Pemanfaatan Pemodelan dan Simulasi Berbasis Komputasi dalam Pengembangan Reaktor Nuklir

Authors

Ferhat Aziz
Badan Riset dan Inovasi Nasional (BRIN)

Keywords:

Pemodelan dan simulasi, Komputasi, Reaktor nuklir, Desain neutronik, Fisika teras, Fisika reaktor

Synopsis

Sebagai negara berpopulasi besar, Indonesia memerlukan sumber energi yang besar pula. PLTN yang telah banyak dimanfaatkan negara maju mampu menghasilkan listrik secara efisien sehingga dapat diandalkan untuk memenuhi kebutuhan listrik negara ini. Dengan emisi yang jauh lebih sedikit dibanding sumber energi fosil, penggunaan PLTN dapat mendukung upaya pencapaian target net-zero emission (NZE) pada 2060. Oleh karena itu, penguasaan iptek nuklir harus digiatkan, salah satunya, dengan peningkatan kemampuan dalam pemanfaatan pemodelan dan simulasi berbasis komputasi yang dapat melengkapi pengembangan teori ilmiah dan eksperimen di laboratorium secara lebih akurat, aman, dan selamat.

 

Orasi ini menerangkan bahwa pemanfaatan pemodelan dan simulasi berbasis komputasi  dapat membantu para pelaku pengembangan iptek reaktor nuklir mendapatkan hasil kegiatannya. Salah satu pemanfaatan tersebut adalah konsep desain reaktor inovatif pembakar limbah nuklir via proses fisi dan transmutasi. Hasil simulasi penulis menunjukkan bahwa satu unit konsep reaktor ini dapat membakar limbah nuklir dengan efisien. Dengan demikian, kemampuan dalam pemodelan dan simulasi berbasis komputasi untuk pengembangan reaktor nuklir diharapkan menjadi modal penting bagi upaya pencapaian target NZE melalui pemanfaatan PLTN. Selanjutnya, pengembangan reaktor nuklir lanjutan pada era Industri 4.0 diperlukan dengan lebih memanfaatkan perkembangan teknologi informasi, seperti AI, khususnya generative AI, dalam rangka memperkuat kesiapan Indonesia menyongsong era PLTN.

Downloads

Download data is not yet available.

Author Biography

Ferhat Aziz, Badan Riset dan Inovasi Nasional (BRIN)

Menamatkan Sekolah Dasar Negeri No. 47 Palembang tahun 1970; Sekolah Menengah Pertama Xaverius III Palembang, tahun 1973; dan Sekolah Menengah Atas Xaverius I Palembang, tahun 1976. Memperoleh gelar sarjana fisika dari Universitas Indonesia tahun 1982; gelar Master of Science dari Department of Physics, Quaid-e-Azam University, Islamabad, Pakistan, tahun 1986; gelar Master of Science dari Department of Nuclear Engineering, North Carolina State University, Raleigh, Amerika Serikat, tahun 1992; dan gelar Doctor of Engineering dalam bidang nuclear engineering dari Tokyo Institute of Technology, Tokyo, Jepang tahun 1996.


Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain Training on In-Core Fuel Management di Jakarta (1986); Evaluation of HTGCR Core Performance, JAERI, di Jepang (1999); Workshop on Status of High-Temperature Gas-Cooled Reactor (HTGCR) Technology di Trieste, Italia (2003); dan International Atomic Energy Agency (IAEA) Training on Nuclear Power Planning and Public Acceptance di Slovenia dan Slovakia (2010).


Pernah menduduki jabatan struktural di Badan Tenaga Nuklir Nasional (BATAN) sebelum diintegrasikan ke dalam Badan Riset Inovasi Nasional (BRIN), yaitu sebagai Kepala Subbidang Optimasi dan Sistem Pengendalian, Pusat Pengembangan Informatika (Januari–September 1993); Kepala Bidang Teknologi Reaktor Maju, Pusat Pengembangan Sistem Reaktor Maju (1999–2006); Kepala Biro Kerja Sama, Hukum, dan Hubungan Masyarakat (2006–2012); Deputi Bidang ­Pendayagunaan Hasil Litbang dan Pemasyarakatan Iptek Nuklir (2012–2013); Deputi Bidang Pengembangan Teknologi Daur Bahan Nuklir dan Rekayasa (2013–2014); dan Deputi Bidang Sains dan Aplikasi Teknologi Nuklir (2014–2016).

References

Abdila, R. (2022, 25 November). Menteri ESDM Arifin Tasrif tekankan pentingnya kolaborasi untuk capai target net zero emission. Tribunnews.com. https://www.tribunnews.com/bisnis/2022/11/25/menteri-esdm-arifin-tasrif-tekankan-pentingnya-kolaborasi-untuk-capai-target-net-zero-emission

Ariani, M., Su’ud, Z., Monado, F., Waris, A., Khairurrijal, Arif, I., Aziz, F., & Sekimoto, H. (2013). Optimization of small long life gas cooled fast reactors with natural uranium as fuel cycle input. Applied Mechanics and Materials, 261–262, 307–311. https://doi.org/10.4028/www.scientific.net/AMM.260-261.307

Arkundato, A., Hasan, M., Purwandari, E., Pramutadi, A., & Aziz, F. (2019). Temperature dependence diffusion coefficients of iron, boron and iron-boron calculated by molecular dynamics method. Dalam Journal of Physics: Conference series 1170 (012008). https://doi.org/10.1088/1742-6596/1170/1/012008

Aziz, F. (1994a). ABWR, Hasil sebuah evolusi teknologi. Majalah Teknologi.

Aziz, F. (1994b). Memanfaatkan plutonium bekas senjata nuklir. Majalah Teknologi.

Aziz, F. (1997). Penggunaan SRAC-EWS untuk perhitungan neutronik teras coupled spectrum reactor. Dalam Lokakarya komputasi dalam sains dan teknologi nuklir VII.

Aziz, F. (1998). Karakterisasi PWR pembakar untuk mengeliminasi neptunium dan americium. Dalam Prosiding pertemuan dan presentasi ilmiah penelitian dasar ilmu pengetahuan dan teknologi nuklir.

Aziz, F. (1999a). ADS konsep PLTN masa depan. Majalah Teknologi.

Aziz, F. (1999b). IAEA benchmark calculation results of HTTR’s start-up core physics test, ‘Results of benchmark calculation on start-up core physics of high temperature engineering test reactor’. Dalam JAERI-Memo 11-030.

Aziz, F. (2000a). GT-MHR reaktor pemusnah plutonium bekas senjata nuklir. Majalah Teknologi.

Aziz, F. (2000b). Memboyong reaktor temperatur tinggi. Majalah Tek­nologi.

Aziz, F. (2000c). Perhitungan benchmark nilai reaktivitas elemen kendali reaktor temperatur tinggi HTR-10. Dalam Lokakarya komputasi dalam sains dan teknologi nuklir XI.

Aziz, F. (2010, November 29). How safe is nuclear power for Indonesia? The Jakarta Post, A5–A6.

Aziz, F. (2018). Penelitian dan pengembangan material struktur reaktor maju. Jurnal Pengembangan Energi Nuklir, 20(1), 41–51. https://media.neliti.com/media/publications/261692-none-b3d9a1ce.pdf

Aziz, F., & Hasan, Y. (2012). Kerangka peraturan perundang-undangan program pembangunan PLTN. Jurnal Forum Nuklir (JFN), 6(1), 94–113.

Aziz, F., & Jujuratisbela, U. (1987). Penentuan reaktivitas lebih pada teras pertama RSG GA Siwabessy. Dalam Seminar teknologi daur bahan bakar dan keselamatan nuklir (107–115).

Aziz, F., & Kitamoto, A. (1996a). Concept on coupled spectrum B/T (burning and/or transmutation) reactor for treatment of minor actinides by thermal and fast neutrons. Annals of Nuclear Energy, 23(15), 1239–1248. https://doi.org/10.1016/0306-4549(95)00133-6

Aziz, F., & Kitamoto, A. (1996b). Improvement of inherent safety features in CSR (coupled spectrum reactor) for treating MA. Dalam M. Aritomi, & G. Cho (Ed.), Proceedings of the 2nd Japan-Korea seminar on advanced reactors, 271–274.

Aziz, F., & Kitamoto, A. (1996c). A concept of coupled spectrum burning and/or transmutation reactor for treatment of minor actinides. Dalam ICENES ’96.

Aziz, F., & Lasman, A. N. (2001). Analisis pasca-kritikalitas pertama reaktor temperatur tinggi HTR-10 China. Dalam Lokakarya komputasi dalam sains dan teknologi nuklir XII.

Aziz, F., & Rivai, A. K. (2002). Analisis unjuk kerja fisika teras reaktor cepat modular berpendingin timbal-bismuth. Dalam Lokakarya komputasi dalam sains dan teknologi nuklir XIII.

Aziz, F., & Rivai, A. K. (2003). Analisis pasca-kritikalitas reaktor temperatur tinggi prismatik HTTR. Dalam Lokakarya komputasi dalam sains dan teknologi nuklir XIV (25–40).

Aziz, F., & Santoso, B. (1993). Penggunaan paket program 3DB untuk desain dan analisis neutronik tiga dimensional teras reaktor. Dalam Lokakarya komputasi dalam sains dan teknologi nuklir III (239–247).

Aziz, F., Mardiyanto, & Rivai, A. K. (2021). PLTN dan riset material reaktor maju. Penerbit Deepublish.

Aziz, F., Mulyanto, & Marsodi. (1994). On the sodium loss reactivity of fast B/T reactor. Dalam Third scientific meeting of Indonesian atomic energy students in Japan (468–474).

Aziz, F., Panitra, M., & Rivai, A. K. (2018). Synthesis and Monte Carlo simulation of improved concrete composites for enhanced x-ray/gamma ray radiation shielding. International Journal of Technology, 9(4), 695–706. https://doi.org/10.14716/ijtech.v9i4.1723

Aziz, F., Panitra, M., Rivai, A. K., Silalahi, M., Sabrina, N., Dani, M., Setiawan, M. B., & Setiadipura, T. (2020). Investigation on neutronic properties of ZrC coated advanced TRISO fuel for high-temperature gas-cooled reactors. Dalam Journal of physics: Conference series 1436 (012036). https://doi.org/10.1088/1742-6596/1436/1/012036

Aziz, F., Rivai, A. K., Panitra, M., Dani, M., & Suharno, B. (in press). Accident tolerant fuel cladding materials for light water reactors: Analysis of neutronic characteristics. International Journal of Technology.

Aziz, F., Su’ud, Z., Asril, P., Fenny, R., & Debby, M. (2007). Design study of long life HTGR using thorium cycle (General characteristics). Dalam International conference on advances in nuclear science and engineering in conjunction with LKSTN 2007 (213–216).

Brewer, R. (2009). Criticality calculations with MCNP5: A primer (Third edition, LA-UR-09-00380). Los Alamos National Laboratory.

Broussard, E. (2020). The future of atoms: Artificial intelligence for nuclear applications. IAEA. https://www.iaea.org/newscenter/news/the-future-of-atoms-artificial-intelligence-for-nuclear-applications

Calvin, C., & Nowak, D. (2010). High performance computing in nuclear engineering. Dalam D. G. Cacuci (Ed.), Handbook of nuclear engineering (1449–1517). Springer. https://doi.org/10.1007/978-0-387-98149-9_12

Dani, M., Aziz, F., Farihin, P., Dimyati, A., Sukaryo, S. G., Lesmana, J. G., Insani, A., Mustofa, S., Panitra, M., & Huang, C. A. (2023). Microstructures of austenitic stainless steel 56Fe25Ni16.6Cr0.9Si0.5Mn solid-treated with different cooling rates. Philippine Journal of Science, 152(3), 989–998.

Donovan, J., & Watson, N. (2022). IAEA joins Indonesia for G20 event highlighting nuclear power for clean energy transition. IAEA. https://www.iaea.org/newscenter/news/iaea-joins-indonesia-for-g20-event-highlighting-nuclear-power-for-clean-energy-transition

Driscoll, M. J., & Hejzlar, P. (2005). Reactor physics challenges in Gen-IV reactor design. Nuclear Engineering and Technology, 37(1), 1–10. http://www.kns.org/jknsfile/v37/JK0370001.pdf

General Electric. (2018, 13 November). GE Hitachi and PRISM selected for U.S. department of energy’s versatile test reactor program [Siaran pers]. https://www.ge.com/news/press-releases/ge-hitachi-and-prism-selected-us-department-energys-versatile-test-reactor-program

Generation IV International Forum. (2014). Technology roadmap update for generation IV nuclear energy systems. NEA-OECD. https://www.gen-4.org/gif/upload/docs/application/pdf/2014-03/gif-tru2014.pdf

Harto, A. W., Aziz, F., & Tabah, J. (2003). Studi reaktor air berat lanjut (advanced HWR) dengan konsep moderator ganda. Dalam Seminar nasional TKPFN-9 (125–137).

Hernández, A. R., Gómez-Torres, A. M., & del Valle-Gallegos, E. (2018). Nuclear reactor simulation. Dalam N. S. Awwad, & S. A. AlFaify (Ed.), New trends in nuclear science. IntechOpen.

International Atomic Energy Agency. (1995). Computerization of operation and maintenance for nuclear power plants (IAEA-TECDOC-808).

International Atomic Energy Agency. (1997). Accelerator driven systems: Energy generation and transmutation of nuclear waste: Status report (IAEA-TECDOC-985). https://www-pub.iaea.org/MTCD/Publications/PDF/te_985_prn.pdf

International Atomic Energy Agency. (2000). Guidance for preparing user requirements documents for small and medium reactors and their application (IAEA-TECDOC-1167). https://www-pub.iaea.org/MTCD/Publications/PDF/te_1167_prn.pdf

International Atomic Energy Agency. (2013). Evaluation of high temperature gas cooled reactor performance: Benchmark analysis related to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA critical facility (IAEA TECDOC-1694). https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1694_web.pdf

International Atomic Energy Agency. (t.t.). Coordinated research projects. Diakses pada 25 Juni, 2022, dari https://www.iaea.org/projects/coordinated-research-projects

Jujuratisbela, U., & Aziz, F. (1987a). Eksperimen fisika reaktor dalam tahap awal komisioning nuklir RSG GA Siwabessy. Dalam Seminar teknologi daur bahan bakar dan keselamatan nuklir (171–178).

Jujuratisbela, U., & Aziz, F. (1987b). Pengukuran nilai reaktivitas batang pengatur reaktor RSG GA Siwabessy dengan metode Rod Drop. Dalam Seminar teknologi daur bahan bakar dan keselamatan nuklir.

Kementerian Energi dan Sumber Daya Mineral. (2022, 29 November). Pemerintah sampaikan daftar inventarisasi masalah RUU EBET ke DPR RI [Siaran pers]. https://www.esdm.go.id/id/media-center/arsip-berita/pemerintah-sampaikan-daftar-inventarisasi-masalah-ruu-ebet-ke-dpr-ri

Kitamoto, A., Mulyanto, & Aziz, F. (1996). Optimization of partitioning and burning and/or transmutation treatment based on three criteria in self-completed fuel cycle. Dalam ICENES ’96.

Koka, J. (2020, 25 Maret). Argonne uses artificial intelligence to improve the safety and design of advanced nuclear reactors. Argonne National Laboratory. https://www.anl.gov/article/argonne-uses-artificial-intelligence-to-improve-the-safety-and-design-of-advanced-nuclear-reactors

Krishnamurthi, R., & Kumar, A. (2020). Modeling and simulation for industry 4.0. Dalam A. Nayyar, & A. Kumar (Ed.), A roadmap to industry 4.0: Smart production, sharp modeling and simulation for industry 4.0 (Seri buku: Advances in science, technology & innovation) (127–141). https://doi.org/10.1007/978-3-030-14544-6_7

Liu, B., Jia, R., Han, R., Lyu, X., Han, J., & Li, W. (2018). Minor actinide transmutation characteristics in AP1000. Annals of Nuclear Energy, 115, 116–125. https://doi.org/10.1016/j.anucene.2018.01.031

Liu, F., Zhang, W., Liu, B., Lyu, X., Wang, J., Niu, F., & Yan, P. (2022). Fuel depletion characteristics of MA transmutation in PWR. Nuclear Materials and Energy, 30(March), 101119. https://doi.org/10.1016/j.nme.2022.101119

Mardiyanto, Aziz, F., & Rivai, A. K. (2021). Komputasi dalam litbang material struktur dan fungsional reaktor nuklir. Penerbit Deepublish.

Maria, A. (1997). Introduction to modeling and simulation. Dalam S. Andradóttir, K. J. Healy, D. H. Withers, & B. L. Nelson (Ed.), Proceedings of the 1997 winter simulation conference (7–13). http://acqnotes.com/Attachments/White Paper Introduction to Modeling and Simulation by Anu Maria.pdf

Marsodi, Mulyanto, Aziz, F., & Kitamoto, A. (1994). Out-core optimization of P-T treatment for effective and safe disposal of HLW. Dalam Third scientific meeting of Indonesian atomic energy students in Japan (445–452).

McClarren, R. G. (2017). Computational nuclear engineering and radiological science using Python. Elsevier.

Meriyanti, Su’ud, Z., Rijal, K., Zuhair, Aziz, F., & Sekimoto, H. (2010). Preliminary design study of medium sized gas cooled fast reactor with natural uranium as fuel cycle input. Dalam AIP conference proceedings 1244 (62–69). https://aip.scitation.org/doi/pdf/10.1063/1.4757158

Mohamed, N. M. A. (2015). Design of a PWR for long cycle and direct recycling of spent fuel. Nuclear Engineering and Design, 295, 559–566. https://doi.org/https://doi.org/10.1016/j.nucengdes.2015.10.018

Monado, F., Ariani, M., Su’ud, Z., Waris, A., Basar, K., Aziz, F., Permana, S., & Sekimoto, H. (2014). Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input. Dalam AIP conference proceedings 1584 (105–108). https://doi.org/10.1063/1.4866113

Mulyanto, Marsodi, Aziz, F., & Kitamoto, A. (1994a). Grouping concept in partitioning for HLW disposal in fission reactor. Dalam Third scientific meeting of Indonesian atomic energy students in Japan (202–212).

Mulyanto, Marsodi, Aziz, F., & Kitamoto, A. (1994b). Maximisation of burning and/or transmutation rate of fast B/T reactor by neutron energy shift. Dalam Third scientific meeting of Indonesian atomic energy students in Japan (45–50).

Nissan, E. (2019). An overview of AI methods for in-core fuel management: Tools for the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging new and partly spent fuel. Designs, 3(3), 1–45. https://doi.org/10.3390/designs3030037

Okumura, K., Kugo, T., Kaneko, K., & Tsuchihashi, K. (2007). SRAC2006: A comprehensive neutronics calculation code system (JAEA-Data/Code 2007-004). Japan Atomic Energy Agency. https://doi.org/http://dx.doi.org/10.11484/jaea-data-code-2007-004

Panitra, M. M., Aziz, F., Rivai, A. K., Sukaryo, S. G., Fisli, A., Sudirman, & Parikin. (2021). Rubber based neutron shielding material simulation using MCNP5. Dalam AIP conference proceedings 2381 (020054). https://doi.org/10.1063/5.0066597

Panitra, M. M., Rivai, A. K., & Aziz, F. (2022). Simulation study on the effect of ODS cladding material on the criticality of nuclear reactors using MCNP5. Dalam AIP conference proceedings 2501 (040010). https://doi.org/10.1063/5.0095704

PRSG BATAN. (2011). Laporan analisis keselamatan (LAK) RSG-GAS rev. 10.1.

Rivai, A. K., Aziz, F., & Takahashi, M. (2006). Design study of 300 MWt PWR fueled with UO2 coated fuel particle. Dalam Proceedings of the 14th international conference on nuclear engineering (593–597).

Rivai, A. K., Su’ud, Z., & Aziz, F. (2003). Design study of modular lead-bismuth cooled fast reactors with nitride fuel. Indonesian Journal of Physics, 14(4), 214–218. http://ijphysics.com/index.php/ijp/article/view/69

Safitri, K. (2022, 29 November). RUU EBT atur pembangkit listrik tenaga nuklir. Kompas.com. https://money.kompas.com/read/2022/11/29/181130426/ruu-ebt-atur-pembangkit-listrik-tenaga-nuklir

Salvatores, M. (2012). Partitioning and transmutation of spent nuclear fuel and radioactive waste. Dalam I. Crossland (Ed.), Nuclear fuel cycle science and engineering (501–530). Woodhead Publishing.

Soentono, S., & Aziz, F. (2008). Expected role of nuclear science and technology to support the sustainable supply of energy in Indonesia. Progress in Nuclear Energy, 50(2–6), 75–81.

Sood, A. (2017, 10 Juli). The Monte Carlo method and MCNP – A brief review of our 40 year history [Presentasi]. The International Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications Conference, Chicago, Illinois, Amerika Serikat.

Subki, I. R. (1993). Establishment of computer code system for nuclear reactor design analysis. Dalam Lokakarya komputasi dalam sains dan teknologi nuklir III.

Sudarsono, B., Bunjamin, M., & Djokolelono, M. (1988). Recent exercise on WASP: An outlook for the Java system. Dalam Experience with WASP and MAED among IAEA member states participating in the regional co-operative agreement (RCA) in Asia and the Pacific region (IAEA TECDOC-528) (93–102). International Atomic Energy Agency.

The Guardian. (2012, 30 Juli). Are fast-breeder reactors the answer to our nuclear waste nightmare? https://www.theguardian.com/environment/2012/jul/30/fast-breeder-reactors-nuclear-waste-nightmare

US GAO. (2021). Commercial spent nuclear fuel: Congressional action needed to break impasse and develop a permanent disposal solution. https://www.gao.gov/products/gao-21-603

Wakabayashi, T. (2021). Concept of a fast breeder reactor to transmute MAs and LLFPs. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01986-w

Wallenius, J. (2019). Maximum efficiency nuclear waste transmutation. Annals of Nuclear Energy, 125, 74–79. https://doi.org/10.1016/j.anucene.2018.10.034

Winsberg, E. (2019). Computer simulations in science. Dalam E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2019 edition). Stanford University. https://plato.stanford.edu/archives/win2019/entries/simulations-science/

X-5 Monte Carlo Team. (2003). MCNP—A general n-particle transport code, Version 5 (Vol. 1: Overview and theory, LA-UR-03-1987). Los Alamos National Laboratory

Yan, X., Yang, L., Zhang, X., & Zhan, W. (2017). Concept of an accelerator-driven advanced nuclear energy system. Energies, 10(7), 1–13. https://doi.org/10.3390/en10070944

Zhang, Z., Dong, Y., Qi, W., & Sun, J. (2019, 26 Februari). HTR-PM: Making dreams come true. Nuclear Engineering International. https://www.neimagazine.com/features/featurehtr-pm-making-dreams-come-true-7009889/

Downloads

Published

September 6, 2023

Categories

Details about this monograph

ISBN-13 (15)

978-623-8372-07-2