial Research, 52(2), 97–106.

Kieckbusch, J. J., & Schrautzer, J. (2007). Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland. Science of the Total Environment, 380, 3–12.

Kinsman–Costello, L. (2012). Effects of water level fluctuations on phosphorus, iron, sulfur, and nitrogen cycling in shallow freshwater ecosystems [Disertasi tidak diterbitkan]. Michigan State University.

Kirk, G. (2004). The biogeochemistry of submerged soils. John Willey and Sons.

Kolka, R. K., Grigal, D. F., Nater, E. A., & Verry, E. S. (2001). Hydrologic cycling of mercury and organic carbon in a forested upland–bog watershed. Soil Science Society of America Journal, 65, 897–905.

Kölbl, A., Marschner, P. Fitzpatrick, R. W., Mosley, L. M., & Kögel–Knabner, I. (2017). Linking organic matter composition in acid sulfate soils to pH recovery after re–submerging. Geoderma, 208, 350–362.

Kolling, M., Ebbert, M., & Schultz, H. D. (1999). A novel approach to the presentation of pe/pH diagram. Dalam J. Schuring, H. D. Scultz, W. R. Fischer, J. Botcher, & W. H. M. Duijnisvelt (Ed.), Redox; Fundamentls, processes and applications (55-63). Springer.

Könönen, M., Jauhiainen, J., Laiho, R., Kusin, K., & Vasander, H. (2015). Physical and chemical properties of tropical peat under stabilised land uses. Mires and Peat, 16(8), 1–13.

Konsten, C. J. M., Suping, S., Aribawa, I. B., & Widjaja-Adhi, I. P. G. (1990). Chemical processes in acid sulphate soils in Pulau Petak, South and Central Kalimantan, Indonesia. Dalam Papers workshop on acid sulphate soils in the humid tropics (109–135). AARD and LAWOO.

Konsten, C. J. M., van Breemen, N., Suping, S., Aribawa, I. B., & Groenenberg, J. E. (1994). Effects of Flooding on pH of Rice–Producing, Acid Sulfate Soils in Indonesia. Soil Science Society of America Journal, 58, 871–883.

Kooijman A. M., Cusell, C., Hedenäs, L., Lamers, L. P. M., Mettrop, I. S., & Neijmeijer, T. (2020). Re-assessment of phosphorus availability in fens with varying contents of iron and calcium. Plant and Soil, 447, 219–239.

Kraal, P., Burton, E. D., & Bush, R. T. (2013). Iron monosulfide accumulation and pyrite formation in eutrophic estuarine sediments. Geochimica et Cosmochimica Acta, 122, 75–88.

Krachler, R., Jirsa, F., & Ayromlou, S. (2005). Factors influencing the dissolved iron input by river water to the open ocean. Biogeoscience, 2, 311–315.

Krisnawati, H., Adinugroho, W. C., Imanuddin, R., Suyoko, W. C. J., & Volkova, L. (2021). Carbon balance of tropical peat forests at different fire history and implications for carbon emissions. Science Total Environment, 779, 146365. https://doi.org/10.1016/j. scitotenv.2021.146365.

Kukkadapu, R. K., Zachara, J. M., Fredrickson, J. K., & Kennedy, D. W. (2004). Biotransformation of two–line silica–ferrihydrite by a dissimilatory Fe (III)–reducing bacterium: formation of carbonate green rust in the presence of phosphate. Geochimica et Cosmochimica Acta, 68, 2799–2814.

Kull, A., Kull, A., Jaagus, J., Kuusemets, V., & Mender, U. (2008). The effects of fluctuating climatic condition and weather event on nutrient dynamics in narrow mosaic riparian peatland. Boreal Environment Research, 13, 243–263.

Kurnain, A., Notohadikusumo, T., Radjagukguk, B., & Hastuti, S. (2001). Peat soil properties related to degree of decomposition under different land use systems. International Peat Journal, 11, 67–77.

Kurnain, A. (2005). Dampak kegiatan pertanian dan kebakaran atas watak gambut ombrogen [Disertasi tidak diterbitkan]. Universitas Gadjah Mada.

Kusel, K., Blothe, M., Schulze D., Reiche, M., & Drake, H. L. (2008). Microbial reduction of iron and porewater biogeochemistry in acidic peatlands. Biogeosciences, 5, 1537–1549.

Kustantini, D. (2012). Peningkatan produktifitas dan pendapatan petani melalui penggunaan pola tanam tumpang sari pada produksi benih kapas. Balai Besar Perbanihan dan Proteksi Tanaman Perkebuanan (BBP2TP).

Kyuma, K. (2004). Paddy soil science. Kyoto University Press; Trans Pacific Press.

Lambert, K. (1995). Physico–chemical characterisation of lowland tropical peat soil [Disertasi tidak diterbitkan]. RUG.

Lamontagne, S., Hicks, W. S., Fitzpatrick, R. W., & Rogers, S. (2004). Survey and description of sulfidic materials in wetlands of the Lower River Murray floodplains: Implications for floodplain salinity management. CSIRO Land and Water Technical Report 28/0. CRC LEME Open File Report 165.

Lappalainen, E. (1996). General Riview on World Peatland and Peat Resources. Dalam E. Lappalainen (ed.), Global Peat Resources (53–56). IPS-GSF.

Lehmann, J., & Rondon, M. (2006). Biochar soil management on highly weathered soils in the humid tropics. Dalam N. Uphoff, A. S. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, C. Pretty, P. Sanchez, & N. Sanginga (Ed.), Biological approaches to Sustainable Soil Systems 517–530. Taylor & Francis.

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management. Science and Technology. Earthscan.

Lestari, Y., Noor, M., & Berlian, E. (2011). Pemberian paket amelioran alternatif pada cabai merah (Capsicum Annum) di lahan gambut dalam, Kalimantan Tengah. Dalam B. Kartiwa (Ed.), Proseding Seminar Nasional Sumber daya Lahan (39–52). Balai Besar Litbang SDLP.

Lestari, Y., Noor, M., & Simatupang, R. S. (2011). Produktivitas lahan gambut pasang surut tipe C yang diberi bahan amelioran dan pupuk mikro pada budidaya tomat. Dalam B. Kartiwa (Ed.), Proseding Seminar Nasional Sumber daya Lahan (301–314). Balai Besar Litbang SDLP.

Lestari, Y., Noor, M., & Rosmini, H. (2008). Pengaruh ameliorasi terhadap sifat kimia tanah dan hasil tomat pada lahan gambut. Dalam M. Noor (Ed.), Proseding Seminar Nasional Pengembangan Lahan Rawa (242–252). Balai Besar Litbang SDLP – BAPPEDA Prov. Kalsel.

Lestari, Y., Humaire, R., & Simatupang, R. S. (2007). Pengaruh ameliorasi terhadap tanaman lobak pada tanah gambut pasang surut Kalimantan tengah. Dalam Mukhlis, M. Noor, A. Supriyo, I. Noor, & R. S. Simatupang (Ed.), Proseding seminar nasional pertanian lahan rawa: revitalisasi kawasan PLG dan lahan rawa lainnya untuk membangun lumbung pangan nasional. Kuala Kapuas.

Lestari, Y., Noor, M., & Berlian, E. (2011). Pemberian paket amelioran alternatif pada cabai merah (Capsicum Annum) di lahan gambut dalam, Kalimantan Tengah. Dalam B. Kartiwa (Ed.), Proseding Seminar Nasional Sumber daya Lahan (39–52). Balai Besar Litbang SDLP.

Lestari, Y., Noor, M., & Simatupang, R. S. (2011). Produktivitas lahan gambut pasang surut tipe C yang diberi bahan amelioran dan pupuk mikro pada budidaya tomat. Dalam B. Kartiwa (Ed.), Proseding Seminar Nasional Sumber daya Lahan (301–314). Balai Besar Litbang SDLP.

Li, Y., Yu, S., Strong, J., & Wang, H. (2012). Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? Journal of Soils and Sediments, 12, 683–693.

Li, Q., Wang, X., Kan, D., Bartlett, R., Pinay, G., Ding, Y., & Ma, W. (2012). Enrichment of phosphate on ferrous iron phases during bio–reduction of ferrihydrite. International Journal of Geosciences, 3, 314–320.

Limin, S. H., Rieley., J. O., Page, S. E., & Yunsiska, E. (2007). Peat thickness, type of minerals in the bottom peat layer and hydrology status should be taken into account when utilizing tropical peatland for agricultural purposes. Dalam H. Wosten & B. Radjagukguk (Ed.), The role of tropical peatlands in global changes process. open science meeting 2005. science and society: new challenges and oppurtunities. ALTERRA–Wageningen University and Research Centre and the EU ­INCO–STRAPEAT and RESTORPEAT.

Lindbo, D. L., & Kozlowski, D. A. (2006). Histosols. Dalam R. Lal (ed.), Encyclopedia of Soil Science (830–834). Vol. 2. Taylor & Francis.

Lindsay, W. L. (1979). Chemical equilibria in soils. John Willey & Sons.

Ling, Y, C., Bush, R. T., Grice, K., Tulipani, S., Berwick, L., & Moreau, J. W. (2015). Distribution of iron-and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation. Frontiers in Microbiology, 6, 624. doi: 10.3389/fmicb.2015.00624

Liu, C. (1999). Surface chemistry of iron oxide mineral formed in different ionic environment [Disertasi tidak diterbitkan]. University of Saskatchewan.

Loeb, R., Lamers, L. P. M., & Roelofs, J. G. M. (2008). Prediction of phosphorus mobilization in inundated floodplain soils. Environmental Pollutants, 156, 325–331.

Lovley, D. R. (1987). Organic matter mineralization with reduction of ferric iron: a review. Geomicrobiology Journal, 5, 375–399.

Lovley, D. R. (1991). Dissimilatory Fe (III) and Mn (IV) Reduction. Microbiological Reviews, 259–287.

Luo, M., Liu, Y., Huang, J., Xiao, L., Zhu, W., Duan, X., & Tong, C. (2018). Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: a rhizobox study. Plant and Soil, 433, 83–100.

Luther III, G. W., Giglin, A., Howarth, R. W., & Ryans, R. A. (1982). Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica et Cosmochimica Acta, 46, 2665–2669.

Lutzow, M. V., Kogel–Knabner, I., Ekschmitt, K., Mazner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temprate soil; Mechaism and relevance under different soil condition–a review. European Journal of Soil Science, 57, 426–445.

Maas, A. (1996). A note on the formation of peat deposits in Indonesia. Dalam E. Maltby, C. P. Immirzi & R. J. Safford. (Ed.), Tropical Lowland Peatlands of Southeast Asia. Proceedings of a Workshop on Integrated Planning and Management of Tropical Lowland Peatlands. IUCN.

Maas, A., Sutanto, R., Supriyo, A., & Hairunsyah. (1997). Perbaikan kualitas gambut tebal, dampaknya pada pertumbuhan and produksi padi sawah [Laporan Hasil Penelitian]. Lembaga Penelitian UGM Bekerjasama dengan Agricultural Research Management Project.

Macrae, M. L., Devito, K. J., Strack, M., & Waddington, J. M. (2013). Effect of water table drawdown on peatland nutrient dynamics: implications for climate change. Biogeochemistry, 112(1), 661–676. DOI 10.1007/s10533–012–9730–3.

Macdonald, B., White, I., & Denmead, T. (2010). Gas emissions from the interaction of iron, sulfur and nitrogen cycles in acid sulfate soils. Dalam R. J. Gilkes & N. Prakongkep (Ed.), Soil solutions for a changing world. Soil minerals and contaminants (80–83), 19th World Congress of Soil Science.

Madden, M. E. E., Madden, A. S., Rimstidt, J. D., Zahrai, S., Kendall, M. R., & Miller, M. A. (2012). Jarosite dissolution rates and nanoscale mineralogy. Geochimica et Cosmochimica Acta, 91, 306–321.

Maftu’ah, E. (2012). Ameliorasi lahan gambut terdegradasi dan pengaruhnya terhadap produksi tanaman jagung manis [Disertasi tidak diterbitkan]. Universitas Gadjah Mada.

Maftu’ah, E., Noor, M., Hartatik, W., & Nusrsyamsi, D. (2014). Pengelolaan dan roduktivitas lahan gambut untuk berbagai komoditas tanaman. Dalam F. Agus (Ed.), Lahan gambut Indonesia: pembentukan, karakteristik, dan potensi mendukung ketahanan pangan (131–162). IAARD Press.

Magdoff, F. R., Bartlett, R. J., & Ross, D. S. (1987). Acidification and pH buffering of forest soils. Soil Science Society of America Journal, 51(5), 1384–1386.

Maher, C. A. (2013). Examining geochemical processes in acid sulphate soils using stable sulphur isotopes [Disertasi tidak diterbitkan]. Southern Cross University.

Makarim, A. M., & Suhartatik, E. (2009). Morfologi dan fisiologi tanaman padi. Balai Besar Penelitian Tanaman Padi.

Malik, M. A., Marschner, P., & Khan, K. S. (2012). Addition of organic and inorganic P sources to soil effects on P pools and microorganisms. Soil Biology and Biochemistry, 49, 106–113.

Mamat, H. S., & Noor, M. (2014). Kebijakan pemanfaatan lahan rawa pasang surut untuk mendukung kedaulatan pangan. Jurnal Sumber daya Lahan, 31–40.

Mario, M. D. (2002). Peningatan produktivita dan stabilitas tanah gambut dengan pemberian tanah mineral yang diperkaya oleh bahan yang berkadar besi tinggi [Disertasi tidak diterbitkan]. Institut Pertanian Bogor.

Marnette, E. C. L., Van Breemen, N., Hordijk, K. A., & Cappenberg, T. E. (1993). Pyrite formation in two freshwater systems in the Netherlands. Geochimica et Cosmochimica Acta, 57, 4165–4177.

Masganti, Notohadikusumo, T., Maas, A., & Radjagukguk, B. (2002). Hydrophobicity and its impact on chemical properties of peat. Dalam J. O. Rieley & S. E. Page (Ed.), Peatlands for people, natural resources function, and sustainable management (109–113). BPPT dan Indonesian Peat Association.

Masganti. (2003). Kajian upaya meningkatkan daya penyediaan fosfat dalam gambut oligotrofik. [Disertasi tidak diterbitkan]. Program Pascasarjana UGM.

Masganti, Alwi, M., & Nurhayati. (2015). Pengelolaan air untuk budidaya pertanian di lahan gambut: kasus Riau. Dalam M. Noor (Ed.), Pengelolaan air di lahan rawa pasang surut: optimasi lahan mendukung swasembada pangan (62–87). IAARD Press.

Mayakaduwage, S., Alamgir, Md., Mosley, L., & Marschner, P. (2020). Phosphorus pools in sulfuric acid sulfate soils: influence of water content, pH increase and P addition. Journal of Soils Sediments 20, 1446–1453.

Mayakaduwage, S., Mosley, L. M., & Marschner, P. (2021). Phosphorus pools in acid sulfate soil are influenced by soil water content and form in which P is added. Geoderma, 381, 114692.

McIntyre, R. E. S., Adams, M. A., Ford, D. J., & Grierson, P.F. (2009). Rewetting and litter addition influence mineralization and microbial communities in soils from a semiarid intermittent stream. Soil Biology and Biochemistry, 41, 92–101.

McLay, C. D. A., Allbrook, R. F., & Thompson, K. (1992). Effect of development and cultivation on physical properties of peat soils in New Zealand. Geoderma, 54, 23–37.

Mejaya, I. M. J, Satoto, Sasmita, P., Baliadi, Y., Guswara, A., & Suharma. (2014). Deskripsi varietas unggul baru padi (Inpari, Inpago, Inpara, Hipa). Badan Litbang Pertanian.

Melling, L., Goh, K. J., Hatano, R., Uyo, L. J., Sayok, A., & Nik, A. R. (2008). Characteristics of natural tropical peatland and their influence on C flux in Loagan Bunut National Park, Sarawak, Malaysia. Dalam C. Farrel & J. Feehan (Ed.), Proceedings of the 13th International Peat Congress, After wise use–the future of peatlands (226–229). Vol. I. Tullamore, Ireland.

Mensvoort, M. E. F. V., & Dent, D. L. (1998). Acid sulfate soils. Dalam R. Lal, W. H. Blum, C. Valentine, & B. A. Stewart (Ed.), Methods of assessment of soil degradation (301–335). CRC Press.

Michael, P. S., Fitzpatrick, R. W., & Reid, R. J. (2015). The role of organic matter in ameliorating acid sulfate soils with sulfuric horizons. Geoderma, 255–256, 42–49.

Michael, P. S., Fitzpatrick, R. W., & Reid, R. J. (2017). Effects of live wetland plant macrophytes on acidification, redox potential and sulphate content in acid sulphate soils. Soil Use and Management, 33, 471–481. doi: 10.1111/sum.12362.

Michael, P. S. (2018). Comparative assessment of the effects of soil carbon and nitrogen amendment on subsurface soil pH, Eh and sulfate content of acid sulfate soils. Eurasian Soil Science, 51(10), 1181–1190.

Michael, P. S., & Reid, R. J. (2018). Impact of common reed and complex organic matter on the chemistry of acid sulfate soils. Soil Science and Plant Nutrition, 18 (2), 542–555.

Michael, P. S. (2020). Organic carbon and nitrogen amendment prevents oxidation of subsurface of sulfidic soil under aerobic conditions. Eurasian Soil Science, 53(12), 1743–1751.

Michael, P. S. (2021). Positive and negative effects of addition of organic carbon and nitrogen for management of sulfuric soil material acidity under general soil use conditions. Polish Journal of Soil Science, 54(1), 71–87.

Miwa, E. (1989). Utilization of phosphorus transported from upland to lowlands and estuaries. Dalam Phosphorus Requirement for Sustainable Agriculture in Asia and Oceania. IRRI.

Miyake, M. (1982). Improvement and management of peat soils in Japan. Dalam International Symposium on distribution, characteristics, and utilization of problem soils (243–250). Agricultural Research Center Japan.

Moormann, F. R., & Van Breemen, N. (1978). Rice: Soil, water, and land. IRRI.

Morris, A. J., & Hesterberg, D. L. (2010). Mechanisms of phosphate dissolution from soil organic matter. Dalam R. J. Gilkes & N. Prakongkep (Ed.), Soil solutions for a changing world. Soil minerals and contaminants (37–39), 19th World Congress of Soil Science.

Moses, C. O., Nordstrom, D. K., Herman, J. S., & Mills, A. L. (1987). Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51(6), 1561–1571.

Moses, C. O., & Herman, B. J., (1991). Pyrite oxidation at circumneutral pH. Geochimica et Cosmochimica Acta, 55(2), 471–482.

Mosley, L. M., Palmer, D., Leyden, E., Cook, F., Zammit, B., Shand, P., Baker, A., & Fitzpatrick, R. W. (2014). Acidification of floodplains due to river level decline during drought. Journal of Contaminant Hydrology, 161, 10–23.

Mosley, L. M., Fitzpatrick, R. W., Palmer, R. D., Leyden, E., & Shand, P. (2014). Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the lower murray river after a severe drought. Science of the Total Environment, 485–486, 281–291.

Mosley, L. M., Shand, P., Self, P., & Fitzpatrick, R. W. (2014). The geochemistry during management of lake acidification caused by the rewetting of sulfuric (pH<4) acid sulfate soils. Applied Geochemistry, 41, 49–61.

Mosley, L. M., Biswas, T. K., Cook, F. J., Marschner, P., Palmer, D., Shand, P., Yuan, C., & Fitzpatrick, R. W. (2017). Prolonged recovery of acid sulfate soils with sulfuric materials following severe drought; causes and implications. Geoderma, 308, 312–320.

Muktamar, Z., & Adipraseto, T. (1993). Studi potensi lahan gambut di Provinsi Bengkulu untuk tanaman semusim di Indonesia. Dalam­ Proseding seminar nasional gambut II (78–85).

Mukhlis, Saleh, M., Azzahra, F., Budiman, A., & Noor, R. (2010). Pengembangan teknologi pupuk mikroba pereduksi sulfat untuk peningkatan produktivitas lahan sulfat Masam lebih dari 20%. Laporan Hasil Penelitian. Balai Penelitian Pertanian Lahan Rawa.

Nazemi, D., Hairani, A., & Nurita. (2012). Prospek pengembangan penataan lahan system surjan di lahan rawa pasang surut. Agovigor. Jurnal Agroteknologi. 5(2).

Nedeco/Euroconsult-Biec. (1984). Final Report. Nationwide Study of Coastal and Near Coastal Swamp land in Sumatra, Kalimantan, and Irian Jaya. Vol. 3. Maps. Ministry of Public Works. Direct. Gen. of Water Resources Development.

Nelson, K., Thompson, D., Hopkinson, C., Petrone, R., & Chasmer, L. (2021). Peatland-fire interactions: a review of wildland fire feedbacks and interactions in Canadian boreal peatlands. Science Total Environ, 769, 145212. https://doi.org/10.1016/j.scitotenv.2021.145212.

Neue, H. U., & Lin, Z. Z. (1989). Chemistry of adverse flooded soils. Dalam; Phosphorus Requirement for Sustainable Agriculture in Asia and Oceania (225–242). IRRI.

Neue, H. U. (1994). Variability in rice to chemical stresses of problem soils and their method of identification. Dalam D. Senadhira (Ed.), Rice and problem soils in South and Southeast Asia (115–144). International Rice Research Institute: Manila, Philippines; IRRI Discussion Paper Series No. 4.

Nevin, P. K., & Lovely, D. K. (2002). Mechanisms for Fe (III) oxide reduction in sedimentary environments. Geomicrobiology Journal, 19, 141–159.

Niedermeier, A., & Robinson, J. S. (2007). Hydrologycal controls on soil redox dynamics in a peat-based restored wetland. Geoderma, 137, 318–326.

Noble, A. D., & Randal, P. J. (1999). Alkalinity effects of different tree litters incubated in an acid soil of NSW, Australia. Agroforestry Systems, 46, 147–160.

Noor, M. (1996). Padi lahan marjinal. Penebar Swadaya.

Noor, M. (2001). Pertanian lahan gambut: Potensi dan kendala. Penerbit Kanisius.

Noor, M. (2004). Lahan rawa; Sifat dan pengelolaan tanah bermasalah sulfat masam. PT. Raja Grafindo Persada.

Noor, M., Lestari, Y., & Alwi, M. (2005). Laporan hasil penelitian teknologi peningkatan produktivitas lahan gambut. Balittra.

Noor, M. (2010). Lahan gambut: Pengembangan, konservasi, dan perubahan iklim. Gajah Mada University Press.

Noor, M. (2012). Sejarah pembukaan lahan gambut untuk pertanian di Indonesia. Dalam E. Husen, D. Nursyamsi, M. Noor, A. Fahmi, Irawan & I. G. P. Wigena (Ed.), Proceeding of international workshop on sustainable management of lowland for rice production (399–412). Badan Penelitian dan Pengembangan Pertanian.

Noor, M. (2013). Conservation Agricultureand Micro Water Management in the Peatland: Training and Practical Work of Micro Water Management in Peatlands Through the Building of Farmer–Based Water Gates. Final report. Cooperation Food Agriculture Organitation (FAO)-Central Kalimantan Agricultural Technology Assessment.

Noor, M., Masganti, & Agus, F. (2014). Pembentukan dan karakteristik gambut tropika Indonesia. Dalam F. Agus, M. Anda, A. Jamil, & Masganti (Ed.), Lahan gambut Indonesia: Pembentukan, karakteristik, dan potensi mendukung ketahanan pangan. IAARD Press.

Noor, M. (2016). Debat Gambut: Ekonomi, Ekologi, Politik, dan Kebijakan. Gadjah Mada University Press.

Noor, M., & Maftuah, E. (2020). Program SERASI sebagai jalan menuju lumbung pangan dunia tahun 2045. Dalam Masganti (Ed.), Optimasi lahan rawa: akselarasi menuju lumbung pangan dunia 2045 (3–19). IAARD Press.

Noor, M., & Saragih, S. (1997). Peningkatan produktivitas lahan pasang surut dengan perbaikan system pengelolaan air dan tanah. Dalam. Proseding simposium tanaman pangan III, Kinerja penelitian tanaman pangan buku 6 (23–25).

Noor, M., Mayasari, V., & Hidayat, A. R. (2017). Pengelolaan agroekosistem gambut berbasis lingkungan dan masyarakat. Dalam Masganti, R. S. Simatupang, M. Alwi, E. Maftuah, M. Noor, Mukhlis, H. Subagio, A. Fahmi, M. Thamrin, H. Sosiawan, & M. A. Susanti (Ed.), Agroekologi Rawa (30–49). IAARD Press.

Noor, M. (2021). Catatan pinggir dari kawasan food estate lahan rawa di Kalimantan Tengah. Majalah Sains Indonesia. Vol. 09 Januari 2021

Noorginayuwati. (1991). Pengaruh perbaikan tata air terhadap produktivitas lahan tenaga kerja dan terhadap produktivitas lahan tenaga kerja dan pendapatan rata-rata di lahan pasang surut Kalimantan Selatan [Laporan Hasil Penelitian]. Balai Penelitian Tanaman Pangan Banjarbaru.

Noorginayuwati, & Noor, M. (1999). Karakteristik agro–fisik lahan dan sosial ekonomi penyebab dan dampak kebakaran lahan gambut. Jurnal Kalimantan Agrikultura, 6(3), 97–107.

Noorsyamsi, Anwarhan, H., Soelaiman, S., & Bechell, H. M. (1984). Rice cultivation in tidal swamps of Kalimantan. Dalam. Workshop on Research Priorities in Tidal Swamps Rice. (17-28). IRRI. Philippines.

Nordstrom, D. K. (1982). Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. Dalam J. A. Kittrick, D. S. Fanning, & L. R. Hosner (Ed.), Acid Sulfate Weathering (37–56). SSSA Special Publication Number 10. Soil Science Society of America.

Nordstrom, D. K., & Southam, G. (1997). Geomicrobiology of sulfide mineral oxidation. Dalam J. F. Benfield, & K. H. Nelson (Ed.), Geomicrobiology; Interactions Between Microbes and Mineral. Review in Minealogy (361–390). Mineralogical Society of America.

Notohadiprawiro, T. (1979). Tanah estuarin: Watak, sifat, kelakuan, dan kesuburannya. Dep. Ilmu Tanah Fakultas Pertanian, Universitas Gadjah Mada.

Notohadiprawiro, T. (1985). Selidik cepat ciri tanah di lapangan. Ghalia.

Notohadiprawiro, T. (1996). Constraints to achieving the agricultural potential of tropical peatlands–An Indonesian perspective. Dalam E. Maltby, C. P. Immirzi, & R. J. Safford (Ed.), Proceedings of a Workshop on integrated planning and management of tropical lowland peatlands; Tropical lowland peatlands of Southeast Asia (139–154). IUCN.

Notohadiprawiro, T. (1997). Twenty–five years experience in peatland development for agriculture in Indonesia. Dalam J. O. Rieley, & S. E. Page (Ed.), Proceedings of the international symposium on biodiversity, environmental importance of tropical peat and peatlands; Biodiversity and sustainability of tropical peatlands (301–310). Samara Publisher.

Notohadikusumo, T. (2000). Benang merah tulisan-tulisan yang pernah disusun. Dalam Buku Panduan Seminar Nasional Pengembangan Ilmu Tanah Bervisi Lingkungan, Jurusan Ilmu Tanah, Fakultas Pertanian UGM, Yogyakarta.

Notohadiprawiro, T. (2001). Pengantar. Dalam M. Noor, Pertanian Lahan Gambut: Potensi dan Kendala. Penerbit Kanisius.

Nugroho, K., Alkasuma, Paidi, Wahdini, W., Abdulrachman, A., Suhardjo, H., & Widjaja-Adhi, I. P. G. (1991). Penentuan areal potensial lahan pasang surut, rawa, dan pantai. Skala 1:500.000 [Laporan Akhir]. Laporan Teknik No. 1/PSRP/1991. Proyek Penelitian Sumber daya Lahan, Puslittanah dan Agroklimat.

Nugroho, K., Alkasuma, Paidi, Wahdini, W., Abdulrachman, A., Suhardjo, H., & Widjaja-Adhi, I. P. G. (1992). Peta areal potensial untuk pengembangan pertanian lahan pasang surut, rawa dan pantai [Laporan Proyek Penelitian Sumber Daya Lahan]. Puslitanak.

Nugroho, K., Gianinazzi, G., & Widjaja-Adhi, I. P. G. (1997). Soil hydraulic properties of Indonesian peat. Dalam J. O. Rieley, & S. E. Page (Ed.), Proceedings of the international symposium on biodiversity, environmental importance of tropical peat and peatlands; Biodiversity and sustainability of tropical peatlands (147–156). Samara Publisher.

Nursyamsi, D., Noor, M., & Haryono. (2014). Sistem surjan: model pertanian lahan rawa adaptif perubahan iklim. IAARD Press. Balitbangtan. Kementan.

Nuruddin, A. A., Leng, H. M., & Basaruddin, F. (2006). Peat moisture and water relatioship in a tropical peat swamp forest. Journal of Applied Science, 6(11), 2517–2519.

Nurzakiah, S., Nurwahid, N., Nursyamsi, D., & Syahbuddin, H. (2013). Carbon stock stratification of swampy peatland. Dalam Suwardi, M. Nurcholis, F. Agus, S. Anwar, B. I. Setiawan & D. Ardi (Ed.), Proceedings of the 11th international conference the East and Southeast Asia federation of soil science societies. Bogor, Indonesia.

Nwaishi, F., Petrone, R. M., Macrae, M. L., Price, J. S., Strack, M., Slawson, R., & Andersen, R. (2016). Above and below ground nutrient cycling: a criteria for assessing the biogeochemical functioning of a constructed fen. Applied Soil Ecology, 98, 177–194.

Ohfuji, H., Rickard, D., Light, M. E., & Hursthouse. (2006). Structure of framboidal pyrite: a single crystal X–ray diffraction study. European Journal of Mineralogy, 18, 93–98.

Oploo, P., White, V., Ford, I., Melville, M. D., & Macdonald, B. C. T. (2008). Pore water chemistry of acid sulfate soils: Chemical flux and oxidation rates. Geoderma, 146, 32–39.

Oleszczuk, R., & Truba, M. (2013). The analysis of some physical properties of drained peat-moorsh soil layers. Land Reclamation, 45(1), 41–48.

Ottow, J. C. G., & von Klopotek, A. (1969). Enzymatic reduction of iron oxide by fungi. Appl. Environmental Microbiology, 18, 41–43.

Oxmann, J. F., Pham, Q. H., & Lara, R. J. (2008). Quantification of individual phosphorus species in sediment: a sequential conversion and extraction method. European Journal of Soil Science, 59, 1177–1190.

Page, S. E., Rieley, J. O., & R. Wurst. (2006). Lowland tropical peatlands of Southeast Asia. Dalam I. P. Martini, A. M. Cortizas, & W. Chesworth (Ed.), Peatlands; evolution and records of environmental and climate changes (145–172). Elsevier.

Page, S. E., Rieley, J., & Banks, C. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2), 798–818.

Palandri, J. L., Rosenbauer, R. J., & Kharaka, Y. K. (2005). Ferric iron in sediments as a novel CO2 mineral trap: CO2–SO2 reaction with hematite. Applied Geochemistry, 20, 2038–2048.

Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M., & Stringer, L. (2008). Assessment on Peatlands, Biodiversity and Climate Change: Main Report. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen.

Pathirage, P. U. (2014). Modelling of Clogging in a permeable reactive barrier in acid sulfate soil terrain [Disertasi tidak diterbitkan]. University of Wollongong.

Patrick, Jr. W. H., & Jugsujinda, A. (1992). Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Science Society of America Journal, 56, 1071–1073.

Patrick, Jr. W. H., & Mikkelsen, D. S. (1971). Plant nutrient behavior in flooded soil. Dalam R. A. Olson (Ed.), Fertilizer technology and use (187–215). Soil Science Society of America Journal.

Patrick, Jr. W. H., & Mahapatra, I. C. (1968). Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Advances in Agronomy, 20, 323–356.

Patrick, Jr., W. H., & K.R. Reddy. (1978). Chemical changes in rice soils. Dalam Soil and Rice (361–379). IRRI.

Patrick, Jr., W. H., & Henderson, R. E. (1981). Reduction and reoxidation cycles of manganese and iron in flooded soil and in water solution. Soil Science Society of America, 45, 855–859.

Paynea, M. K., & Stolt, M. H. (2017). Understanding sulfide distribution in subaqueous soil systems in southern New England, USA. Geoderma, 308, 207–214.

Pedrot, M., Le Boudec, A., Davranche, M., Dia, A., & Henin, O. (2011). How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction? Journal of Colloid and Interface Science, 359, 75–85.

Pei, L. J. (1985). Amelioration of an acid sulfate soil in the Philippines. I. The effect of organic and inorganic matter amendments on rice growth and yield in an acid sulfate soil. Philippines Journal of Crop Science, 10(1), 37–42.

Peng, X., Horn, L., & Smucker, A. (2007). Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Science Society of America Journal, 71, 1095–1104.

Peraturan Menteri Pertanian Nomor 14/permentan/pl.110/2/2009 Tahun 2009 Tentang Pedoman Pemanfaatan Lahan Gambut untuk Budidaya Kelapa Sawit. (2009). https://peraturan.go.id/id/permentan-no-14-permentan-pl-110-2-2009-tahun-2009

Peraturan Pemerintah (PP) Nomor 150 Tahun 2000 tentang Pengendalian Kerusakan Tanah Untuk Produksi Biomassa. (2000). https://peraturan.bpk.go.id/Details/54039

Peraturan Pemerintah (PP) Nomor 57 Tahun 2016 tentang Perubahan atas Peraturan Pemerintah Nomor 71 Tahun 2014 tentang Perlindungan dan Pengelolaan Ekosistem Gambut. (2016). https://peraturan.bpk.go.id/Details/5778/pp-no-57-tahun-2016

Phong, N. D. (2008). Modelling of canal water acidity due to acid sulphate soils; a case study of the Camau Peninsula, Mekong Delta, Vietnam [Disertasi tidak diterbitkan]. University of Melbourne.

Pirkonen, P., Luukainen, V., & Jarvinen, T. (1985). A study on the dewatering of Jamaican and Finnish by pressing. Proceeding of Symposium on Tropical Peat Resources–Prospect and Potential (294–308). Kingston.

Polak, B. (1975). Character and occurance of peat deposits in the Malaysian tropics. Dalam G. J. Barstra & W. A. Casparie (Ed.), Modern Quarternary Research in Southeast Asia. Balkema.

Poggenburg, C., Mikutta, R., Schippers, A., Dohrmann, R., & Guggenberger, G. (2018). Impact of natural organic matter coatings on the microbial reduction of iron oxides. Geochimica et Cosmochimica Acta, 224, 223–248

Ponnamperuma, F. N. (1972). The chemistry of submerged soils. Advances in Agronomy, 24, 29–96.

Ponnamperuma, F. N., Attanadana, T., & Beye, G. (1973). Amelioration of three acid sulfate soils for lowland rice. Dalam, Proceedings of the international symposium on acid sulfate soils; Acid sulfate soils (391–406). ILRI Publication No. 18. Vol. II.

Ponnamperuma. F. N. (1977). Physicochemical properties of submerged soils in relation to fertility. IRRI Research Paper Series No. 5. IRRI.

Ponnamperuma, F. N. (1978). Varietal tolerance of rice for adverse soils. Dalam Soil and Rice (801–823). IRRI.

Ponnamperuma, F. N. (1984). Effects of flooding on soils. Dalam T. Kozlawski (Ed.), Flooding and plant growth; physical ecology (10–45). Academic Press Inc. Harcourt Brace Javanovich Publisher.

Pons, L. J. (1970). Acid sulphate soils (soils with cat–clay phenomena) and the prediction of their origin from pyrite muds. In field to laboratory. Fysisch. Geografisch en Bodemkundeig Laboratorium. Publication No. 16.

Pons, L. J. (1973). Outline of the genesis, characteristics, classification and improvement of acid sulphate soils. Dalam H. Dost (Ed.), Proceedings of the international symposium on acid sulphate soils (3–27). Publication 18–I. International Institute for Land Reclamation and Improvement.

Pon L. J., & Driessen, P. M. (1975). Reclamation and development of wasteland on oligrotropics peat and acid sulphate soils. Dalam Proceedings symposium on development problems soils in Indonesia.

Pons, L. J., & Van Breemen, N. (1981). Factors influencing the formation of potential acidity in tidal swamps. Dalam H. Dost & N. van Breemen (Ed.), Proceedings of the Bangkok symposium on acid sulphate soils (37–51).

Pons, L. J., Van Breemen, N., & Driessen, P. M. (1982). Physiography of coastal sediments and development of potential soil acidity. Dalam J. A. Kittrick, D. S. Fanning, & L. R. Hossner (Ed.), Acid sulfate weathering (1-18). SSSA Special Publication No. 10, Soil Science Society of America: Madison, WI.

Ponziani, M., Slob, E. C., Ngan–Tillar D. J. M., & Vanhala. H., (2011). Influence of water content on the electrical conductivity of peat. International Water Technology Journal, I(1), 14–21.

Prade, K., Ottow, J. C. G., & Jacq, V. (1986). Excessive iron uptake (iron toxicity) by wetland rica (Oryza sativa L.) on acid sulphate soil in the Casamance/ Senegal. Dalam H. Dost (Ed.), Selected papers of the Dakkar symposium on acid sulphate soils (150–162). ILRI Publication No. 44.

Prastowo, K., Moersidi, S., Santoso, E., & Sibuea, L. H. (1993). Pengaruh kompos diperkaya dengan pupuk Urea, TSP, P-Alam, KCl dan kapur terhadap tanaman. Prosiding Pertemuan Teknis. Pusat Penelitian Tanah dan Agroklimat.

Prem, M., Christian, H., Hansen, B., Wenzel, W., Heiberg, L., Sørensen, H., & Borggaard, O. K. (2014). High spatial and fast changes of iron redox state and phosphorus solubility in a seasonally flooded temperate wetland soil. Journal of Hydrology, 214, 130–143.

Prévost, M., Plamondon, A. P., & Belleau, P. (1999). Effects of drainage of a forested peatland on water quality and quantity. Journal of Hydrology, 214(1–4), 130–143, https://doi.org/10.1016/S0022-1694(98)00281-9.

Price, J. S., Heathwaite, A. L., & Baird, A. J. (2003). Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetlands Ecology and Management, 11, 65–83.

Proctor, M. C. F. (2003). Malham tarn moss: The surface water chemistry of an ombrotrophic bog. Field Studies, 10, 553–578.

Pulford, I. D., Backes, C. A., & Duncan, H. J. (1988). Inhibition of pyrite oxidation in coal mine waste. Dalam H. Dost (Ed.), Selected papers of the Dakkar symposium on acid sulphate soils (59–67). ILRI Publication No. 44.

Purnomo, E., Mursyid, A., Syarwani, M., Jumberi, A., Hashidoko, Y., Hasegawa, T., Honma, S., & Osaki, M. (2005). Phosphorus solubilizing microorganisms in the rhizosphere of local rice varieties grown without fertilizer on acid sulfate Soils. Soil Science and Plant Nutriton, 61(5), 679–681.

Purnomo, E., Hasegawa, T., Hashidoko, Y., Saputra, P. J., & Osaki, M. (2009). Nitrogen nutrition of some local rice varieties grown without fertilizer on acid sulphate soil area in South Kalimantan, Jurnal Tanah Tropika, 14(1), 41-47.

Puslitbangtan. (1992). Program transmigrasi di lahan rawa. Dalam S. Partohardjono & M. Syam (Ed.), Risalah pertemuan pengembangan terpadu pertanian lahan rawa dan lebak. SWAMPS. Puslistbangtan.

Puslittanak (Pusat Penelitian Tanah dan Agroklimat). (2000). Atlas sumber daya tanah eksplorasi Indonesia. Skala 1:1.000.000. Badan Litbang Pertanian, Dep. Pertanian.

Rabenhorst, M. C., Fanning, D. S., & Burch, S. N. (2006). Acid sulfate soils: formation. Dalam R. Lal (Ed.), Encyclopedia of Soil Science (20–24). Vol. 1, 2nd edition. CRC Press.

Radjagukguk, B. (1992). Utilization and management of peatlands in Indonesia for agriculture and forestry. Dalam B. Y. Aminuddin, S. L. Tan, B. Aziz, J. Samy, Z. Salmah, H. Siti Petimah, & S. T. Choo (Ed.), Tropical Peat. Proceedings of the International Symposium on Tropical Peatland (21–27). MARDI.

Radjagukguk, B. (1993). (17 March 1993). Peat resource of Indonesia: its extent, characteristics, and development possibilities [Presentasi Makalah]. The third seminar on the greening of desert entitled: Desert Greening with Peat. Waseda University.

Radjagukguk, B. (1997). Pertanian berkelanjutan di lahan gambut. Pengelolaan gambut berwawasan lingkungan. Alami, 2(1), 17–20.

Radjaguguk, B. (2004). Developing sustainable agriculture on tropical peatland: Chalanges and prospects. Dalam J. Palvanen (Ed.), Proceding of the 12th international peat congress. Wise use of peatlands (707–712). Vol 1.

Radjagukguk, B. (2006). Kesuburan tanah. Diktat mata kuliah Kesuburan Tanah. Fakultas Pertanian, Universitas Gadjah Mada.

Rachim, A. (1995). Penggunaan kation–kation polivalen kaitannya dengan ketersediaan fosfat untuk meningkatkan produksi jagung pada tanah gambut [Disertasi tidak diterbitkan]. Institut Pertanian Bogor.

Rahim, A., Hutomo, G. S., Shahabuddin, Ismail & Farid. (2020). Diversifikasi produk olahan kakao melalui program pengembangan desa mitra di Kecamatan Ampibabo Kabupaten Parigi Moutong. Jurnal Pengabdian Masyarakat, 3,(2), 57-62

Rakshit, S., Uchimiya, M., & Sposito, G. (2009). Iron (III) bioreduction in soil in the presence of added humic substances. Soil Science Society of America Journal, 73, 65–71.

Ramsar Convention Secretariat. (2010). Wetland inventory: A Ramsar framework for wetland inventory and ecological character description. Ramsar handbooks for the wise use of wetlands, 4th edition, vol. 15. Ramsar Convention Secretariat, Gland, Switzerland.

Rondon, M., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility in Soils, 43, 699–708.

Reddy, K. R., Rao, P. S. C., & Patrick Jr, W. H., (1980). Factors influencing oxigen consumption rates in flooded soils. Soil Science Society of America Journal, 44, 741–744.

Reddy, K. R., & DeLaune, R. D. (2008). The biogeochemistry of wetlands; Science and applications, CRC Press.

Regenspurg, S. (2002). Characterization of schwertmannite–geochemical interactions with arsenate and chromate and significance in sediments of lignite opencast lakes [Disertasi tidak diterbitkan]. University of Bayreuth.

Regmi, G., Indraratna, B., & Nghiem, L. D. (2009). Long–term performance of a permeable reactive barrier in acid sulphate soil terrain. Water, Air and Soil Pollution, 9(5/6), 409–419.

Regmi, G., Indraratna, B., Nghiem, L. D., & Prasad, B. G. (2011). Treatment of Acidic Groundwater in Acid Sulfate Soil Terrain Using Recycled Concrete: Column Experiments. Journal of Environmental Engineering, 433–443.

Reid, R. J., & Butcher, C. S. (2011). Positive and negative impacts of plants on acid production in exposed acid sulphate soils. Plant Soil, 349, 183-190.

Rickard, D. T. (1975). Kinetics and mechanism of pyrite formation at low temperatures. American Journal of Science, 275, 636–652.

Rickard, D. (2019). How long does it take a pyrite framboid to form? Earth and Planetary Science Letters, 513, 64–68.

Rickard, D., & Luther III, G. W. (1997a). Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochimica et Cosmochimica Acta, 61(1), 135–147.

Rickard, D., & Luther III, G. W. (1997b). Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochimica et Cosmochimica Acta, 61(1), 115–134.

Rickard, D., & Luther III, G. W. (2007). Chemistry of iron sulfides. Chemical Reviews, 107, 514–562.

Rieley, J. O. (1992). The ecology of tropical peatswamp forest- A Southeast Asian perspective. Dalam B. Y. Aminuddin, S. L. Tan, B. Aziz, J. Samy, Z. Salmah, H. Siti Petimah, & S. T. Choo (Ed.), Tropical Peat. Proceedings of the International Symposium on Tropical Peatland (244–254). MARDI.

Rieley, J. O., Siefferman, G., Fournier, M., & Soubies, F. (1992). The peatswamp forest of Borneo; Their origin, development, past and present vegetation and importance in regional and global environmental processes. Dalam Proceedings of the 19th International Peat Congress (78–95).

Rieley, J. O., Ahmad–Shah, A. A., & Brady, M. A. (1996). The extent andnature of tropical peat swamps. Dalam E. Maltby, C. P. Immirzi, & R. J. Safford (Ed.), Proceedings of a Workshop on integrated planning and management of tropical lowland peatlands; Tropical lowland peatlands of Southeast Asia (17–53). IUCN.

Rieley, J. O., & Page, S. E. (2005). Wise use of tropical peatlands: Focus on Southeast Asia. ALTERRA–Wageningen University and Research Centre and the EU INCO–TRAPEAT and RESTORPEAT.

Rieley, J. O., Notohadiprawiro, T., Setiadi, B., & Limin, S. H. (2008). Restoration of tropical peatland in Indonesia ; why, where and how ? Dalam C. Farrel & J. Feehan (Ed.), Proceedings of the 13th International Peat Congress, After wise use–the future of peatlands (240–244). Vol. I.

Rigby, P. A., Dobos, S. K., Cook, F. J., & Goonetilleke, A. (2006). Role of organic matter in framboidal pyrite oxidation. Science of the Total Environment, 36, 847–854.

Rina, Y, Noorginayuwati, & Antarlina, S. S. (2006). Analisis finansial usahatani jeruk pada sistem surjan di lahan pasang surut. Dalam Setiadjit, S. Prabawati, Yulianingsih & T. M. Ibrahim (Ed.), Prosiding ekspose nasional agribisnis jeruk siam. Kerjasama BPTP KalBar, Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian, Pemerintah Provinsi Kalimantan Barat dan Pemerintah Kabupaten Sambas.

Ritchie, A. I. M. (1994). Sulfide oxidation mechanisms: controls and rates of oxygen transport. Dalam J. L. Jambor & D. W. Blowes (Ed.), Short course handbook on environmental geochemistry of sulfide mine–waste (22, 201–244). Mineralogical Association of Canada.

Ritsema, C. J., Groenenberg, J. E., & Bisdom, E. B. A. (1992). The transformation of potential into actual acid sulphate soils studied in column experiments. Geoderma, 55, 259–271.

Ritsema, C. J., & Groenenberg, J. E. (1993). Pyrite oxidation, carbonate weathering, and gypsum formation in a drained potential acid sulfate soil. Soil Science Society of America Journal, 57, 968–976.

Ritung, S., Wahyunto, & Nugroho, K. (2012). Karakteristik dan sebaran lahan gambut di Sumatra, Kalimantan dan Papua. Dalam E. Husen, M. Anda, M. Noor, H. S. Mamat, Maswar, A. Fahmi, & Y. Sulaiman (Ed.), Prosiding seminar nasional; pengelolaan lahan gambut berkelanjutan (47–62). Balai Besar Penelitian dan Pengembangan Sumber daya Lahan Pertanian.

Ritzema, H., & Wösten, H. (2002). Hydrology of Borneo’s Peat Swamps. STRAPEAT–Status Report Hydrology.

Roden, E. E., & Wetzel, R. G. (1996). Organik carbon oxidation and suppression of methane production by microbial Fe (III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnology and Oceanography, 41, 1733–1748.

Rodney, A. C., & Ewel, K. C. (2005). A tropical freshwater wetland; Production, decomposition and peat formation. Wetland Ecology and Management, 13, 671–684.

Rorison, I. H. (1973). The effect of extreme soil acidity on the nutrient and physiology of plants. Dalam H. Dost (Ed.), Proceedings of the international symposium on acid sulphate soils (391–406), Publication 18–II. International Institute for Land Reclamation and Improvement.

Rose, A. W., & Cravotta III, C. A. (1998). Geochemistry of coal mine drainage. Dalam K. B. C. Brady, M. W. Smith, & J. Schueck (Ed.), Coal mine drainage prediction and prevention in Pennsylvania (1–22). Pennsylvania Dept. Environ Protection.

Rosilawati, K., Shamshuddin, J., & Fauziah, C. I. (2014). Effects of incubating an acid sulfate soil treated with various liming materials under submerged and moist conditions on pH, Al and Fe. African Journal of Agricultural Research, 9(1), 94–112.

Rothe, M., Kleeberg, A., & M. Hupfer, (2016). The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth–Science Reviews, 158, 51–64.

Rukshana, F., Butterly, C. R., Baldock, J. A., & Tang, C. (2011). Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biolology Fertility of Soils, 47, 51–62.

Sabiham, S. (1988). Studies on peat in the coastal plains of Sumatra and Borneo. Part I : Physiografi and geomorphology of the coastal plains. Tonan Ajia Kenkyu (South East Asian Qstudies), 26(3), 307–335.

Sabiham, S., Dohong, S., & Prasetyo, T. (1997). Phenolic acids in Indonesia Peat. E. Page (Ed.), Proceedings of the international symposium on biodiversity, environmental importance of tropical peat and peatlands; Biodiversity and sustainability of tropical peatlands (289–292). Samara Publisher.

Sabiham, S., & Ismangun, M. (1997). Potensi dan kendala pengembangan lahan gambut untuk pertanian. Dalam Prosiding simposium nasional dan kongres V Peragi.

Sabiham, S. (2000). Kadar air kritik gambut Kalimantan Tengah dalam kaitannya dengan kejadian kering tidak-balik. Jurnal Tanah Tropika, 11, 21–30.

Sabiham, S. (2006). Pengelolaan lahan gambut indonesia berbasis keunikan ekosistem. Makalah Orasi Ilmiah. Fakultas Pertanian, Institut Pertanian Bogor.

Sabiham, S. (2010). Keunikan eksositem sebagai dasar pengelolaan lahan gambut ke depan. Pengantar buku lahan gambut: Pengembangan, konservasi, dan perubahan iklim.Gadjah Mada University Press.

Sadiq, A. A., & Babagama, U. (2012). Influence of lime materials to ameliorate acidity on irrigated paddy fields: A review. Academic Research International, 3(1), 413–420.

Sagiman, S. (2001). Peningatan produksi kedelai di tanah gambut melalui inokulasi Bradyrhizobium Japonicum asal gambut dan pemanfaatan amelioran (lumpur dan kapur) [Disertasi tidak diterbitkan]. Institut Pertanian Bogor.

Sahrawat, K. L. (1979). Ammonium fixation in some tropical rice soils. Communication in Soil Science Plant Analysis, 10, 1015–1023.

Sahrawat, K. L. (1998). Flooding soil: a great equalizer of diversity in soil chemical fertility. Oryza, 35, 300–305.

Sahrawat, K. L., & Narteh, L. T. (2001). Organic matter and reducible iron control of ammonium production in submerged soils. Communications in Soil Science and Plant Analysis, 32, 1543–1550.

Sahrawat, K. L. (2004a). Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition, 27(8), 1471–1504.

Sahrawat, K. L. (2004b). Ammonium production in submerged soils and sediments: the role of reducible iron. Communications in Soil Science and Plant Analysis, 35(3&4), 399–411.

Sahrawat, K. L. (2004c). Organic matter accumulation in submerged soils. Advance in Agronomy, 81, 169–201.

Sahrawat, K. L. (2005). Fertility and organic matter in submerged rice soils. Current Science, 88(5), 735–739.

Sahrawat, K. L. (2015). Redox potential and pH as major drivers of fertility in submerged rice soils: a conceptual framework for management. Communications in Soil Science and Plant Analysis, 46, 1597–1606.

Sajarwan, A. (1998). Pengaruh pemberian pupuk kandang terhadap laju dekomposisi dan perubahan sifat kimia tanah gambut fibrist [Tesis tidak diterbitkan]. Universitas Brawijaya.

Sajarwan, A. (2007). Kajian karakteristik gambut tropika yang dipengaruhi oleh jarak dari sungai, ketebalan gambut dan tipe hutan di daerah aliran sungai sebangau. [Disertasi tidak diterbitkan]. Program Pascasarjana UGM. Yogyakarta

Salampak, (1999). Peningkatan produktivitas tanah gambut yang disawahkan dengan pemberian bahan amelioran tanah mineral berkadar besi [Disertasi tidak diterbitkan]. Institut Pertanian Bogor.

Saleh, M., & Raihan, S. (2011). Keragaan melon varietas Action 434 dengan perlakuan zat pengatur tumbuh dan pupuk kalsium tinggi di lahan rawa pasang surut sulfat masam. Dalam Gunawan (Ed.), Proseding seminar nasional pemberdayaan petani melalui inovasi teknologi spesifik lokasi (567–570). BPTP Jogjakarta dan Sekolah Tinggi Pertanian Magelang.

Salmah, Z., Spoor, G,. Zahuri, A. B., & Welch, D. N. (1992). Importance of water management in peat soil at farm level. Dalam B. Y. Aminuddin, S. L. Tan, B. Aziz, J. Samy, Z. Salmah, H. Siti Petimah, & S. T. Choo (Ed.), Tropical Peat. Proceedings of the International Symposium on Tropical Peatland (228–238). MARDI.

Salimin, M. I., Gandaseca, S., Ahmed, O. H., & Majid, N. M. A. (2010). Comparison of selected chemical properties of peat swamp soil before and after timber harvestin. American Journal of Environmental Sciences, 6(2), 164–167.

Sanchez, P. A. (1976). Properties and Management of Soils in the Tropics. 1st edition. John Wiley & Soncs, Inc.

Sánchez–Marañón, M., Romero–Freire, A., & Martín–Peinado, F. J. (2015). Soil–color changes by sulfuricization induced from a pyritic surface sediment. Catena, 135, 173–183.

Sapek, A., Sapek, B., Chrzanowski, S., & Urbaniak, M. (2009). Nutrient mobilisation and losses related to the groundwater level in low peat soils. International Journal of Environment and Pollution, 37(4), 398–408.

Saragih, S., & Nurzakiah, S. (2011). Peluang meningkatkan indeks pertanaman padi dengan IP 300 di lahan rawa pasang surut. Agroscientiae, 18(3), 38–43.

Sarwani, M., Shamshuddin, J., Fauziah, I., & Husni, M. A. H. (2006). Changes in iron–poor acid sulfate soil upon submergence. Geoderma, 131, 110–122.

Schoonen, M. A. A. (2004). Mechanisms of sedimentary pyrite formation. Dalam J. P. Amend, J. Katrina, Edwards, & T. W. Lyons (Ed.), Sulfur Biogeochemistry: Past and present (379, 117–134). Geological Society of America Special Paper.

Schumann, M., & Joosten, H. (2008). Global Peatland Restoration Manual. Institute of Botany and Landscape Ecology, Greifswald University.

Schwertmann, U., & Murad, E. (1983). Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals, 31(4), 277–284.

Schwertmann, U., & Taylor, R. M. (1989). Iron Oxide. Dalam J. B. Dixon & S. B. Weed (Ed.), Mineral in Environment (379–438). 2nd edition. Soil Science Society of America Book series I. SSSA.

Setiadi, B. (1995). Beberapa aspek agronomi budidaya Kedelai di lahan gambut: suatu kajian tanggapan tanaman terhadap amelioran. Ringkasan Desertasi UGM.

Setiadi, B. (1999). Abu vulkanis sebagai amelioran lahan gambut kasus di kawasan transmigrasi. BPPT.

Setiawan, H. K. (1991). Akibat pemampatan atas sifat sifat hidrologi gambut sehubungan dengan tingkat perombakan [Skripsi tidak diterbitkan]. Universitas Gadjah Mada.

Setiawan, B. I. (2015, 16 Juni 2015). Konsepsi dan strategi pengembangan Polder Alabio. [Presentasi makalah] pada FGD Revitalisasi Pertanian Polder alabio.

Setyanto, P., Sopiawati, T., Andriani, A. T., Purnomo, A., Hervani, A., Wahyuni, S., & Mihardjaka, A. (2014). Emisi Gas rumah kaca dari penggunaan lahan gambut dan pemberian bahan amelioran: sintesis lima lokasi penelitian. Dalam A. Wahardjaka (Ed.), Proseding seminar nasional pengelolaaan berkelanjutan lahan gambut terdegradasi untuk mitigasi emisi GRK dan peningkatan nilai ekonomi (45–62). Balitbangtan. Kementan.

Seybold, C. A., Grossman, R. B., & Reinsch, T. G. (2005). Predicting cation exchange capacity for soil survey using linear models. Soil Science Society of America Journal, 69, 856–863.

Shamshuddin, J., Sarwani, M., Fauziah, C. I., & Van Ranst, E. (2004). A laboratory study of pyrite oxidation in acid sulfate soils. Communications in Soil Science and Plant Analysis, 35(1 & 2), 117–129.

Shamshuddin, J., Azura, A. E., Shazana, M. A. R. S., Fauziah, C. I., Panhwar, Q. A., & Naher, U. A. (2014). Properties and management of acid sulfate soils in Southeast Asia for sustainable cultivation of rice, oil palm, and cocoa. Dalam D. L. Sparks (Ed.), Advances in Agronomy (91–142). Vol. 124. Academic Press.

Shand, P., Appleyard, S., Simpson, S. L., Degens, B., & Mosley, L. M. (2018). National acid sulfate soils guidance: guidance for the dewartering of acid sulfate soils in shallow groundwater environments, Department of Agriculture and Water Resources.

Shastry, S. V., Tran, D. V., Nguyen, V. N., & Nanda, J. S. (2000). Sustainable integrated riceproduction. Dalam J. S. Nanda (Ed.), Rice breeding and genetics, research priorities and challenges (53–72). Science Publishers, Inc. New Hamisphere.

Sieffermann, R. G., Fournier, M., Truitomo, S., Saderman, M. T., & Semah, A. M. (1988). Velocity of tropical peat acumulation in Central Kalimantan Province, Indonesia. Dalam Proceeding of the 8th International Peat congress (1, 90–98). Leningrad, USSR, International Peat Society.

Siegert, F., Böehm, H. D. V., Rieley, J. O., Page, S. E., Jauhiainen, J., Vasander, H., & Jaya. A. (2002). Peat fires in Central Kalimantan, Indonesia: Fire impacts and carbon release. Dalam J. O. Rieley, & S. E. Page (Ed.), Peatlands for People, Natural Resources Function, and Sustainable Management (142–154). BPPT dan Indonesian Peat Association, Jakarta.

Simatupang. R. S. (2007). Masalah gulma dan cara pengelolaannya untuk meningkatkan produksi padi di lahan rawa pasang surut. Dalam Mukhlis, M. Noor, A. Supriyo, I. Noor, & R. S. Simatupang (Ed.), Proseding seminar nasional pertanian lahan rawa: revitalisasi kawasan plg dan lahan rawa lainnya untuk membangun lumbung pangan nasional. Kuala Kapuas.

Simatupang, R. S., Nurita, & Nazemi, D. (2014). Inovasi teknologi penataan dan penyiapan lahan rawa pasang surut. Dalam D. Nursyamsi (Ed.), Teknologi inovasi lahan rawa pasang surut mendukung kedaulatan pangan nasional (49–72). Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian.

Simola, H., Pitkanen, A., & Turunen, J. (2012). Carbon loss in drained forestry peatlands in Finland, estimated by re-sampling peatlands surveyed in the 1980s. European Journal of Soil Science, 1–10.

Simpson, S. L., Fitzpatrick, R. W., Shand, P., Angel, B. M., Spadaro D. A., & Mosley, L. (2010). Climate–driven mobilisation of acid and metals from acid sulfate soils. Marine and Freshwater Research, 61, 129–138.

Simpson, S. L., Mosley, L. M., Batley, G. E., & Shand, P. (2018). National acid sulfate soils guidance: guidelines for the dredging of acid sulfate soil sediments and associated dredge spoil management, Department of Agriculture and Water Resources.

Singh, G. (1992). Oil palm cultivation on peat soil in United Plantations Berhad. Dalam B. Y. Aminuddin, S. L. Tan, B. Aziz, J. Samy, Z. Salmah, H. Siti Petimah, & S. T. Choo (Ed.), Tropical Peat. Proceedings of the International Symposium on Tropical Peatland (6–12). MARDI.

Smith, A. M. L., Hudson–Edwards, K. A., Dubbin, W. E., & Wrigh, K. (2006). Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling. Geochimica et Cosmochimica Acta, 70, 608–621.

Sodano, M., Lerda, C., Nisticò, R., Martina, M., Magnaccab, G., Celia, L., & Said-Pullicino, D. (2017). Dissolved organik carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma, 307, 19–29.

Soekardi, M., & Hidayat, A. (1987, 22–27 Agustus, 1987). Extent and distribution of peat soils of Indoensia. [Presentasi makalah] The third meeting of the cooperative for research on problem soils.

Soepardi, G., & Surowinoto, S. (1982, 1–14 Nopember 1982). Pemanfaatan tanah gambut pedalaman, kasus bereng bengkel [Presentasi makalah]. Seminar Lahan Pertanian Se–Kalimantan di Palangkaraya,

Soil Survey Staff. (1975). Soil taxonomy, a basic system of soil classification for making and interpreting soil survey. Agricultural Handbook No. 36. US Government Printing Offices.

Soil Survey Staff. (2010). Keys to soil taxonomy. 11th edition. United States Department of Agriculture (USDA) and Natural Resources Conservation Service (NRCS).

Soil Survey Staff. (2014). Key to soil taxonomy. 12th edition. United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS).

Soil Survey Staff. (2022). Keys to soil taxonomy. 13th edition. United States Department of Agriculture (USDA) Natural Resources Conservation Service.

Sorensen, K. W. (1993). Indonesian peat swamp forest and their role as carbon sink. Chemosphere, 27(6), 1065–1082.

Stephens, J. C., & Speir, W. H. (1969). Subsidence of organic soils in the USA. Land Subsidence, 2, 523–534.

Strakova, P., Niemi, R. M., Freeman, C., Peltoniemi, K., Toberman, H., Heiskanen, I., Fritze, H., & Laiho, R. (2011). Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences, 8, 2741–2755.

Stucky, J. W. (2006). Properties and behaviour of iron in clay minerals. Dalam F. Bergaya, B. K. G. Theng, & G. Lagaly (Ed.), HandBook of Clay Science. Development in clay science vol. 1.

Subagyo, H., Sudjadi, M., Suryatna, E., & Dai, J. (1990). Wet soils of Indonesia. Dalam J. M. Kimble (Ed.), Proceeding 8th Int. soil correl. meeting (VIII ISCOM): Characterization, Classification, and Utilization of Wet Soils (248–259). Lousiana and Texas. USDA, SCS, National Soil Survey Center, Lincoln, NE.

Subagyo, H. (1997). Potensi pengembangan dan tata ruang lahan rawa untuk pertanian. Dalam; A. S. Karama (Ed.), Prosiding Simposium Nasional dan Kongres VI PERAGI (17–55).

Subagyo, H. (2006). Karakteristik dan penyebaran lahan rawa. Dalam D. S. Ardi, U. Kurnia, H.S. Mamat, W. Hartatik, & D. Setyorini (Ed.), Karakteristik dan Pengelolaan Lahan Rawa (1–22). Balai Besar Penelitian dan Pengembangan Sumber daya Lahan Pertanian.

Subagyo, H., Noor, M., Yusuf, W. A., & Khairullah, I. (2015). Perspektif pertanian lahan rawa: Mendukung kedaulatan pangan. IAARD Press. 108 p.

Subagyono, K., Abdurachman A., & Suharta, N. (2001). Effects of puddling various soil types by harrows on physical properties of new developed irrigated rice areas in Indonesia. Journal of Experimental Botany, 53(366), 13–15.

Subagyono, H., Suatika, I. W., & Ananto, E. E. (1999). Penataan lahan dan tata air mikro: Pengembangan SUP Sumatra Selatan. Proyek Pengembangan Sistem Usaha Pertanian (SUP) Lahan Pasang Surut Sumatra Selatan. Badan Penelitian dan Pengembangan Pertanian.

Subiksa, I. G. M. (2000). Ameliorasi lahan gambut untuk usaha tani yang berkelanjutan. Dalam B. Prayudi, M. Sabran, I. Noor, I. Ar-Riza, S. Partohardjono & Hermanto (Ed.), Prosiding seminar nasional penelitian dan pengembangan pertanian di lahan rawa. ISDP. Puslitbangtan. Badan Litbang Pertanian.

Subiksa, I. G. M., Suganda, H., & Purnomo, J. (2009). Pengembangan formula pupuk untuk lahan gambut sebagai penyedia hara dan menekan emisi gas rumah kaca (GRK). Laporan Penelitian Kerja Sama antara Balai Penelitian Tanah dengan Departemen Pendidikan Nasional.

Subiksa, I. G. M. (2013). PUGAM: Specific fertilizer for peat land to reduce carbon emission and inreased soil productivity. Dalam E. Husen, D. Nursyamsi, M. Noor, A. Fahmi, Irawan, & I. G. P. Wigena (Eds.), Proceeding of international workshop on sustainable management of lowland for rice production (166–175). Badan Penelitian dan Pengembangan Pertanian.

Subiksa, I. G. M., Nugroho, K., Sholeh, & Widjaja-Adhi, I. P. G. (1997). The effect of ameliorants on the chemical properties and productivity of peat soil. Dalam J. O. Rieley, & S. E. Page (Ed.), Proceedings of the international symposium on biodiversity, environmental importance of tropical peat and peatlands; Biodiversity and sustainability of tropical peatlands (321–326). Samara Publisher.

Subroto, & Yusrani, A. (2005). Kesuburan dan pemanfaatan tanah. Bayumedia Publishing.

Sudjianto, A. T., Suryolelono, K. B., Rifa’i, A., & Mochtar, I. B. (2011). The effect of water content change and variation suction in behavior swelling of expansive soil. International Journal Civil Environmental Enginering, 11(3), 11–17.

Suhardjo, H., & Driessen, P. M. (1977). Reclamation and use of Indonesian lowlaand peats and their effects on soil conditions. Proceedings Third Asean Soil Confrence, Kuala Lumpur (419–424).

Suhardjo, H., & Widjaja-Adhi, I. P. G. (1977). Chemical characteristics of the upper 30 cm of peat soils from Riau. Proceedings ATA 106 midterm seminar. Peat and Podzolics soils and their potential for agriculture in Indonesia (74–92). Soil Research Institute.

Sukitprapanon, T., Suddhiprakarn, A., Kheoruenromne, I., Anusontpornperm, S., & Gilkes, R. J. (2015). Forms of acidity in potential, active and post–active acid sulfate soils in Thailand. Thailand Journal of Agricultural Science, 48(3), 133–146.

Sukitprapanon, T., Suddhiprakarn, A., Kheoruenromne, I., Anusontpornperm, S. & Gilkes, R. J. (2016). A comparison of potential, active and post-active acid sulfate soils in Thailand. Geoderma Regional, 7, 346–356.

Sulaiman, A. A., Subagyono, K., Alihamsyah, T., Noor, M., Hermanto, Muharram, A., Subiksa, I. G. M., & Suastika, I. W. (2018). Membangkitkan lahan rawa, membangun lumbung pangan indonesia. Buku Seri Pembangunan Pertanian 2015–2018. IAARD Press.

Sundman, A., Karlsson, T., Sjöberg, S., & Persson, P. (2016). Impact of iron–organic matter complexes on aqueous phosphate concentrations. Chemical Geology, 426, 109–117.

Sundstrom, E., Magnusson, T., & Hanell, B. (2000). Nutrient concentrations in drained peatlands along a north–south climatic gradient in Sweden. Forest Ecology and Management, 216, 149–161.

Sullivan, L. A. (2012). Acid sulfate soils and their management: A global perspective. Dalam; P. Österholm, M. Yli–Halla, & P. Edén (Eds.). Proceedings 7th International Acid Sulfate Soil Conference, Towards Harmony between Land Use and the Environment (127–129).

Sullivan, L. A., Ward, N. J., Toppler, N., & Lancaster, G. (2018), National acid sulfate soils guidance: National acid sulfate soils sampling and identification methods manual, Department of Agriculture and Water Resources.

Sullivan, L. A., & Bush, R. T. (1997). Quantitative elemental microanalysis of rough–surfaced soil specimens in the scanning electron microscope using a peak–to–background method. Soil Science, 162, 749–757.

Sumardi, Kasli, Kasim, M., Syarif, A., & Akhir, N. (2007). Respons padi sawah pada teknik budidaya secara aerobik dan pemberian bahan organik. Jurnal Akta Agrosia, 10(1), 65.

Suriadikarta, D. A., & Setyorini, D. (2006). Teknologi pengelolaan lahan sulfat masam. Dalam D. S. Ardi, U. Kurnia, H. S. Mamat, W. Hartatik, & D. Setyorini (Ed.), Karakteristik dan pengelolaan lahan rawa (117–150). Balai Besar Penelitian dan Pengembangan Sumber daya Lahan Pertanian.

Sutikno, H., & Noor, M. (1997). Strategi pelestarian lahan gambut pasang surut. Alami, 2(1), 21–27.

Suryantini. (2005). Serapan N, P dan K tanaman petsai dengan pemberian lumpur laut dan pupuk kandang pada tanah gambut. Journal Agrosains, 2(1),14–28.

Suryanto. (1994). Improvement of the P nutrient status of tropical ombrogenous peat soils from Pontianak, West Kalimantan, Indonesia [Disertasi tidak diterbitkan]. RUG, Ghent.

Suwondo, Sabiham, S., Sumardjo, & B. Paramudya, (2012). Efek pembukaan lahan terhadap karakteristik biofisik gambut pada perkebunan kelapa sawit di Kabupaten Bengkalis. Jurnal Natur Indonesia, 14(2), 143–149.

Swayze, G. A., Desborough, G. A., Smith, K. S., Lowers, H. A., Hammarstrom, J. M., Diehl, S. F., Leinz, R. W., & Driscoll, R. L. (2008). Understanding jarosite–from mine waste to mars Dalam P. L. Verplanck (Ed.), Understanding contaminants associated with mineral deposits. U.S. Geological Survey Circular 1328.

Sylla, M., & Toure, M. (1988). Edaphic constraints, current remedies and rice research requirements.

Sylla, M., Van Breemen, N., Fresco, L., Stein, A., & Dixon, C. (1993). Spatial and temporal variability of soil constraints along the Great Scarcies River, Sierra Leone. Dalam D. L. Dent & M. E. F. Van Mensvoort (Ed.), Selected papers of the Ho Chi Minh City symposium on acid sulfate soils (247–259). Publication No. 53. ILRI.

Sylla, M. (1994). Soil salinity and acidity: spatial variability and effects on rice production in West Africa’s Mangrove zone [Disertasi tidak diterbitkan]. Wageningen University.

Takada, M., Mishima, Y., & Natsume, S. (2009). Estimation of surface soil properties in peatland using ALOS/PALSAR. Landscape Ecology Enginering, 5, 45–58.

Takahashi, H., Shimada, S., & Ibie, B. I. (2002). Annual changes of water balance and a drought index in a tropical peat swamp forest of Central Kalimantan, Indonesia. Dalam J. O. Rieley & S. E. Page (Ed.), Peatlands for people, natural resources function, and sustainable management. BPPT dan Indonesian Peat Association.

Tan, K. H. (2008). Soils in the Humid Tropics and Monsoon Region of Indonesia. CRC Press, Taylor and Francis Group.

Taufik, M. (1997). Pengaruh pengapuran dan pengeringan terhadap watak kelengasan tanah gambut ombrogen [Skripsi tidak diterbitkan]. Universitas Gadjah Mada.

Team MP-EMRP. (2008). Master plan for the conservation and development of the ex mega rice project in Central Kalimantan. GOI-RNE.

The State of Victoria Department of Sustainability and Environment. (2010). Victorian best practice guidelines for assessing and managing coastal acid sulfate soils. The State of Victoria Department of Sustainability and Environment.

Thomas J. E., Skinner, W. M., & Smart, R. S. C. (2001). A mechanism to explain sudden changes in rates and products for pyrrhotite dissolution in acid solution. Geochimica et Cosmochimica Acta, 65, 1–12.

Tie, Y. L. (1982). Soil classification in Sarawak. Technical paper No. 6. Soils Division Research Branch, Department of Agriculture.

Tie, Y. L., & Lim, J. S. (1992). Characteristics and classification of organic soils in Malaysia. Dalam B. Y. Aminudin (Ed.). Proceedings of the International Symposium on Tropical Peatland, Malaysia Agricultural Research and Development Institute, Kuching, Sarawak.

Trueman, A. M., McLaughlin, M. J., Mosley, L. M., & Fitzpatrick, R. W. (2020). Composition and dissolution kinetics of jarosite–rich segregations extracted from an acid sulfate soil with sulfuric material. Chemical Geology, 543, 119606.

Umar, S., & Alihamsyah, T. (2014), Mekanisasi pertanian: untuk produksi padi di lahan rawa pasang surut. Balitttra.

Umar, S., Noor, M., & Noorginayuwati. (2014). Kearifan lokal untuk peningkatan dan keberlanjutan produksi pertanian di lahan gambut. Dalam F. Agus, M. Anda, A. Jamil, & Masganti (Ed.), Lahan gambut Indonesia: Pembentukan, karakteristik, dan potensi mendukung ketahanan pangan (163–188). IAARD Press.

Unger, M., Motavalli, P. P., & Muzika, R. M., (2009). Changes in soil chemical properties with flooding: A field laboratory approach. Agriculture, Ecosystems & Environment, 131(1–2), 105–110.

Unger, M., Kennedy, A. C., & Muzika, R. M. (2009). Flooding effects on soil microbial communities. Applied Soil Ecology, 42, 1–8.

Undang-undang (UU) Nomor 18 Tahun 2004 tentang Perkebunan. (2004). https://peraturan.bpk.go.id/Details/40516/uu-no-18-tahun-2004

United Nations Development Programme (UNDP). (2006). Malaysia’s peat swamp forests, conservation and sustainale use. United Nations Development Programme Malaysia. 33 p.

Uomori, M. & Yamaguchi, T. (1997). The water absorption ability of peat. International Peat Journal, 7, 41–44.

Urbanova, Z., Picek, T., & Barta, J. (2011). Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecological Engineering, 37, 1017–1026.

Utami, S. N. H. (2010). Pemulihan gambut hidrofobik dengan surfaktan dan amelioran, serta pengaruhnya terhadap serapan p oleh jagung [Disertasi tidak diterbitkan]. Universitas Gadjah Mada.

Vadari, T., Haryono, Nugroho, K., Widjaja-Adhi, I. P. G., & Setiadi. B. (1995). Prospek penggunaan abu vulkanis untuk meningkatkan produktivitas lahan gambut di Kalimantan Barat. Dalam D. Santoso (Ed.). Prosiding pertemuan teknis penelitian tanah dan agroklimat, bidang konservasi tanah dan air, dan agroklimat. Puslittanak.

Valat, B., Jouany, C., & Riviere, L. M. (1991). Characterization of the wetting properties of air-dried peats dan composts. Soil Science, 152(2), 100–107.

Vegas-Vilarrubia, T., Baritto, F., & Melean, G. (2008). A critical examination of some common field tests to assess the acid-sulphate condition in soils. Soil Use Management, 24(1), 60–68.

Verdonk, O., Cappaert, I., & De Boodt, M. (1973). The properties of the normally used substrates in the region Ghent. Dalam M. De Boodt (Ed.), Proceedings symposium artificial media in horticulture: Technical communication of the international society for horticulture science (1930–1944).

Verry, E. S., Boelter, D. H., Paivanen, J., Nichols, D. S., Malterer, T., & Gafni. A. (2011). Physical properties of organic soils. Dalam R. Kolka, S. Sebestyen, E. S. Verry, & K. Brooks (Ed.), Peatland biogeochemistry and watershed hydrology at the Marcell experimental forest (135–176). CRC Press.

Vile, M. A., Wieder, R. K., Ivkovic, T. Z., Scott, K. D., Hartsock, J. A., Iosue, C. L., Quinn, J. C., Fillingim, H. M., Popma, J. M. A., Dynarski, K. A., Jackman, T. R., Albright, C. M., & Wykoff, D. D. (2014). N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry, 121, 317–328. DOI 10.1007/s10533-014-0019-6.

Virtanen, S., Puustinen, M., & Yli–Halla, M. (2017). Oxidation of iron sulfides in subsoils of cultivated boreal acid sulfate soil fields-based on soil redox potential and pH measurements. Geoderma, 308, 252–259.

Vithana, C. L. (2014). Assessment and behaviour of secondary iron(III) minerals in acid sulfate soil materials [Disertasi tidak diterbitkan]. Southern Cross University.

Vithana, C. L., Sullivan, L. A., Burton, E. D., & R. T. Bush, (2015). Stability of schwertmannite and jarosite in an acidic landscape: Prolonged field incubation. Geoderma, 239–240, 47–57.

Waclimad (Water Management for Climate Change Mitigation and Adaptive Development in the Lowlands). (2012). Lowland Definition. Working Paper 1. Bappenas-Euroconsult MatMAcDonald-World Bank.

Wahyunto, Ritung, S., & Subagjo, H. (2005). Peta sebaran lahan gambut, luas dan kandungan karbon di Kalimantan 2000–2002. Wetlands International-Indonesia Programme & Wildlife Habitat. Canada (WHC).

Wahyunto, Suparto, Bambang, H., & Bhekti, H. (2006). Sebaran lahan gambut, luas dan cadangan karbon bawah permukaan di Papua. Wetlands International-Indonesia Programme.

Wang, Y., Liu, X., Butterly, C., Tang, C., & Xu, J. (2013). pH change, carbon and nitrogen mineralization in paddy soils as affected by Chinese milk vetch addition and soil water regime. Journal Soils and Sediment, 13, 654–663.

Wang, X., Liu, F., Tan, W., Li, W., Feng, X., & Sparks, D. L. (2013). Characteristics of phosphate adsorption-desorption onto ferrihydrite: comparison with well-crystalline fe (hydr)oxides. Soil Science, 178(1), 1–11.

Wang, M. & Moore, T. R. (2014). Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 17, 673–684. DOI: 10.1007/s10021-014-9752-x.

Wang, X., C. Westbrook, & A. Bedard-Haughn. (2016). Effect of mineral horizons on spatial distribution of soil properties and N cycling in a mountain. Geoderma, 273, 73–82.

Wang, Y., Wang, H., He, J. S., & Feng, X. (2017). Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 8, 15972. DOI: 10.1038/ncomms15972.

Watanabe, T., Man, L. H., Vien, D. M., Khang, V. T., Ha, N. N., Linh, T. B., & Ito, O. (2009). Effects of continuous rice straw compost application on rice yield and soil properties in the Mekong Delta. Soil Science and Plant Nutrition, 55, 754–763.

Ward, N. J. (2004). Sulfide oxidation in some acid sulfate soil materials [Disertasi tidak diterbitkan]. Southern Cross University.

Ward, N. J., Sullivan, L. A., & Bush, R. T. (2004). Soil pH, oxygen availability, and the rate of sulfide oxidation in acid sulfate soil materials: Implications for environmental hazard assessment. Australian Journal of Soil Research, 42(5–6), 509–514.

Warman, G. R. & Kristiana, R. (2018). Mengkaji sistem tanam tumpang sari tanaman semusim. Proceeding Biology Education Conference, 15(1), 791–794.

Weerd, V. H. D. (2000). Transfort of Reactive Carriers and Contaminants in Groundwater Systems, A dynamic competitive happening [Disertasi tidak diterbitkan]. Wageningen University.

Wei, X., Zhu, Z., Wei, L., Wu, J., & Ge, T. (2019). Biogeochemical cycles of key elements in the paddy-rice rhizosphere: Microbial mechanisms and coupling processes. Rhizosphere, 10, 100145.

Weiss, D., Shotyk, W., Rieley, J. O., Page, S. E., Gloor, M., Reese, S., & Martinez-Cortizas, A. (2002). The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, S.E. Asia, and its implications for past atmosphericdust deposition. Geochimica et Cosmochimica Acta, 66(13), 2307–2323.

Welch, S. A., Christy, A. G., Kirste, D., Beavis, F. R., & Beavis, S. G. (2007). Welch, Jarosite dissolution I–Trace cation flux in acid sulfate soils. Chemical Geology, 245, 183–187.

Welch, S. A., Kirste, D., Christy, A. G., Beavis, F. R., & Beavis, S. G. (2008). Jarosite dissolution II–Reaction kinetics, stoichiometry and acid flux. Chemical Geology, 254, 73–86.

Weng, L., Van Riemsdijk, W. H., & Hiemstra, T. (2008). Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids. Geochimica et Cosmochimica Acta, 72, 5857–5870.

Widiatmoko, W. P., Astiani, D., & Muin, S. (2022). Faktor penyebab kebakaran hutan dan lahan gambut dan upaya pengendalian masyarakat di lanskap bentang pesisir padang tikar Kabupaten Kubu Raya. Jurnal Hutan Lestari, 10(4), 901–916.

Widjaja-Adhi, I. P. G. (1976, 24 April) Tinjauan hasil penjajagan keadaan hara tanah di daerah pasang surut [Presentasi Makalah]. Seminar internal lembaga penelitian tanah.

Widjaja-Adhi, I. P. G. (1992). Development of deep tropical peatland for perenial crop. Dalam B. Y. Aminuddin, S. L. Tan, B. Aziz, J. Samy, Z. Salmah, H. Siti Petimah, & S. T. Choo (Ed.), Tropical peat: Proceedings of the international symposium on tropical peatland (380–384). MARDI.

Widjaja-Adhi, I. P. G., Nugroho, K., Ardi, D. S., & Karama, S. (1992). Sumber daya lahan rawa: Potensi, keterbatasan dan pemanfaatan. Dalam S. Partoharjono & M. Syam. (Ed.), Pengembangan terpadu lahan rawa pasang surut dan lebak. SWAMPS II. Puslitbangtan.

Widjaja-Adhi, I. P. G. (1995, 26–30 Juni). Pengelolaan tanah dan air dalam pengembangan sumber daya lahan rawa untuk usahatani berkelanjutan dan berwawasan lingkungan [Presentasi Makalah]. Pelatihan calon pelatih untuk pengembangan pertanian di daerah pasang surut, Karang Agung Ulu, Sumatra Selatan. Pusat Penelitian dan Pengembangan Tanaman Pangan.

Widjaja-Adhi, I. P. G. (1995, 7–8 November). Potensi, Peluang dan Kendala Perluasan Areal Pertanaman di Lahan Rawa Kalimantan dan Irian Jaya [Presentasi Makalah]. Seminar perluasan areal pertanian di KT I, PII, Serpong.

Widjaja-Adhi, I. P. G., & Alihamsyah, T. (1998). Pengembangan lahan pasang surut: Potensi, prospek, dan kendala serta teknologi pengelolaannya untuk pertanian. Dalam Prosiding seminar nasional dan pertemuan tahunan komda HITI (51–72).

Widjaja-Adhi, I. P. G., Suriadikarta, D. A. Sutriadi, M. T., Subiksa, I. G.M., & Suastika, I. W. (2000). Pengelolaan, pemanfaatan dan pengembangan lahan rawa. Dalam A. A. Mihardja. (Ed.), Sumber daya lahan Indonesia dan pengelolaaannya (127–164). Balitbangtan.

Wikipedia. (2016). Diakses pada 17 November 2016, dari https://en.wikipedia.org/wiki/Jarosite.

William, E., Saleh, M., & Raihan, S. (2010). Pertumbuhan dan hasil jagung manis (Zea mays Saccharata Sturt) di lahan rawa pasang surut sulfat masam di Kalimantan Selatan. Dalam B. S. Sutiman, A. Mulyono, E. B. Minarno, C. Crysdian, F. Rosi, T. Kustono A. E. Setyawati, N. Avicena, A. Aziz, M. Jamhuri, Y. E. Putrie & L. Maslucha. (Ed.), Green Technology for Better Future (21–23). Fakultas Sain dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim.

Wilkin, R. T., & Barnes, H. L. (1996). Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60(21), 4167–4179.

Willett, I. R., Melville, M. D., & White, I. (1993). Acid drain waters from potential acid sulphate soils and their impact on estuarine ecosystems. Dalam D. L. Dent & M. E. F. Van Mensvoort (Ed.), Selected papers of the Ho Chi Minh City symposium on acid sulfate soils (419–425). Publication No. 53. ILRI.

Wilson, C. A., Cloy, J. M., Graham, M. C., & Hamlet, L. E. (2013). Microanalytical study of iron, aluminium and organic matter relationships in soils with contrasting hydrological regimes. Geoderma, 202–203, 71–81.

Winkler, P., Kaiser, K., Thompson, A., Kalbitz, K., Fiedler, S., & Jahn R., (2018). Contrasting evolution of iron phase composition in soils exposed to redox fluctuations. Geochimica et Cosmochimica Acta, 235, 89–102.

Wolt, J. D. (1994). Soil solution chemistry. Application to environmental science and agriculture. John Willey & Sons, Inc.

Wright, R. B., Lockaby, B. G., & Walbridge, M. R. (2001). Phosphorus availability in an artificially flooded Southeastern Floodplain forest soil. Soil Science Society of America Journal, 65, 1293–1302.

Wust, R. A. J., Ward, C. R., Bustin, R. M., & Hawke, M. I. (2002). Characterization and quantification of inorganic constituents of tropical peats and organic-rich deposits from Tasek Bera (Peninsular Malaysia): Implications for coals. International Journal of Coal Geology, 49, 215–249.

Wust, R. A. J., Bustina, R. M., & Lavkulich, L. M. (2003). New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena, 53, 133–163. https://doi.org/10.1016/S0341-8162(03)00022-5.

Wust, R. A. J., Rieley, J. O., Page, S. E., & Kaars, V. D. (2007). Peatland evolution in S.E. Asia over the last 35.000 years: Implications for evaluating their carbon storage potential. Dalam J. O. Rieley, C. J. Banks & B. Radjagukguk (Ed.), Proceedings of the international symposium and workshop on tropical peatland (25–40).

Xu, J. M., Tang, C., & Chen, Z. L. (2006). The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry, 38, 709–719.

Yan, F., Schubert, S., & Mengel, K. (1996). Soil pH increase due to biological decarboxylation of organic anions. Soil Biology and Biochemistry, 28, 617–624.

Yan, J., Jiang, T., Yao, Y., Lu, S., Wang, Q., & Wei, S. (2016). Preliminary investigation of phosphorus adsorption onto two types of iron oxide–organic matter complexes. Journal of Environmental Sciences, 42, 152–162.

Yan, X., Wei, Z., Hong, Q., Lu, Z., & Wu, J. (2017). Phosphorus fractions and sorption characteristics in a subtropical paddy soil as influenced by fertilizer sources. Geoderma, 295, 80–85.

Yang, W. H., Weber, K. A., & Silver, W. L. (2012). Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geoscience, 5, 538–541.

Ye, Y., Volker, C., & Wolf–Gladrow, D. A. (2009). A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time–Series Observatory site. Biogeosciences, 6, 2041–2061.

Yin, A., Gao, C., Zhang, M., Wu, P., & Yang, X. (2017). Rapid changes in phosphorus species in soils developed on reclaimed tidal flat sediments, Geoderma, 307, 46–53.

Yu, K., & Patrick Jr, W. H. (2003). Redox range with minimum nitrous oxides and methane production in rice soil under different pH. Soil Science Society of America Journal, 67, 1952–1958.

Yuan, C. (2015). Remediation of acid sulphate soils by organic matter addition [Disertasi tidak diterbitkan]. School of Agriculture Food and Wine. Adeleide University.

Yuan, C., Mosley, L. M., Fitzpatrick, R. W., & Marschner P., (2015). Amount of organic matter required to induce sulfate reduction in sulfuric material after re-flooding is affected by soil nitrate concentration. Journal of Environmental Management, 151, 437–442.

Yuan, C., Fitzpatrick, R. W., Mosley, L. M., & Marschner, P. (2015). Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties. Journal of Hazardous Materials, 298, 138–145.

Yuan, C., Marschner, P. Fitzpatrick, R. W., & Mosley, L. M. (2016). Global risks of severe acidification of acid sulfate soils due to increasing drought and the importance of organic matter for mitigation. Dalam Soil Science Society of China (Ed.), Soil science and ecological civilization (176–186). Northwest A & F University Press.

Yuan, C., Mosley, L. M., Fitzpatrick, R. W., & Marschner P., (2016). Organic matter addition can prevent acidification during oxidation of sandy hypersulfidic and hyposulfidic material: Effect of application form, rate and C/N ratio. Geoderma, 276, 26–32.

Zachara, J. M., Fredrickson, J. K., Shu–Mei, L., Kennedy, D. W., Smith, S. C., & Gassman, P. L. (1998). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. American Mineralogist, 83, 1426–1443.

Zak, D., Wagner, C., Payer, B., Augustin, J., & Gelbrecht, J. (2010). Phosphorus mobilization in rewetted fens: The effect of altered peat properties and implications for their restoration. Ecological Applications, 20, 1336–1349.

Zakiah, S., & Fahmi, A. (2020). Peran sifat tanah awal dalam perubahan sifat kimia tanah sulfat masam akibat aplikasi jerami padi. Jurnal Agri Peat, 1(2), 104–116.

Zahrai, S. K., Madden, M. E. E., Madden, A. S., & Rimstidt, J. D. (2013). Na–jarosite dissolution rates: The effect of mineral composition on jarosite lifetimes. Icarus, 223, 438–443.

Zhang, G., Dong, H., Jiang, H., Kukkadapu, R. K., Kim, J., Eberl, D., & Xu, Z. (2009). Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. American Mineralogist, 94, 1049–1058.

Zhang, J. Z., & Huang, X. (2007). Relative importance of solid–phase phosphorus and iron on the sorption behavior of sediments. Environmental Science and Technology, 41, 2789–2795.

Zhu, L., Lin, C., Wu, Y., Lu, W., Liu, Y., Ma, Y., & Chen, A. (2008). Jarosite–related chemical processes and water ecotoxicity in simplified anaerobic microcosm wetlands. Environmental Geology, 53, 1491–1502.

Zin, K. P., Lim, L. H., Mallikarjunaiah, T. H., & Bandara, J. M. R. S. (2015). Chemical properties and phosphorus fractions in profiles of acid sulfate soils of major rice growing areas in Brunei Darussalam. Geoderma Regional, 6, 22–30.

Downloads

Published

December 31, 2024

Categories

HOW TO CITE

Details about this monograph

ISBN-13 (15)

978-602-6303-47-9