Penerapan Pembelajaran Mesin (Machine Learning) dan Pembelajaran Dalam (Deep Learning) Berkinerja Tinggi untuk Mendukung Sektor Pertanian di Indonesia

Authors

Hilman Ferdinandus Pardede
Badan Riset dan Inovasi Nasional

Keywords:

Pembelajaran Mesin, Pembelajaran Dalam, Deep Convolutional Neural Networks, Identifikasi Penyakit Tanaman, Identifikasi Kualitas Pangan

Synopsis

Sektor pertanian adalah salah satu sektor strategis di Indonesia dan penerapan teknologi pembelajaran mesin dan pembelajaran dalam pada sektor ini dapat menjadi salah satu solusi mencapai ketahanan pangan. Akan tetapi, potensi tersebut belum digali secara optimal akibat kurangnya data dan kondisi geografis Indonesia. Pada naskah orasi ini dijabarkan beberapa penerapan teknologi pembelajaran mesin dan pembelajaran dalam pada sektor untuk mengatasi beberapa kendala tersebut. Pertama, beberapa dataset produk pertanian indonesia yang dapat digunakan sebagai data latih sistem pembelajaran mesin dan pembelajaran dalam untuk sistem identifikasi penyakit tanaman dan pengenalan kualitas pangan telah dihasilkan.   Kedua, teknologi berbasis pembelajaran mesin dan pembelajaran dalam yang ringkas sehingga dapat diterapkan secara luring untuk menjangkau daerah geografis yang belum terjangkau fasilitas internet telah diperkenalkan. Ketiga, solusi model pembelajaran dalam yang tahan terhadap berbagai variasi dan kondisi data telah diusulkan.

            Tidak dapat dipungkiri, tren penerapan kecerdasan artifisial, khususnya pembelajaran mesin dan pembelajaran dalam pada bidang pertanian akan semakin populer dimasa depan. Oleh karena itu penguasaan teknologi pembelajaran mesin dan pembelajaran dalam akan semakin penting di masa akan datang. Kolaborasi antar periset dan pegiat di bidang kecerdasan artifisial dengan pemangku kepentingan di bidang sektor pertanian seperti pemerintah, industri, maupun petani itu sendiri harus terus dibangun.

Downloads

Download data is not yet available.

Author Biography

Hilman Ferdinandus Pardede, Badan Riset dan Inovasi Nasional

Hilman Pardede lahir di Lubuk Pakam, 25 Juni 1982 adalah anak ke-empat dari Bapak Kitaman Pardede dan Ibu Sinta Siahaan. Menikah dengan Mariska Margaret Pitoi, S.Si., M.Sc. dan dikaruniai 3 orang anak, yaitu Gabe ­Ezekiel Pardede, Posma Eliezer Pardede, dan ­Hannah Elisha Pardede.
Berdasarkan Keputusan Presiden Republik Indonesia Nomor 51/M Tahun 2021, tanggal 9 November 2021 yang bersangkutan diangkat sebagai Peneliti Ahli Utama terhitung mulai 1 Desember 2021.
Berdasarkan Keputusan Kepala Badan Riset dan Inovasi Nasional No. 248/I/HK/2023 Tanggal 14 Agustus 2023 tentang Pembentukan Majelis Pengukuhan Profesor Riset, yang bersangkutan dapat melakukan pidato pengukuhan Profesor Riset.
Menamatkan Sekolah Dasar HKBP Lubuk Pakam, tahun 1994, Sekolah Menengah Pertama Negeri 1 Lubuk Pakam, tahun 1997, dan Sekolah Menengah Atas Negeri 1 Lubuk Pakam, tahun 2000. Memperoleh gelar Sarjana Teknik dari Universitas Indonesia tahun 2004, gelar Magister Master of Engineering in Information and Communication Technology (MEICT) dari The University of Western Australia tahun 2009, dan gelar Doktor bidang Ilmu Komputer dari Tokyo Institute of Technology tahun 2013. Setelah memperoleh gelar Doktor, melanjutkan Postdoctoral Research Fellow di Fondazione Bruno Kessler di Italia (2013–2015).
Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain Pelatihan Data Communication, Internet Technologies, and Multimedia Systems di Bandung (2005), Pelatihan The Course on Security: Principles, Techniques and Verification di Bandung (2005), Diklat Fungsional Peneliti Tingkat Pertama di Cibinong (2006), Pelatihan Predeparture Training Course for Postgraduate studies in Australia di Jakarta (2007), Pelatihan Introductory Academic Skills Program di Perth (2007), Diklat Peneliti Tingkat Lanjut di Cibinong (2016), Pelatihan ProGRANT: Proposal Writing for Research Grants di Jakarta (2016), Pelatihan Reviewer dan Tata Cara Penilaian Proposal Penelitian di Jakarta (2019).
Jabatan fungsional peneliti diawali sebagai Peneliti Ahli Pertama golongan III/a tahun 2007, Peneliti Ahli Muda golongan III/c tahun 2014, Peneliti Ahli Madya golongan IV/a tahun 2019, dan memperoleh jabatan Peneliti Ahli Utama golongan IV/d bidang Pengolahan Sinyal Multimedia dan Kecerdasan Artifisial tahun 2021.
Menghasilkan 77 karya tulis ilmiah (KTI), baik yang ditulis sendiri maupun bersama penulis lain dalam bentuk buku, jurnal, dan prosiding. Sebanyak 65 KTI ditulis dalam bahasa Inggris.
Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pembimbing jabatan fungsional peneliti pada Badan Riset dan Inovasi Nasional, pembimbing skripsi (S-1) pada Institut Teknologi Harapan Bangsa dan Universitas Negeri Jakarta, serta pembimbing tesis (S-2) pada STMIK Nusa Mandiri/Universitas Nusa Mandiri.
Menerima tanda penghargaan Satyalancana Karya Satya 10 Tahun (tahun 2015), dari Presiden RI.

References

Abka, A. F., & Pardede, H. F. (2015). Speech recognition ­features: Comparison studies on robustness against environmental ­distortions. Dalam Proceeding - 2015 International ­Conference on Computer, Control, Informatics and Its Applications: ­Emerging Trends in the Era of Internet of Things, IC3INA 2015 (114–119). IEEE. https://doi.org/10.1109/IC3INA.2015.7377757

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation ­learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine Learning in Agriculture: A ­Comprehensive Updated Review. Sensors, 21(11). https://doi.org/10.3390/s21113758

Biro Pusat Statistik. (2021). Produk domestik bruto Indonesia tri­wulanan 2017 - 2021.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, Issue 4). Springer.

Cemgil, T., Ghaisas, S., Dvijotham, K., Gowal, S., & Kohli, P. (2020). The autoencoding variational autoencoder. Advances in Neural Information Processing Systems, 33, 15077–15087.

Chollet, F. (2017). Xception: Deep learning with depthwise ­separable convolutions. Dalam Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (1251–1258).

Cisternas, I., Velásquez, I., Caro, A., & Rodríguez, A. (2020). ­Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture, 176, 105626.

Dahlan, R., Krisnandi, D., Ramdan, A., & Pardede, H. F. (2019). Unbiased Noise Estimator for Q-Spectral Subtraction based Speech Enhancement. Dalam Proceedings - 2019 ­International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2019 (65–68). IEEE. https://doi.org/10.1109/ICRAMET47453.2019.8980396

Donahue, J., Krähenbühl, P., & Darrell, T. (2016). Adversarial feature learning. ArXiv Preprint ArXiv:1605.09782.

FAO. (2021, 2 Juni). Climate change fans spread of pests and ­t­hreatens plants and crops, new FAO study. https://www.fao.org/news/­story/en/item/1402920/icode/

Floridi, L. (2020). AI and its new winter: from myths to realities. Philosophy and Technology, 33(1), 1–3. https://doi.org/10.1007/s13347-020-00396-6

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., ­Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative ­adversarial networks. Communications of the ACM, 63(11), 139–144.

Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (4700–4708). IEEE.

Hughes, D., & Salathé, M. (2015). An open access repository of ­images on plant health to enable the development of mobile ­disease ­diagnostics. ArXiv Preprint ArXiv:1511.08060.

Jakaria, A., & Pardede, H. F. (2022). Comparison of classification of birds using lightweight deep convolutional neural networks. Jurnal Elektronika dan Telekomunikasi, 22(2), 87–94.

Kahn, K., & Winters, N. (2021). Constructionism and AI: A history and possible futures. British Journal of Educational Technology, 52(3), 1130–1142.

Kantasa-Ard, A., Nouiri, M., Bekrar, A., Ait el Cadi, A., & Sallez, Y. (2021). Machine learning for demand forecasting in the physical internet: A case study of agricultural products in Thailand. International Journal of Production Research, 59(24), 7491–7515.

Kour, V. P., & Arora, S. (2020). Recent developments of the internet of things in agriculture: a survey. IEEE Access, 8, 129924–129957.

Krisnandi, D., Kusumo, R., Yuwana, R. S., Zilvan, V., Heryana, A., Yuliani, A. R., Suryawati, E., & Pardede, H. F. (2021). Densely connected networks with smoothed labels regularization for tea diseases detections. Dalam ACM International Conference Proceeding Series (40–44). https://doi.org/10.1145/3489088.3489098

Krisnandi, D., Pardede, H. F., Yuwana, R. S., Zilvan, V., Heryana, A., Fauziah, F., & Rahadi, V. P. (2019). Diseases classification for tea plant using concatenated convolution neural network. CommIT (Communication and Information Technology) Journal, 13(2), 67–77.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet ­classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

Kurniasih, A., Santoso, A. K., Wicaksono, B. D., & Pardede, H. F. (2022). Evaluations of emotion analysis of tweets using ­bidirectional long short term memory and conventional machine ­learning. Jurnal Teknologi dan Sistem Komputer.

Kurniawati, I., & Pardede, H. F. (2018). Hybrid method of information gain and particle swarm optimization for selection of features of SVM-based sentiment analysis. Dalam 2018 Inter­national Conference on Information Technology Systems and Innovation, ICITSI 2018 - Proceedings (1–5). IEEE. https://doi.org/10.1109/ICITSI.2018.8695953

Kusumo, R., Heryana, A., Krisnandi, D., Yuwana, R. S., ­Zilvan, V., & Pardede, H. F. (2020). Deep convolutional neural ­networks-based plants diseases detection using hybrid features. Computer ­Engineering and Applications, 9(3).

Kusumo, R., Heryana, A., Mahendra, O., & Pardede, H. F. (2019). Machine learning-based for automatic detection of corn-plant diseases using image processing. Dalam 2018 International Conference on Computer, Control, Informatics and Its ­Applications: Recent Challenges in Machine Learning for Computing ­Appli­cations, IC3INA 2018 - Proceeding (93–97). IEEE. https://doi.org/10.1109/IC3INA.2018.8629507

Lioutas, E. D., & Charatsari, C. (2020). Big data in agriculture: Does the new oil lead to sustainability? Geoforum, 109, 1–3.

Mahendra, O., Pardede, H. F., Sustika, R., & Kusumo, R. (2019). Comparison of Features for Strawberry Grading Classification with Novel Dataset. Dalam 2018 International Conference on Computer, Control, Informatics and Its Applications: Recent Challenges in Machine Learning for Computing Applications, IC3INA 2018 - Proceeding (7–12). IEEE. https://doi.org/10.1109/IC3INA.2018.8629534

Maulidah, M., & Pardede, H. F. (2021). Prediction of Myers-Briggs Type Indicator Personality using long short-term memory. Jurnal Elektronika Dan Telekomunikasi, 21(2), 104–111.

Meshram, V., Patil, K., Meshram, V., Hanchate, D., & Ramkteke, S. D. (2021). Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1, 100010. https://doi.org/https://doi.org/10.1016/j.ailsci.2021.100010

Nalatissifa, H., & Pardede, H. F. (2021). Customer decision ­prediction using deep neural network on Telco Customer Churn data. Jurnal Elektronika Dan Telekomunikasi, 21(2), 122–127.

Nielsen, M. A. (2015). Neural networks and deep learning. Determination press.

Nugraha, R. A., Pardede, H. F., & Subekti, A. (2022). Oversampling based on generative adversarial networks to overcome imbalance data in predicting fraud insurance claim: 10.48129/kjs. splml. 19119. Kuwait Journal of Science.

Pardamean, A., & Pardede, H. F. (2021). Tuned bidirectional ­encoder representations from transformers for fake news detection. ­Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1667–1671. https://doi.org/10.11591/ijeecs.v22.i3.pp1667-1671

Pardede, H. F. (2016). On noise robust feature for speech ­recognition based on power function family. Dalam 2015 International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2015 (386–391). IEEE. https://doi.org/10.1109/ISPACS.2015.7432801

Pardede, H. F. (2017). On the impact of normalizing power-based features on robustness against noise for speech recognition. ­Dalam Proceedings of 2016 8th International Conference on ­Infor­mation Technology and Electrical Engineering: ­Empowering ­Technology for Better Future, ICITEE 2016 (1–6). IEEE. https://doi.org/10.1109/ICITEED.2016.7863308

Pardede, H. F. (2021). Sentiment analysis of Stocktwits data with word vector and gated recurrent unit. Jurnal Linguistik Kompu­tasional, 4(2), 47–51.

Pardede, H. F., Adhi, P., Zilvan, V., Yuliani, A. R., & Arisal, A. (2022). A generalization of sigmoid loss function using tsallis statistics for binary classification. Neural Processing Letters. 55(4), 5193–5214. https://doi.org/10.1007/s11063-022-11087-y

Pardede, H. F., Iwano, K., & Shinoda, K. (2013a). Feature ­normalization based on non-extensive statistics for speech ­recognition. Speech Communication, 55(5), 587–599. https://doi.org/10.1016/j.specom.2013.02.004

Pardede, H. F., Iwano, K., & Shinoda, K. (2013b). Spectral ­subtraction based on non-extensive statistics for speech recognition. IEICE Transactions on Information and Systems, E96-D(8), 1774–1782. https://doi.org/10.1587/transinf.E96.D.1774

Pardede, H. F., Ramli, K., Suryanto, Y., Hayati, N., & Presekal, A. (2019). Speech enhancement for secure communication ­using coupled spectral subtraction and wiener filter. Electronics ­(Switzerland), 8(8). https://doi.org/10.3390/electronics8080897

Pardede, H. F., & Shinoda, K. (2011). Generalized-log spectral mean normalization for speech recognition. Dalam Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech (1645–1648).

Pardede, H. F., Shinoda, K., & Iwano, K. (2012). Q-Gaussian based spectral subtraction for robust speech recognition. Dalam 13th Annual Conference of the International Speech Communication Association 2012, Interspeech 2012, 2, (1254–1257).

Pardede, H. F., Suryawati, E., Krisnandi, D., Yuwana, R. S., & ­Zilvan, V. (2020). Machine learning based plant diseases detection: A ­review. Dalam Proceeding - 2020 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications, ICRAMET 2020 (212–217). IEEE. https://doi.org/10.1109/ICRAMET51080.2020.9298619

Pardede, H. F., Suryawati, E., Sustika, R., & Zilvan, V. (2019). Unsupervised convolutional autoencoder-based feature learning for automatic detection of plant diseases. Dalam 2018 International Conference on Computer, Control, Informatics and Its Applications: Recent Challenges in Machine Learning for ­Computing ­Applications, IC3INA 2018 - Proceeding (158–162). IEEE. https://doi.org/10.1109/IC3INA.2018.8629518

Pardede, H. F., Suryawati, E., Zilvan, V., Ramdan, A., Kusumo, R., Heryana, A., Yuwana, R. S., Krisnandi, D., Subekti, A., Fauziah, F., Fauziah, F., & Rahadi, V. P. (2020). Plant diseases detection with low resolution data using nested skip connections. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00332-7

Pardede, H. F., Yuliani, A. R., & Subekti, A. (2019). On the effect of the implementation of human auditory systems on Q-log-based features for robustness of speech recognition against noise. ­Journal of Information Science and Engineering, 35(1). https://doi.org/10.6688/JISE.201901_35(1).0005

Pardede, H. F., Yuliani, A. R., & Sustika, R. (2018). ­Convolutional neural network and feature transformation for distant speech ­recognition. International Journal of Electrical and Computer Engineering, 8(6). https://doi.org/10.11591/ijece.v8i6.pp.5381-5388

Pardede, H. F., Zilvan, V., Krisnandi, D., Heryana, A., & Kusumo, R. (2019). Generalized filter-bank features for robust speech recognition against reverberation. Dalam 2019 International Conference on Computer, Control, Informatics and Its Applications: ­Emerging Trends in Big Data and Artificial Intelligence, IC3INA 2019. IEEE. https://doi.org/10.1109/IC3INA48034.2019.8949593

Ramdan, A., Heryana, A., Arisal, A., Kusumo, R., & Pardede, H. F. (2020). Transfer learning and fine-tuning for deep learning-based tea diseases detection on small datasets. Dalam Proceeding - 2020 International Conference on Radar, Antenna, Microwave, ­Electronics and Telecommunications, ICRAMET 2020 (206–211). IEEE. https://doi.org/10.1109/ICRAMET51080.2020.9298575

Ramdan, A., Heryana, A., Dahlan, R., Krisnandi, D., Suryawati, E., Pardede, H. F., Mahendra, O., Yuwana, R. S., Kusumo, R., ­Dahlan, R., Rahadi, V. P., Fauziah, F., Khomaeni, H. S., Rohdia, D., & Zilvan, V. (2019a). KlonTi - Aplikasi Identifikasi Klon Teh Otomatis (Nomor Hak Cipta 000171814). Direktorat Jenderal Kekayaan Intelektual. https://pdki-indonesia.dgip.go.id/detail/f6848a099bc67fbfe4aed172994a1b1c14232a459cd8d49f3f75bfcc7d8a0595%3Fnomor=EC00201990322?type=copyright&keyword=KlonTi+-+Aplikasi+Identifikasi+Klon+Teh+Otomatis

Ramdan, A., Heryana, A., Dahlan, R., Krisnandi, D., Suryawati, E., Pardede, H. F., Mahendra, O., Yuwana, R. S., Kusumo, R., ­Dahlan, R., Rahadi, V. P., Fauziah, F., Khomaeni, H. S., Rohdia, D., & Zilvan, V. (2019b). LEAFO - Aplikasi Identifikasi Penyakit Tanaman Otomatis (Nomor Hak Cipta 000171818). Direktorat Jenderal Kekayaan Intelektual. https://pdki-indonesia.dgip.go.id/detail/50c8c9060731c19b1a00d46ea55772d43fe58f802e38a6acec7387baf8b9569f%3Fnomor=EC00201990323?type=copyright&keyword=LEAFO+-+Aplikasi+Identifikasi+Penyakit+Tanaman+%E2%80%8EOtomatis

Ramdan, A., Heryana, A., Krisnandi, D., Suryawati, E., Pardede, H. F., Mahendra, O., Yuwana, R. S., Kusumo, R., Dahlan, R., Rahadi, V. P., Fauziah, F., Khomaeni, H. S., Rohdia, D., & Zilvan, V. (2021a). Dataset Citra Klon Daun Teh (Nomor Hak Cipta 000304956). Direktorat Jenderal Kekayaan Intelektual. https://pdki-indonesia.dgip.go.id/detail/299942c1ff94adc392b12a3412d74dd2f1b390b93d2e23addb30ff6f21ac70aa%3Fnomor=EC00202178029?type=copyright&keyword=Dataset+Citra+Klon+Daun+Teh

Ramdan, A., Heryana, A., Krisnandi, D., Suryawati, E., Pardede, H. F., Mahendra, O., Yuwana, R. S., Kusumo, R., Dahlan, R., ­Rahadi, V. P., Fauziah, F., Khomaeni, H. S., Rohdia, D., & Zilvan, V. (2021b). Dataset Citra Penyakit Daun Teh (Nomor Hak Cipta 000305043). Direktorat Jenderal Kekayaan Intelektual. https://pdki-indonesia.dgip.go.id/detail/a01dc204e2ad7b446a62ebeaf74256cc5a39f35284d12fe0d5e1bba02fdde17e%3Fnomor=EC00202178031?type=copyright&keyword=Dataset+Citra+Penyakit+Daun+Teh

Ramdan, A., Sugiarto, B., Rianto, P. D., Prakasa, E., & Pardede, H. F. (2019). Support vector machine-based detection of pak choy leaves conditions using RGB and HIS features. Dalam 2018 ­International Conference on Computer, Control, Informatics and Its Applications: Recent Challenges in Machine Learning for Computing Applications, IC3INA 2018 - Proceeding (114–117). IEEE. https://doi.org/10.1109/IC3INA.2018.8629540

Ramdan, A., Suryawati, E., Kusumo, R., Pardede, H. F., Mahendra, O., Dahlan, R., Fauziah, F., & Syahrian, H. (2019). Deep ­cnnbased detection for tea clone identification. Jurnal ­Elektronika dan Telekomunikasi, 19(2), 45–50.

Ramdan, A., Zilvan, V., Suryawati, E., Pardede, H. F., & Rahadi, V. P. (2020). Klasifikasi klon teh berbasis deep CNN dengan residual dan densely connections. Jurnal Teknologi dan Sistem Komputer, 8(4), 289–296.

Ranzato, M., Boureau, Y.-L., & Cun, Y. (2007). Sparse feature ­learning for deep belief networks. Advances in Neural Information Processing Systems, 20.

Ryan, M. (2022). The social and ethical impacts of artificial ­intelligence in agriculture: mapping the agricultural AI literature. AI & ­Society, 1–13.

Simonyan, K., & Zisserman, A. (2014). Very deep ­convolutional ­networks for large-scale image recognition. ArXiv Preprint ­ArXiv:1409.1556.

Subekti, A., Pardede, H. F., Sustika, R., & Suyoto. (2018). ­Spectrum sensing for cognitive radio using deep autoencoder neural ­network and SVM. Dalam Proceedings - 2018 International Conference on Radar, Antenna, Microwave, Electronics, and ­Tele­communications, ICRAMET 2018 (81–85). IEEE. https://doi.org/10.1109/ICRAMET.2018.8683930

Suryawati, E., Pardede, H. F., Zilvan, V., Ramdan, A., Krisnandi, D., Heryana, A., Yuwana, R. S., Kusumo, R., Arisal, A., & ­Supianto, A. A. (2021). Unsupervised feature learning-based encoder and adversarial networks. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00508-9

Suryawati, E., Sustika, R., Yuwana, R. S., Subekti, A., & Pardede, H. F. (2019). Deep structured convolutional neural network for tomato diseases detection. 2018 International ­Conference on Advanced Computer Science and Information Systems, ­ICACSIS 2018 (385–390). IEEE. https://doi.org/10.1109/ICACSIS.2018.8618169

Suryawati, E., Zilvan, V., Yuwana, R. S., Heryana, A., Rohdiana, D., & Pardede, H. F. (2019). Deep convolutional ­adversarial network-based feature learning for tea clones identifications. Dalam ICICOS 2019 - 3rd International Conference on Informatics and Computational Sciences: Accelerating Informatics and Computational Research for Smarter Society in The Era of Industry 4.0, Proceedings. IEEE. https://doi.org/10.1109/ICICoS48119.2019.8982416

Sustika, R., Subekti, A., Pardede, H. F., Suryawati, E., Mahendra, O., & Yuwana, S. (2018). Evaluation of deep convolutional neural network architectures for strawberry quality inspection. International Journal of Engineering and Technology (UAE), 7(4), 75–80. https://doi.org/10.14419/ijet.v7i4.40.24080

Swaminathan, B., Palani, S., Vairavasundaram, S., Kotecha, K., & Kumar, V. (2022). IoT-driven artificial intelligence technique for fertilizer recommendation model. IEEE Consumer Electronics Magazine, 12(2), 109–117.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ­Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going ­deeper with convolutions. Dalam Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1–9).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. ­Dalam Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2818–2826).

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs ­statistics. Journal of Statistical Physics, 52, 479–487.

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming–a review. Agricultural Systems, 153, 69–80.

Yuliani, A. R., Ramdan, A., Zilvan, V., Supianto, A. A., Krisnandi, D., Yuwana, R. S., Prajitno, D., & Pardede, H. (2021). Remaining useful life prediction of lithium-ion battery based on LSTM and GRU. Dalam ACM International Conference Proceeding Series (21–25). https://doi.org/10.1145/3489088.3489092

Yuliani, A. R., Sustika, R., Yuwana, R. S., & Pardede, H. F. (2017). ­Feature transformations for robust speech recognition in reverberant conditions. Dalam Proceedings - 2017 International Conference on Computer, Control, Informatics and Its Applications: Emerging Trends In Computational Science and Engi­neering, IC3INA 2017. IEEE. https://doi.org/10.1109/IC3INA.2017.8251740

Yuwana, R. S., Fauziah, F., Heryana, A., Krisnandi, D., Kusumo, R., & Pardede, H. F. (2020). Data augmentation using adversarial networks for tea diseases detection. Jurnal Elektronika dan Telekomunikasi, 20(1), 29–35.

Yuwana, R. S., Suryawati, E., & Pardede, H. F. (2019). On ­e­mpirical evaluation of deep architectures for Indonesian POS tagging pro­blem. Dalam 2018 International Conference on Computer, Control, Informatics and Its Applications: Recent Challenges in Machine Learning for Computing Applications, IC3INA 2018 - Proceeding (204–208). IEEE. https://doi.org/10.1109/IC3INA.2018.8629531

Yuwana, R. S., Suryawati, E., Zilvan, V., Ramdan, A., Pardede, H. F., & Fauziah, F. (2019). Multi-condition training on deep convolutional neural networks for robust plant diseases detection. ­Dalam 2019 International Conference on Computer, Control, Infor­matics and Its Applications: Emerging Trends in Big Data and Artificial Intelligence, IC3INA 2019 (30–35). IEEE. https://doi.org/10.1109/IC3INA48034.2019.8949580

Yuwana, R. S., Yuliani, A. R., & Pardede, H. F. (2018). On part of speech tagger for Indonesian language. Proceedings - 2017 2nd Inter­national Conferences on Information Technology, ­Information Systems and Electrical Engineering, ICITISEE 2017 (369–372). IEEE. https://doi.org/10.1109/ICITISEE.2017.8285530

Zhang, J., Dai, L., & Cheng, F. (2021). Identification of corn seeds with different freezing damage degree based on hyperspectral reflectance imaging and deep learning method. Food Analytical Methods, 14, 389–400.

Zilvan, V., Heryana, A., Yuliani, A. R., Krisnandi, D., Yuwana, R. S., & Pardede, H. F. (2021). Front-end Based Robust Speech ­Recognition Methods: A Review. Dalam ACM International Conference Proceeding Series (136–140). Association for Computing Machinery. https://doi.org/10.1145/3489088.3489121

Zilvan, V., Ni’mah, I., Yuliani, A. R., & Pardede, H. F. (2017). On real time Q-log-based feature normalization for distant speech recog­nition. Dalam 2016 International Conference on ­Information Technology Systems and Innovation, ICITSI 2016 - Proceedings. IEEE. https://doi.org/10.1109/ICITSI.2016.7858234

Zilvan, V., Ramdan, A., Heryana, A., Krisnandi, D., Suryawati, E., Yuwana, R. S., Kusumo, R., & Pardede, H. F. (2022). Convolutional variational autoencoder-based feature learning for automatic tea clone recognition. Journal of King Saud University - Computer and Information Sciences, 34(6), 3332–3342. https://doi.org/10.1016/j.jksuci.2021.01.020

Zilvan, V., Ramdan, A., Suryawati, E., Kusumo, R., Krisnandi, D., & Pardede, H. F. (2019). Denoising convolutional variational autoencoders-based feature learning for automatic detection of plant diseases. Dalam ICICOS 2019 - 3rd International Conference on Informatics and Computational Sciences: Accelerating Informatics and Computational Research for Smarter Society in The Era of Industry 4.0, Proceedings. IEEE. https://doi.org/10.1109/ICICoS48119.2019.8982494

Downloads

Published

September 6, 2023

Details about this monograph

ISBN-13 (15)

978-623-8372-05-8